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Abstract—A model of electroencephalogram (EEG) generation was proposed to include not only summation
of postsynaptic potentials, but also f luctuations in the regulation of a constant potential level. The model
explains a number of phenomena observed predominantly in the low-frequency EEG range.
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INTRODUCTION
The current theory considers summation of post-

synaptic potentials responsible for the generation of an
electroencephalogram (EEG) [1] and explains a num-
ber of observations, while failing to provide a satisfac-
tory explanation to several other EEG phenomena.
Their set includes the shape of the EEG signal, which
is quite close to sinusoidal in the case of certain
rhythms; the frequency spectrum with distinct peaks;
differences in frequency spectrum between the EEG
and electrocorticogram; the increase in EEG ampli-
tude that accompanies the slowing of biopotential
oscillations in pathological conditions; and the situa-
tion where rhythms usually thought to indicate a nor-
mal state are detected in pathological conditions, such
as α-coma.

To explain, it can be assumed that several basically
different mechanisms act simultaneously to shape bio-
electrical activity. One mechanism, which is currently
believed to act alone, is summation of excitatory post-
synaptic potentials (EPSPs) with inhibitory ones
(IPSPs), while other mechanisms may differ in nature.
Different mechanisms generate different frequencies
and form different spatial distributions of the electrical
potential. This idea was proposed in [2], where ranges
of 1–10, 10–100, and greater than 100 Hz were
assumed to differ in the mechanism of brain electrical
activity generation (the study focused on the 10–
100 Hz range and summation of postsynaptic poten-
tials as a mechanism of EEG generation). The lower
frequency range includes δ, θ, and α activities, which
are diagnostically significant, and is thus of substantial

clinical interest. If the mechanism that generates these
activities differs from that responsible for higher-fre-
quency ranges its study will help to develop new meth-
ods for EEG analysis and to better understand the
existing ones. The above range margins are not exact,
but rather indicate the order of magnitude of fre-
quency and may change depending on the patient’s
age, condition, drug effects, etc. In addition, the range
may substantially overlap in frequency.

MATHEMATICAL MODEL

The attempt below to explain one of the mecha-
nisms responsible for EEG generation is based on the
idea [3] that f luctuations in the level of the constant
potential (which is understood as the resting potential
on the neuronal membrane) contribute to bioelectri-
cal activity. This potential forms between the inner and
outer sides of the neuronal membrane, is approxi-
mately 70 mV, and is due to the difference in sodium
and potassium ion concentrations. Its generation
involves the sodium–potassium pump, which pumps
sodium out of the cell in exchange for potassium and
creates a concentration gradient. As an action poten-
tial (a nerve impulse) forms, sodium channels open
and the ion concentration becomes stable [4]. There is
no discrepancy between “oscillations” and “constant”
because a regulator is essential to maintain constancy
in changing conditions of the body function and a reg-
ulator is impossible in the absence of f luctuations [5].
The latter idea is understood as follows. A regulator
capable of maintaining a necessary level at various
loads (an astatic regulator) must work with regard not
only for the current deviation, but also to the devia-
tions that occurred previously, thus inevitably generat-

Abbreviations: EEG, electroencephalogram; EPSP, excitatory
postsynaptic potential; IPSP, inhibitory postsynaptic potential.
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ing f luctuations. The simplest example of such regula-
tors is provided by an integral regulator, where the
deviation is integrated over time and change in the
parameter under regulation is a function of the result-
ing integral.

Thus, an intermediate control unit is required for
this regulation and a substance may play this role. If a
deviation of the regulated parameter leads to the accu-
mulation of a substance, which can be approximated
with an integral of the deviation, then the concentra-
tion of the intermediate substance affects the change
in the regulated parameter. The calcium ion Ca2+ can
be considered as such an intermediate element,
assuming that its intake is determined by the potential-
dependent potassium pump and that the sodium–
potassium pump is regulated by the Ca2+ concentra-
tion [6, 7]. The extracellular concentration of calcium
is 2.28 mmol/L [7] (for comparison, that of potassium
is 2.86 mmol/L); the intracellular calcium concentra-
tion is low at rest and substantially increases after an
action potential has been generated; calcium is then
removed from the cell. Generally speaking, nonlinear
functions describe the effects that the potential level
exerts on changes in calcium concentration and the
calcium concentration exerts on the function of the
sodium–potassium pump. Taking a linear depen-
dence as a first approximation yields the following:

where K is the potassium ion concentration; P is the
extracellular potential; κ, π, g, and h are the parame-
ters of the linearized model (κ and π are, respectively,
the calcium concentration and potential in normal
conditions); a and c are the effects that deviations in
potential and calcium concentration exert on the rates
of changes in calcium concentration and potential,
respectively; and b is the diffusion of calcium into sur-
rounding brain structures during its removal. Differ-
entiating the second equation and substituting the first
equation into the second one reduce the above system
of differential equations to a second-order linear dif-
ferential equation where p = P – π:

The solution of this equation is an exponent with a
complex power. Based on Euler’s formula eix = cosx +
isinx, the exponent can be represented as a damped
sinusoidal function in the real region:

where ω is the imaginary component and δ is the real
component of the solutions to the accessory equation
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z2 = bz – w2 and the coefficients A and ϕ are deter-
mined by the initial conditions (formally, a sinusoidal
function that is not damped or even has an exponen-
tially increasing amplitude is a possible solution, but
such solutions appear to be meaningless physiologi-
cally).

The resulting f luctuations are assumed to act as a
source of the low-frequency range (presumably up to
10–15 Hz) of the EEG. Their spectrum has a relatively
sharp peak (depending on the damping decrement δ,
i.e., the lower the damping is, the sharper the peak of
the spectrum is). The frequency depends on the coef-
ficients of the model and the coefficients are deter-
mined, on the one hand, by the availability of ATP,
which is utilized by the sodium–potassium pump
whose availability depends on oxygenation of respec-
tive brain structures, and, on the other hand, on the
calcium ion concentration. Both the lack of oxygen
and hypocalcemia may cause slow-wave activity or
spike-and-wave complexes according to clinical
observations [1]. The above dependence may help to
assess these important parameters of brain tissue by
the EEG, but the mathematical apparatus needs to be
developed almost from the beginning for such assess-
ments.

An excitatory signal is necessary for damped f luc-
tuations to occur for a relatively long period of time. If
the f low of excitatory signals is of a Poisson process,
that is, the next excitatory stimulus is generated inde-
pendently of the generation of other stimuli, then the
signal frequency will correspond to the frequency of a
single damped sinusoidal function. If a non-Poisson
flow takes place, then this direct dependence is not
observed, but the frequency of the resulting signal will
depend on the frequency composition of the initial
excitatory signal passed through a filter with the
amplitude–frequency characteristics corresponding
to those of the given regulatory mechanism. The sen-
sory information f low is certainly non-Poisson in
character; in the absence of such flow, individual
spontaneous impulses are independent and can be
approximated with a Poisson process. Therefore,
the above mechanism may explain the reason that the
α-rhythm becomes detectable when the eyes are
closed and changes to high-frequency activity when
the eyes are open, the reason that the Rolandic μ
rhythm becomes detectable as the contralateral hand
is relaxed and disappears as it moves, and the reason
that α-coma is observed in severe brainstem injury. A
possible interpretation of the last case is that α-coma
as an extremely unfavorable prognostic factor may
reflect that sensory input to the relatively intact cortex
has stopped because of damage to brainstem struc-
tures.

A pattern where a rhythm slows and simultaneously
increases in amplitude is observed in pathological
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conditions (the α-rhythm frequency decreases up to a
transition to the θ-rhythm range or δ activity becomes
detectable at the site of injury, the perifocal area of a
tumor, or in cerebrovascular disorders) and certain
functional tests (the Matas test with occlusion of the
carotid artery; detection of slow-wave activity suggests
insufficient blood supply of the respective hemisphere
through collateral vessels). In the above context, these
observations mean that the regulator fails to perform
its function properly and that, consequently, devia-
tions take more time to eliminate and increase in mag-
nitude (the amplitude of pathological activity). On the
other hand, an increase in oxygen supply to brain tis-
sue, for example, during hyperbaric oxygenation leads
to a higher frequency of the α rhythm [8].

A description of the electrical field formed during
the regulation of the constant potential includes not
only dipole components, but monopole ones as well.
Therefore, the potential will not decrease with the
increasing distance to its source as fast as in the case of
a purely dipole source (in inverse proportion to the
distance, in contrast to the inverse quadratic relation-
ship observed for dipoles), nor will it depend on the
dipole orientation relative to the detector; these issues
make it possible to explain the reason that signals from
deep sources are successfully recorded. To explain the
amplitudes measured from the scalp in the context of
dipole sources, one has to reject the volume conduc-
tion model [9], whose applied efficiency is well
demonstrated, or to assume extremely high potential
values for areas close to the source, while such values
disagree with intracerebral measurements. The contri-
bution of monopole sources cannot be neglected, as
has been noted in the literature [10].

DATA ANALYSIS AND NUMERICAL 
MODELING

It is necessary to experimentally verify that certain
EEG rhythms can be described with the above model
and that certain bioelectrical activities are not fully
explicable by summation of EPSPs and IPSPs.
Because data are sampled at discrete time points by an
EEG machine, the above differential equation should
be changed to a finite-difference equation:

where yt is the observed value of  biopotential, a1 and
a2 are the model coefficients, and ε is the excitatory
signal.

The following estimate was obtained for the
α rhythm recorded at O2:

1 1 2 2 ,t t ty a y a y− −= + + ε

–1 –21.629469 0.928725 ,t t ty y y= − + ε
which was then used to calculate the frequency ω =
8.99 Hz and the damping decrement δ = 0.0369.

A sequence of random numbers with a normal dis-
tribution was used to simulate an EEG (Fig. 1, upper
panel; a real EEG is shown at the top and the simu-
lated EEG, at the bottom). Power spectra were calcu-
lated for the real and simulated EEGs (Fig. 1, lower
panel). A peak in the α range is distinct in both of the
spectra. At the same time, the real EEG and especially
its spectrum are far richer than the respective simu-
lated curves. The difference is possibly explained pri-
marily by the fact that only one source was assumed in
the model, while total activity of many brain struc-
tures, including those rather far away from the record-
ing site, is ref lected in a real EEG.

When simulation was performed by summing the
postsynaptic potentials that were elicited at random
time points and had a shape described in the literature
(ascending phase, 2–3 ms; descending phase, 10–
12 ms), the resulting pattern was absolutely dissimilar
to the periodic activity observed in the EEG, but was
similar in visual appearance and spectral composition
to β activity.

Finally, there is a possibility that oscillations in the
δ, θ, and α ranges do not result from EPSPs and IPSPs
that arise at random and independently of each other,
but are rather caused by pulse trains, so that the train
frequency determines the frequencies of the respective
rhythms. To test this assumption, activity at rest with
the eyes closed was recorded from O1 and divided into
the α (8–13 Hz) and β (15–45 Hz) ranges by digital
filtering. Oscillations corresponding in duration and
shape to EPSPs and IPSPs would be detectable in the
β rhythm frequency range. An envelope curve was cal-
culated for β activity, and possible correlations were
analyzed for the signal in the α range or its absolute
value with the β rhythm envelope and its absolute
value. Significant correlations were not observed
between the parameters (Fig. 2). The finding certainly
does not demonstrate lack of association between dif-
ferent EEG rhythms, but provides an argument
against the idea that low-frequency rhythms form via
summation of postsynaptic potentials.

DISCUSSION
The above model is not an alternative to the exist-

ing model, which explains the formation of the EEG
potential by summation of dipole potentials associated
with EPSPs and IPSPs, but rather supplements it by
explaining primarily the details of the EEG frequency
composition. Following the accepted model, a large
number of individual sources producing short pulses
are summed to make low EEG frequencies. However,
this idea contradicts the linearity of the Fourier trans-
form, which implies that the total spectrum of a set of
sources is the sum of the individual source spectra.
BIOPHYSICS  Vol. 64  No. 3  2019
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Fig. 1. Real (upper curve) and simulated (lower curve) EEGs (at the top) and their power spectra (at the bottom).
However, the duration of postsynaptic potentials is
10–20 ms, corresponding to oscillations that have a
frequency of several tens of hertz, and the frequency of
the total signal will be close to the average frequency of
these sources. For higher frequencies (β and γ rhythms
and spikes) the existing EEG model seems adequate to
explain the signal by summation of EPSPs and IPSPs.

The above model of the formation of a low-fre-
quency EEG is of applied significance because the
EEG frequency composition has been thought to
characterize the patient’s condition from early clinical
EEG studies. The occurrence of slow rhythms or a
slowing of the existing rhythms may point to a patho-
logical process or reflect changes in physiological con-
dition (sleep or anesthesia). Several parameters have
found application in this context: the mean or median
BIOPHYSICS  Vol. 64  No. 3  2019
frequency, spectral edge frequencies (at 90% or 95% of
the spectral power), and effective frequency band [11–
15]. However, the parameters have been introduced as
empirical characteristics of brain bioelectrical activity.
The model, which explains the association between
the physiological state of brain tissues and the EEG
spectral parameters, may have an applied purpose by
helping to improve the methods to obtain such param-
eters.

Although based on extremely simplified assump-
tions, the model can explain several known EEG phe-
nomena. However, the model cannot explain the gen-
eration of specifically shaped signals, such as arch-
shaped signals in the μ rhythm or spike-and-wave
complexes in epilepsy. Nonlinearities introduced in
the model may help to explain these phenomena.
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Fig. 2. Correlations between the signal in the α range (Alpha) and the envelope curve of the β rhythm (Beta) or their absolute
values (|Alpha| and |Beta|, respectively).

Alpha : Beta

Alpha

|Alpha|

Beta |Beta|

r  2 = 0.0002
|Alpha : Beta: r  2 = 0.0004
Alpha : |Beta|: r  2 = 0.0024
|Alpha| : |Beta|: r  2 = 0.0003
Another open question is related to the interactions
among different sources of bioelectrical activity,
including their self-synchronization. This model is
only the first approximation. To make it more com-
plex and realistic, additional studies are necessary that
simultaneously record several different signals (EEG,
transcranial oxygenation, and blood flow rate) and
compare the data with clinical findings.
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