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Abstract—Vascular networks possess properties of self-similarity, which allows one to consider them as sto-
chastic fractals. The box-counting method based on calculations along the vessel centerlines is traditionally
used to evaluate the parameters of the fractal structure. Such an algorithm does not allow one to consider
structural differences between different bifurcation levels of the system, characterized by the natural property
of changing the blood vessel caliber. In this case, the discrepancy between the values of the fractal dimension
may exceed 20%. In this paper, an approach that allows one to avoid underestimating the complexity of the
system for low bifurcation orders and large vessels is proposed. Based on the constructed arterial tree of the
rat brain, it was shown that the fractal dimension increases with an increase in the values of both bifurcation
exponent and length coefficient. The obtained values most fully reflect the properties of the arterial tree con-
sidering the real geometry of the vessels; they are proposed for use in estimating three-dimensional vascular
networks.
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INTRODUCTION
The main function of the vascular system is to pro-

vide all cells of the body with oxygen and other vital
metabolites. For this to occur most effectively, the
arterial tree should be a branching system, while bifur-
cation is the most common form of division at each
step [1]. Due to the extreme complexity and multilevel
topology of the vascular network, there is no unequiv-
ocal opinion about which parameters to use for
describing the structure of blood vessels. In addition,
there is a demand for a criterion of normal develop-
ment that allows one to diagnose diseases. To solve
these problems, fractal analysis has been used to eval-
uate various healthy and pathological circulatory sys-
tems [2, 3]. Vascular networks are not strictly fractal,
since they do not exhibit large-scale invariance in the
infinite range; however, they have self-similarity prop-
erties, since the branching process is the same at each
stage, therefore, the vascular system is fractal in nature
and can be considered as a pseudofractal [4]. It was
shown that at least the arterial system of the brain is a
combination of two components: a capillary network
that fills the space uniformly and a branched fractal
structure of larger vessels [5]. In fractal geometry, the
properties of self-similar structures observed in a wide
spectrum of successive bifurcations are quantified
using fractal dimension (FD), which is a measure of
the complexity of structures [6]. It can be considered

as a quantitative determination of the space filling,
similar to the analysis of the vascular density [7]. Thus,
in the case of a two-dimensional branching network,
the closer the fractal dimension is to two the more effi-
ciently the tree fills the space, since the upper limit of
the fractal dimension corresponds to the topological
dimension. The estimation of the fractal dimension
was used to characterize human retina [8], various
tumor formations [9, 10], as well as to analyze a three-
dimensional arterial tree of human lungs obtained
using the data of computer tomography [11]. In addi-
tion, the fractal dimensions of 2D projections of the
lung vascular system of patients were evaluated in sev-
eral studies [12]. The estimation of the fractal dimen-
sion is widely used to characterize vascular networks in
various diseases. As an example, a decrease in the frac-
tal dimension of the pulmonary arterial tree according
to CT angiography is associated with a decrease in sur-
vival in the study of people with pulmonary hyperten-
sion [13], as well as with an increased risk of stroke
[14]. It was hypothesized that any pathological mor-
phology of the vascular tree leads to a decrease in the
fractal dimension [15]. In the present work, fractal
analysis was applied to estimate the structure in the
model of the rat brain arterial tree.
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Fig. 1. The single bifurcation modeling algorithm.
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MATERIALS AND METHODS

In order to reflect the structure of the cerebral net-
work anatomically correctly, the model representation
of the arterial tree was divided into deterministic and
stochastic parts depending on the caliber of the vessel.
The main arteries of the brain, which have a larger
radius and quite conserved topology in most samples,
are a deterministic structure that allows one to repro-
duce the typical topology of large arteries with maxi-
mum accuracy. The representation of arteries of the
deterministic part was created in the form of an
ordered set of cylinders; the radii and coordinates of
the centers of their bases were assigned for each, where
the radius of the cylinder corresponded to the radius of
the vessel. The diameters of the main arteries of the rat
brain used to construct the basal level were calculated
based on the images of rat brain vessels.

Smaller vessels, which are branches from the main
arteries, were isolated into a separate stochastic struc-
ture. The stochastic part was implemented in the form
of a binary tree since it is consistent with the data of
morphometric analysis which shows that bifurcation is
almost always formed during the vascular system
branching [16, 17]. Under this form of branching, the
mother branch (i) is divided into two daughter vessels
(2i + 1, 2i + 2), each of which in turn forms a bifurca-
tion up to the level corresponding to the minimum
radius of the vessel, which in this model corresponds
to 8 μm. At the same time, the process of generating
each individual bifurcation consists of several key
stages (Fig. 1). The input parameters are the radius,
length, and coordinates of the nodes of the mother
branch, as well as the values of the key parameters of
the model, which determine the branching geometry
of the tree as a whole. The decrease in the length of the
daughter vessels relative to the length of the mother
branch is characterized by the length coefficient (λ):

(1)

The relationship between the radius of the mother
branch and the radii of the left and right daughter
branches is established by the bifurcation law, which is
also known as Murray’s law [18]:

(2)

2 1,2 2 .i i iL L+ + = λ

2 1 2 2,i i iR R Rγ γ γ
+ += +
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where γ is the bifurcation exponent, whose values,
according to the literature, vary from two to three [19,
20]. The generation of normalized radii of the daugh-
ter vessels occurs in the range defined by the radius of
the mother branch and the minimum radius:

(3)

where Rlow is the minimum radius in the arterial sys-

tem and U(0, 1) is the standard uniform distribution.
Along with the radii and lengths of the daughter ves-
sels, azimuthal angles are generated:

(4)

Further, bifurcation angles between the daughter

branches are calculated based on the normalized radii:

(5)

Using the obtained coordinates of the terminal

nodes, intersections between vessels are eliminated by

calculating the distances to the nearest bifurcations. In

this work, the arterial system is generated in a space

limited by the geometric dimensions of the rat brain

phantom; therefore, at the last stage, the localization

of terminal nodes inside a given area is checked:

(6)

where ci, j and Ri, j are the coordinates of the center and

the semiaxes values of the i-th ellipsoid. A rat brain
phantom was constructed using the approximation of
the brain with the system of ellipsoids, the geometric
parameters of which were obtained based on the digi-
tization of the rat brain images.

Arterial trees constructed using the proposed

approach were used to estimate the fractal dimension

by the box-counting method [21]. For a given fractal

structure embedded in a d-dimensional volume, the

method consists in dividing the space of the structure

into a d-dimensional grid of variable size. The number

of nonempty cells N(r) of size r needed to cover the

fractal structure depends on r:

(7)
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where FD is the fractal dimension of the given struc-
ture. The box-counting algorithm counts the number
of nonempty cells for different values of r. The value of
the fractal dimension is calculated based on linear
approximation of the logarithmic curve:

(8)

Figure 2 shows an example of calculating the fractal

dimension of a two-dimensional arterial tree con-

structed based on the algorithm presented above. In

the described example, for calculation each vessel was

represented by the centerline, which does not allow

considering the influence of the vessel radius on the

value of the fractal dimension (Fig. 3a). It should be

noted that the radius of the vessel is one of the most

important geometric characteristics of a single branch,

which determines the topology of the arterial tree as a

whole. In this regard, an approach that allows more

accurate assessment of the complexity of the vascular

network was developed. The surface of each vessel is

uniformly divided into polygons with the mean value

of the edge length is about two micrometers (Fig. 3b).

RESULTS AND DISCUSSION

The main influence on the spatial arrangement of

blood vessels and the topology of the arterial tree is

caused by the bifurcation exponent (γ) and length

coefficient (λ). This is greatly referred to the stochastic

part of the system, since the geometry of large arteries

is less variable. Additional parameters that limit the

complexity of the system are the space for constructing

the vascular system (Ω) and the minimum possible

radius of the vessel (Rlow), which are biological features

of the studied object. To assess the direct influence of

the key parameters of the model on the topology of the

vascular system without taking limiting factors into

account, two-dimensional single daughter trees were

constructed based on the principles described above

for various values of the bifurcation exponent (Fig. 4)

and the length coefficient (Fig. 5). In the presented

models, the radius of the mother vessel was taken

equal to 40 μm; the vascular tree was then constructed

until the specified radius of the branch, which corre-

sponded to 5 μm, was reached. It can be seen from the

above models that the density of the blood vessels

noticeably increases with an increase in the bifurcation

exponent. In turn, an increase in the length coefficient

leads to the formation of a vascular system that pro-

vides a large coverage area. In order to quantitatively

determine the filling of the space, the fractal dimen-

sion values were calculated for each of the constructed

trees. The fractal dimension increases with an increase

in both the bifurcation exponent and the length coef-

ficient. This is consistent with experimental data on

various pathological morphologies of the vascular
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Fig. 2. A schematic representation of the method for measuring fractal dimension by an example of two-dimensional arterial net-
work using the box-counting method: (a), two-dimensional arterial tree constructed using the proposed approach; (b), sequential
subdividing of the space into a grid of variable size with the isolation of cells covering the structure of the arterial tree.

(a) (b)

Fig. 3. A representation of single bifurcation for calculating fractal dimension: (a), vessels are approximated by the centerline;
(b), vessel surface is represented by a set of polygons.

(a) (b)
tree, in which the fractal dimension is decreased [22–

24]. It should be noted that the range of FD changes of

the system is wider with a change in the bifurcation

exponent value (ΔFD = 0.13) and the complexity of the

system is largely determined by its branching.

In the case of analysis of medical images of vascular

systems, the fractal dimension is usually estimated

based on two-dimensional projections [13, 25]. This is

associated with both the difficulty of obtaining a full

three-dimensional structure and the impossibility of
automatic segmentation of a separate vessel for volu-

metric representation, which leads to the need for lin-

ear approximation. Despite this, estimating the com-

plexity of a system from two-dimensional projections

is least expensive in terms of computational resources

and provides an effective way to initially estimate

parameters of the model based on available experi-

mental data. An example of application of the box-

counting algorithm for calculating the fractal dimen-

sion of the axial projection of the rat brain arterial sys-

tem is presented in Fig. 6. The dependences of the
BIOPHYSICS  Vol. 65  No. 3  2020
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Fig. 4. Two-dimensional vascular trees constructed for different values of the bifurcation exponent (γ). The value of the length
coefficient (λ) was taken equal to 0.90. The present values of the fractal dimension are obtained by the box-counting method
along the vessel centerlines.

γ = 2.3 γ = 2.5 γ = 2.7

γ = 2.9 γ = 3.0 γ = 3.1

FD = 1.39 FD = 1.40 FD = 1.43

FD = 1.45 FD = 1.48 FD = 1.52
fractal dimension on the bifurcation exponent and the

length coefficient for the case of the axial projection

were obtained (Fig. 7). The pattern of FD growth is

comparable with the case of single two-dimensional

trees; however, the absolute values are on average

higher by 0.36, and the decrease in the ΔFD range is

associated with the presence of a low variable structure

of large arteries that escape the principle of bifurcation

branching. At high values of γ and λ, the fractal

dimension is approximately 1.83, which is consistent

with experimental data and modeling results, accord-

ing to which the fractal dimension exceeds 1.80 [26,

27].

Analysis of the fractal dimension of the full three-

dimensional vascular system is of the greatest interest.

In this regard, the dependence of the fractal dimen-

sion on the model parameters for the three-dimen-

sional arterial tree of the rat brain was studied (Fig. 8).

As can be seen from the above curve, the fractal

dimension exceeds 2.05 for the values of the bifurca-

tion exponent close to three in the case of estimation

along the centerline of the vessel (FDline). Despite the

fact that a change in the bifurcation exponent primar-

ily affects the branching of the network and, as a con-
BIOPHYSICS  Vol. 65  No. 3  2020
sequence, the fractal dimension, an increase in the

calibers of daughter vessels under an increase in γ is

significant. In addition, the average and modal values

of the relative length of blood vessels for the rat brain

arterial system are 16 and 10, respectively [28]. This

suggests that for a large number of vessels linear

approximation is not effective and the underestima-

tion of the fractal dimension value in the calculation

along the centerline is significant. To assess the effect

of the vessel radius on the complexity of such a system,

the surface of each vessel was presented as a set of

polygons. All the dependencies are characterized by an

increase in FDpoly, and the average difference in esti-

mating the fractal dimension between two calculation

methods is 0.11. The obtained values of the fractal

dimension fully reflect the influence of the parameters

of the arterial tree considering the exact geometry of

the vessels and it is proposed to use them to assess

three-dimensional vascular networks.

As was shown earlier, the space of parameters {γ, λ}

should be strictly limited from the bottom for maxi-

mum correspondence with the bifurcation model of

the rat brain arterial tree. Systems with a low value of

the bifurcation exponent (γ < 2.9) show insufficient
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Fig. 5. Two-dimensional vascular trees constructed for different values of the length coefficient (λ). The value of the bifurcation
exponent (γ) was taken equal to 3.0. The present values of the fractal dimension are obtained by the box-counting method along
the vessel centerlines.

λ = 0.80 λ = 0.82 λ = 0.84

λ = 0.86 λ = 0.88 λ = 0.90

FD = 1.42 FD = 1.43 FD = 1.44

FD = 1.47 FD = 1.48 FD = 1.49

Fig. 6. An example of the box-counting algorithm application for calculating fractal dimension of axial projection of model rat
brain arterial systems for various values of key parameters: (a), γ = 3.0, λ = 0.80; (b), γ = 2.3, λ = 0.90; (c), γ = 3.0, λ = 0.90.

(a) (b) (c)
branching and degrees of symmetry and do not pro-

vide the required arterial cerebral blood volume

(CBV) [29, 30]. In turn, the arterial system, which is

effective from the point of view of the vascular topol-

ogy, can be obtained only with the optimal value of

both key parameters (γ = 3.0; λ = 0.90) [28]. The lim-

itation of the vessel radius at the level of metarterioles
is associated with the fact that microcapillary beds, as

a rule, escape the bifurcation laws of branching and are

chaotic net-like structures [31]. An example of an

optimal arterial tree is shown in Fig. 9.

The above results allow us to estimate both the val-

ues of the fractal dimensions for various arterial trees

as a whole and to consider the influence of the main
BIOPHYSICS  Vol. 65  No. 3  2020
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Fig. 7. (a), The dependence of the fractal dimension of the arterial tree axial projection on the bifurcation exponent (γ); (b),
dependence of the fractal dimension of the arterial tree axial projection on the length coefficient (λ). The results are presented as
M ± SD for 20 independently generated rat brain arterial systems for each calculation.
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Fig. 8. (a), The dependences of the fractal dimension of three-dimensional arterial tree on the bifurcation exponent (γ); (b),
dependences of the fractal dimension of three-dimensional arterial tree on the length coefficient (λ). The results are presented as
M ± SD for 20 independently generated rat brain arterial systems for each calculation.
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bifurcation parameters on the complexity of the sys-

tem. In turn, the fractal dimension of local regions can

vary significantly within the same arterial system

despite the fact that both branching laws (the division

of the mother branch strictly into two daughter ves-

sels) and key parameters within the same tree remain

unchanged.

The dependence of the fractal dimension on the

bifurcation level for two variants of the vessel represen-

tation was analyzed for an arterial tree with optimal

values of both parameters (Fig. 10). As can be seen

from the above curves, the FD value increases with an

increase in the bifurcation level and the maximum

growth of the complexity of the system is observed on

the first fifteen bifurcation orders in both cases. How-
BIOPHYSICS  Vol. 65  No. 3  2020
ever, the range of changes in the fractal dimension is

significantly larger with the calculation method along

the centerline (from 1.42 to 2.08), while it is from 1.77

to 2.18 when using the polygonal representation. It

should also be noted that the boundary bifurcation

level which divides the arterial system into distributing

and delivering vessels [32, 28] corresponds to growth

of the complexity of 61% and 55% for linear and

polygonal representations, respectively.

The caliber of the vessel does not directly depend

on the bifurcation level, since the symmetry of the ves-

sels increases significantly with an increase in the

bifurcation order [29, 33]. This is associated with the

different functions of two types of vessels: vessels with

predominantly asymmetric bifurcations give a rela-



502

BIOPHYSICS  Vol. 65  No. 3  2020

KOPYLOVA et al.

Fig. 9. A model of the arterial tree of the rat brain constructed based on the optimal values of bifurcation parameters (γ = 3.0, λ =
0.90). The minimum vessel radius is limited to 8 μm, which corresponds to the level of terminal arterioles.

Fig. 10. The dependences of the fractal dimension of the three-dimensional arterial tree of the rat brain on the bifurcation level:
(a), FD calculation along the vessel centerlines; (b), FD calculation based on polygonal representation of the vessel.
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Fig. 11. The dependences of the fractal dimension of the three-dimensional arterial tree of the rat brain on the vessel radius: (a),
FD calculation along the vessel centerlines; (b), FD calculation based on polygonal representation of the vessel.
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tively small f low to the lateral branches during division

and, therefore, are able to carry blood over long dis-

tances; the more symmetrical bifurcation structure

splits into numerous small branches that supply the

surrounding tissue with blood. The dependence of the

fractal dimension on the radius of the vessel was ana-

lyzed (Fig. 11). The minimum radius corresponds to

the radius of terminal arterioles, which in the pro-

posed model is equal to 8 μm, and the maximum value

corresponds to arteries. Using the obtained depen-

dences, one can estimate the fractal dimension of the

arterial tree of various degrees of the complexity. Thus,

for example, the fractal dimension of a system consist-

ing only of arteries with a radius of 50–80 μm varies

from 1.78 to 1.87 (Table 1). As in the case of the previ-

ous analysis, higher dispersion of the FD values allows

us to conclude that the complexity of the system is
BIOPHYSICS  Vol. 65  No. 3  2020

Table 1. The fractal properties of the main types of vessels of 

Type Functions

Arteries Transfer of blood from the heart and supply

of various parts of the brain with blood

Arterioles Regulation of blood pressure and blood 

distribution in the capillary bed

Metarterioles Regulation of supply for individual groups 

of capillaries
underestimated when calculated along the centerline,

especially for low bifurcation orders and large vessels.

CONCLUSIONS

The method of calculating the fractal dimension,

which allows quantification of the efficiency of space

filling, was used as a criterion for estimating the struc-

ture of the constructed vascular tree. This approach is

widely used to identify pathological abnormalities of

vascular networks in various diseases. It was previously

established that even a slight decrease in the fractal

dimension is a negative factor in the prognosis for a

number of diseases [34]. In this work, it was shown

that the value of the fractal dimension increases with

an increase in the bifurcation exponent (γ) and the

length coefficient (λ). The results indicate that the

construction of the arterial network model in the tis-
the rat brain arterial system

Radius, μm FDline FDpoly

50–80 1.43–1.57 1.78–1.87

10–50 1.57–2.01 1.87–2.13

8–10 2.01–2.08 2.13–2.18
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sue based on the optimal values of both key parameters

is justified not only by physicochemical, but also phys-

iological features of the branched structures. The box-

counting method based on calculations along the cen-

ter line of the vessel is most often used to assess the

fractal properties of arterial systems. This method is

simple from the point of view of computational com-

plexity; however, the linear representation of the ves-

sels does not allow one to take the differences between

the bifurcation levels of the system into account,

which are characterized by the different calibers of the

vessels. In this paper, an approach was proposed that

allows one to avoid underestimating the complexity of

the system for low bifurcation orders and large vessels,

which at the level of large arteries can exceed 20%. The

obtained values of the fractal dimension most fully

reflect the properties of the arterial tree considering

the real geometry of the vessels and allow both estima-

tion of the fractal dimension of arterial trees of varying

degrees of complexity and determination of the pres-

ence of vascular pathologies during medical research.
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