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Abstract⎯It is important to perform an analytical study of the oscillatory modes embedded in an ECG signal
on individuals in certain occupations (power station operators, pilots, military officers, drivers, sportspeople,
etc.) and those who experience pronounced emotional stress while carrying out important work. Reliability
of studying the oscillatory modes was achieved by using and comparing several methods (triangulation), thus
allowing evaluation of the results obtained by studying spatio-temporal variances, the ordered vs. stochastic
character, and the periodic vs. stochastic character of the dynamics of an ECG signal. The oscillatory modes
of the ECG signal structure were studied in various conditions using graphic illustrations obtained by con-
verting the ECG signal in the phase plane. The orderliness, periodicity, and stochastic features of a time series
of R–R intervals were examined using the entropy-dynamic approach and the phase-plane and phase-curve
methodologies. Nonlinear phenomena were qualitatively described using the elementary part of the theory
of catastrophes. Dysfunctional and pathological conditions were associated with either a significant expan-
sion of the phase graph (PG) shape with significant variations in amplitude and time parameters and an
increase in the degree of chaos or a distinct periodicity with a loss of variability, a decrease in the chaotic com-
ponent, and a mathematical degeneration of the cycle. The results of the ECG-based entropy analysis and its
PG were quantitatively comparable with data obtained by a rheographic recording of the biological signal;
this finding supporting the reliability of the results. Constructing a phase curve using a nonparametric
method helped us to detect hidden functional features of the cardiodynamics system. This study substantially
contributes to the development of preventive methods based on testing cardiac activity in the primary medical
and social care system.
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INTRODUCTION
The majority of physiological oscillations are not

strictly periodic; rhythms change irregularly with time
not only in response to external factors and noise dis-
turbances [1–3], but also as a result of their fractal
nature. As an example, nonlinear changes arise in the
heart rhythm because the heart function is affected by
various factors, including neurohumoral mechanisms
of higher autonomic centers. Methods to analyze heart
rate variability in terms of time are the simplest and the
most common and are well understood. However,
when studying oscillatory processes, it is important to
distinguish the variability of time-related periodic
components of stationary function modes and oscilla-
tory processes with chaotic components, which are

characteristic of transition states and are time inde-
pendent. The analysis is further complicated by the
fact that a nonlinear character of oscillations is impos-
sible to describe using common statistical methods
[2–4].

Nonlinear methods are thought to provide promis-
ing tools to evaluate the variances of amplitude and
time variables of depolarization and repolarization.
However, evaluation of oscillatory modes embedded
in a myocardial signal has not been standardized for
use in physiological and clinical studies; such studies
have a limited potential and are mostly of theoretical
interest [2, 3, 5]. The objective of this work was to pro-
vide an analysis of the oscillatory modes in an ECG
signal with the use of various methods, data sets, and
theoretical concepts.

Abbreviations: ECG, electrocardiogram; PG, phase graph;
MSD, mean square deviation; VO2max, maximal oxygen con-
sumption.
779
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Fig. 1. Maps of the ECG signal in a phase space based on the data (a, b) [7] and (c, d) [8].
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MATERIALS AND METHODS

Evaluation of oscillatory modes by phase graph (PG)
elements. To evaluate the heterogeneity of electrogen-
esis exemplified by repolarization of the ventricular
myocardium, inclusion of both the total variance of
repolarization and its spatial direction and time inter-
val in the analysis are recommended [6]. It is possible
to carry out such an analysis noninvasively with a
method that describes a dynamic system in a phase
space of states and is broadly used in physics and
applied mathematics. Several approaches to con-
structing a PG have been described in the literature,
including a time-delay method and a method to esti-
mate the first derivative (or the rate of change) for the
variable in question (Fig. 1). The resulting phase por-
traits of the ECG signal are comparable and distinctly
similar in shape. However, the portraits are based on
limited data, thus rendering it unfeasible to statistically
verify the phase mapping of the ECG signal and to
provide a physiological grounding.
A large data set (n = 8600) was used to study the PG
parameters. An analysis and the information signifi-
cance of the PG parameters have been described pre-
viously [9–15]. We found that the parameters reflect
the electrophysiological and metabolic features of the
myocardial function and can provide prognostic
markers to evaluate the risk of cardiac and hemody-
namic pathologies.

The PG of a single-lead ECG was based on the
ideas of cognitive computer graphics and automated
image recognition and was constructed in the coordi-
nates z(t), , where  is the rate of change in the
electrical activity of the heart at the time point t. The
rate was determined using the FAZAGRAF software
and hardware complex, which utilizes an original
information technology designed to process the ECG
signal in the phase space.

Although an ECG (Fig. 2a) is not a periodic func-
tion of time, trajectories of individual cycles (Fig. 2b)
occur in a certain local region of the phase plane z(t),

( )z t� ( )z t�
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Fig. 2. Steps of ECG processing: (a) initial ECG; (b) its phase trajectory, or a PG; (c) a PG region corresponding to the T-wave
of a single-lead ECG and the method to assess its symmetry, which was determined as D1/D2.
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One feature of the method is that the Hausdorff
distances between all pairs of the phase trajectories Qn

and Qm of individual ECG cycles are used to select the

atypical ECG cycles (extrasystoles and artifacts) and
to evaluate the averaged phase trajectory (Fig. 2c):

where ρ(qn, qm) = ||qn – qm|| is the Euclidean distance
between the points (normalized vectors) qn = (zn, ) ∈
Qn and qm = (zm, ) ∈ Qm, which lie in the phase
plane.

To study the oscillatory modes of the ECG signal in
various conditions using the PG of the ECG signal in
the phase plane, we examined the following parame-
ters: PG variance (σ, units), T-wave symmetry (βT,

units), and mean square deviation (MSD) of T-wave
symmetry (βT MSD, units).

Entropy dynamics modeling used to study the oscil-
latory modes in the time series of R–R intervals in the
ECG signal. To evaluate the ordered vs. chaotic char-
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acter, variability of the time series of R–R intervals
was studied in terms of entropy [16–18].

The mathematical methods that are used to assess
the degree of chaos in dynamic series utilize the fol-
lowing well-known equation for entropy:

(1)

which Shannon introduced to assess the level of
uncertainty for a system that occurs in one of its n
states with the probability pi, i = 1, ..., n.

The higher H is, the farther the system is from its
ordered state. The maximal Shannon entropy is
reached when pi = 1/n, that is, the states of the system

are equally possible. It follows that the entropy (1)
takes values in a range of [0, log2n].

To calculate the degree of chaos for a dynamic
series on the basis of entropy, we considered separate
regions of the series of discrete signal values. A time
series of N discrete values was divided into M consec-
utive fragments (windows) and the relative increase in
entropy was calculated for each of the windows:

2

1
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n
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i

H p p
=
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Fig. 3. Entropy PG variants obtained for individuals of different cohorts: (a, b) 15-year-old athletes at the peak of competition
(fatigue), (c) a 47-year-old female, and (d) an 8-year-old child in emotional stress.
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where pjl is the frequency at which the time series val-

ues observed in the lth fragment occur in the jth frag-
ment (j = 1, ..., n) of values defined by the threshold δ
and

(3)

is the entropy calculated for the first (reference) win-
dow.

We have previously demonstrated that substantially
different entropy phase maps (Fig. 3) are obtained for
time series of R–R intervals, while time-related vari-
ability parameters are much the same (a heart rate of
69–72 bpm, IN 67–75 units).

The entropy of the R–R time series were studied
using ECG signals recorded in various conditions with
an electrocardiograph and a rheoplethysmograph.

The phase-plane technique used to study the oscilla-
tory modes in the time series of R–R intervals in the
ECG signal. A series of R–R intervals in the ECG sig-
nal is generated by a complex nonlinear system, which
is difficult to describe with a differential equation.
However, the character of its behavior remains the
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same at all scales. Studies of complex systems have
shown that a system audit is the most informative
when entropy parameters of a system are examined
together with its phase characteristics. The approach
makes it possible to rank the system states and evolu-
tionary trends.

In this study, the peripheral capillary blood flow
was measured by finger photoplethysmography (with a
Pal’tsevoi Fotopletizmograph instrument) and the
results were automatically processed by special soft-
ware to obtain the normalized entropy E:

(4)

where i is the index (the ordinal number of the mea-
surement; i = 1, 2, 3, ..., N), pk is the probability that

the instantaneous frequency falls within the kth parti-
tion interval of the width Δ (Δ = 50 ms), and E1 =

 is the entropy of the first (reference)

measurement.

An entropy PG of the time series of R–R intervals
was constructed automatically and stored in the soft-
ware interface; its parameters were evaluated graphi-
cally.

A mathematical method based on the catastrophe
theory in the analysis of the ECG signal dynamics.
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Fig. 4. The nonlinear dependences of dynamic variables of
entropy oscillations in three-dimensional space; a fold is a
feature.
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Fig. 5. MSD of entropy changes between an athlete and a
nonathlete as a function of the window width K0 and the
insensitivity threshold δ. The area of acceptable values of
K0 and δ is crosshatched.
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Nonlinear phenomena are possible to describe based
on the elementary part of the catastrophe theory
(Fig. 4).

It is clear that the shape of the entropy change plot
H(i) depends on the parameters used in Eq. (2) to
determine H(i), that is, on the window width K0 and

the threshold insensitivity δ to changes in values of the
dynamic series under study. We selected the “optimal”
values for K0 and δ of Eq. (2). Because formal methods

to determine the optimal values of K0 and δ do not yet

exist, their values were selected experimentally based
on a pragmatic criterion, which was the maximum
mean-square deviation (MSD) of entropy changes in
individuals from cohorts that differed in adaptation
potential. A series of computational experiments was
performed with different values of K0 and δ for the pur-

pose and the value of the function Ψ(K0, δ) was evalu-

ated for each pair of K0 and δ values as MSD of the

entropies H1(i) and H2(i) obtained for an athlete and a

nonathlete, respectively.

(5)

Figure 5 shows a plot of the function Ψ(K0, δ) with

acceptable values of the K0 and δ parameters. At these

values, the entropy deviations of an athlete and a non-
athlete are the greatest (MSD > 0.6) and vary within a
broad range:

(6)

(7)

The phase-curve method used to evaluate the peri-
odicity vs. chaotic character of a time series of R–R
intervals of the ECG signal. Entropy periodograms of
time series of R–R intervals were additionally ana-
lyzed for several young male groups that differed in the
organization of the cardiohemodynamic system. Orig-
inal software employed the nonparametric Abbe–Laf-
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ler–Kinman method, wherein phase-curve quality
depends on the distance between the points that are
closest in phase and folding is performed by frequen-
cies rather than by periods. A phase curve can be
examined visually with a plot to determine the period
and structure and to qualitatively evaluate them
according to the algorithm below.

For the time series {tk, yk}, k = 0, 1, ..., N – 1, which

must not be evenly spaced and includes N observations
of the process y(t), the phase was calculated for each

time point tk at a preset exploratory period P = v–1:

(8)

where P is the period, tk is the observation time point,

and t* is an arbitrary time point.

The phases Xk were arranged in the order of

increasing value, and the ordered values were desig-
nated X[k], so that

(9)

Then,

(10)

are observations of the series that correspond to
Eq. (9) and are consecutive on a phase diagram rather
than on a time axis. Parameter (11) showed how
ordered points were on the phase curve. When consec-

utive points are close to each other on average,  is

low; when points are chaotically distributed,  is of

the same order of magnitude as the total variance of
the series (12):
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Fig. 6. PG examples. (a) Model experiments were per-
formed using different values for the variance of amplitude
and temporal parameters of the T-wave. (b) The PG of the
ECG at a high level of internal and external perturbations.
(c) A PG observed in a patient 1 day before a fatal out-
come.
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It should be expected that the ratio is far lower than
unity when the exploratory period is close to the actual
period P0 and that Θ ~ 1 at other frequencies. The

resulting equation is the Abbe–Lafler–Kinman crite-
rion:

(13)

We examined 120 males of two age groups that dif-
fered in adaptation potential. A homogeneous group
of young males (18–19 years of age) was divided into
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two subgroups, cohort A of 30 males who were not
regularly involved in sports and cohort B of 30 high-
ranking athletes (football players and boxers) with a
training history of at least 6 years.

Cohort C included 20 healthy middle-aged males
(40–45 years) with low-level locomotor activity.
Cohort D included 40 healthy males involved in regu-
lar exercise. The cohort D males were boxers that dif-
fered in training history: 20 were neophyte boxers with
a history of less than 5 years; the others were veteran
boxers with a training history of at least 10 years.

Physical working capacity (PWC) was measured in
a two-step test on a VE-02 bicycle ergometer. We
determined the PWC-170 and calculated aerobic
parameters, including both absolute values and values
normalized to body weight (maximal oxygen con-
sumption (VO2max, L/min; and VO2max/kg,

mL/min/kg), which provided integral markers of the
functional potential of the cardiorespiratory system.
In addition, we used tests with physical loading
increased in a stepwise manner and vestibular loading
(Voyachek’s test in the Barany chair). A Spiro spiro-
graph was used to measure the minute ventilation VE

(L); a KP-01 gas analyzer served to measure the car-

bon dioxide production, . The CO2 ventilation

equivalent  (units) was calculated as VE/

(units), reflecting the minute ventilation necessary to
produce 1 L of CO2. The respiratory compensation

point, which characterizes the transition to mostly
anaerobic energy production and reflects the ventila-
tion threshold of anaerobic supply, was determined
from the ventilator equivalent dynamics as the
moment when ventilation increases dramatically rela-

tive to .

The results were statistically analyzed using the
STATISTICA 6.0 package (StatSoft, United States).
Deviations of parameter distributions were evaluated
via the Kolmogorov–Smirnov test. Differences in
parameters between the states before and after exercise
or an increase in external loading were tested for sig-
nificance by the nonparametric Wilcoxon T-test. The
parametric Student t-test was used in the case of a nor-
mal distribution.

RESULTS

At the first step of the study, PG parameters were
analyzed to evaluate the oscillations of T-wave param-
eters; the results demonstrated reliably that an
increase in their variance in consecutive cardiac cycles
increased the PG scatter. In particular, an increase in
the variance DT of the amplitude and temporal param-

eters that characterize the T-wave shape led to a
greater scatter of points in the corresponding loop of
the PG (Fig. 6a).

We observed that dysfunctions and pathological
conditions were associated with either a substantial

2COV

2COVE
2COV

2COV
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Table 1. The dynamics of T-wave symmetry in various conditions in boxers who differ in their training level

Conditions Experienced (n = 20) Neophyte (n = 20) Significance

Rest 0.68 ± 0.01 0.74 ± 0.02 <0.05

Vestibular loading after rest 0.66 ± 0.01 0.76 ± 0.01 <0.001

Peak loading 0.95 ± 0.02 1.20 ± 0.02 <0.001

After exercise 0.86 ± 0.03 1.00 ± 0.01 <0.001

Vestibular loading in fatigued state 0.79 ± 0.01 1.10 ± 0.02 <0.001

Recovery, 6 min 0.69 ± 0.02 0.97 ± 0.01 <0.001

Recovery, 15 min 0.66 ± 0.01 0.87 ± 0.02 <0.001

Fig. 7. The dynamics of  in (1) athletes and (2) non-
athletes aged 19–20 years during a test with increasing
physical power loading and recovery. RCP, respiratory
compensation point.

20

45

40

35

30

25

50

+60.5%

σ(p < 0.05)

+12.1%

σ(p < 0.05)

Reco-
Rest

50 W

100 W

150 W

200 W

250 W

1

RCP

RCP

2

V
E

C
O

2
, 

c
o

n
v.

 u
n

it
s

very,
3 min

2COVE
expansion of the PG shape with substantial variations
in amplitude and temporal parameters and an increase
in the degree of chaos (Fig. 6b) or a distinct periodicity
with a loss of variability, a decrease in the chaotic
component, and a degeneration of the cycle (Fig. 6c).
PG parameters describe the oscillatory pro-
cesses of electrogenesis. As an example, the shape of
the T-wave in the phase space, that is, the degree of its
symmetry from one cycle to another reflects the qual-
ity of depolarization and repolarization oscillations.
The T-wave shape is known to depend on the duration
and magnitude of transmembrane action potentials in
various regions of the myocardium. The dynamics of
T-wave symmetry (βT, units) in response to an increase

in external loading had its characteristics in athletes
who were of the same age but differed in training his-
tory and functional reserve level (Table 1).

It is noteworthy that alternation of ECG elements
and, in particular, that of T-wave shape with changes
in T-wave symmetry in consecutive cycles led to a
characteristic PG splitting, which additionally charac-
terized the oscillatory mode of the biological signal. As
an example, the increase in βT MSD in neophyte box-

ers was, on average, 20.5% higher than in experienced
boxers (p < 0.05).

Like the extent of chaos in the state of a thermody-
namic system, any physical factor is characterized by
an extension of the phase portrait and an increase in its
effective volume with the scatter σ. The PG character-
ized the chaotic component in the mechanisms of
heart activity and provided further information to
understand whether the regulation of its functional
state was optimal. As an example, successful adapta-
tion corresponded to a certain scatter range of phase
trajectories of the ECG signal in healthy young males
aged 18–19 years; the range was 19.3 ± 1.0 units on
average. The parameter σ decreased to 14.6 units with
the increasing sport level.

The scatter σ increased by more than 60% after the
respiratory compensation point in the athletes, sug-
gesting a broad range of systemic modifications for the
regulation of the cardiovascular system. In contrast,
only a minor increase in PG scatter was observed in
the young males with lower reserve parameters
(Fig. 7). Changes in PG scatter were indicative of how
BIOPHYSICS  Vol. 63  No. 5  2018
efficiently the system switches the regulatory modes
and reflects the transition to a new dynamic state with
another level of homeokinesis. The quality of oscilla-
tory modes should also be classed with adaptation and
sanogenesis reserves, representing a resource that
accumulates as a result of systematic specific exercise
associated with sports.

In spite of the high correlation between βT MSD

and σ (r = 0.78, p < 0.001), the parameters revealed
certain differences in the mechanisms that regulating
the oscillatory process. As an example, βT MSD

increased by 18.5% on average (p < 0.05) on vestibular
loading regardless of the training level, while σ
remained constant. In contrast, both of the parame-
ters increased significantly during physical loading.

The extent of T-wave symmetry or variance of the
T-wave shape, as well as changes in dimensions, in a
PG characterized the oscillatory modes of electrogen-
esis and reflected various components of its regula-
tion. A quantitative determination of possible oscilla-
tory modes might solve the paradox of linear relation-
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Table 2. Changes in parameters that characterize the systemic response of cardiohemodynamics to an increase in external
loading in groups of subjects who differed in adaptation potential

Differences were significant at * p < 0.05, ** p < 0.01, or *** p < 0.001.

Subject group

Parameter/conditions

σ, units Н, %

rest loading rest loading

Cohort A 17.3 ± 2.0 25.0 ± 1.3* 93.3 ± 5.9 160.3 ± 19.5***

Cohort B 14.6 ± 0.5 32.2 ± 1.5** 75.8 ± 3.2 110.6 ± 9.2***
ships between the parameters to ensure homeostasis in
favor of an increase in the formation of levels of the
homeokinesis regulation to switch the functioning rate
as in a technical instrument.

At the second step of the study, the entropy dynam-
ics approach was used to evaluate the oscillatory
modes of the ECG signal.

The systemic organization of cardiodynamics was
studied in two cohorts of young males who differed in
training level. VO2max in young males of cohort B were

33.3% higher than in males of cohort A (p < 0.001).
Relative VO2max reached 50.1 ± 1.1 mL/min/kg

in cohort B and did not exceed 36 mL/min/kg in
cohort A. In a stepwise loading test, the dynamics of
parameters of the cardiovascular system in the athletes
indicated that the system functioned economically
and efficiently.

The level of information and energy resources in
the form of its orderliness and/or self-organization
during switching of regulatory modes makes it neces-
sary to evaluate this adaptation reserve. Table 2 sum-
marizes the changes in parameters that were obtained
to characterize the systemic response of hemodynam-
ics to an increase in external loading in subject groups
that differed in adaptation potential. Different meth-
ods were used and compared with the analysis of peri-
odic and nonperiodic components in entropy peri-
odograms of R–R intervals. It should be noted that
the characteristics of the entropy of R–R intervals and
its changes reflected the quality of the organization of
the cardiohemodynamic system and its regulatory
reserves. As is known, any system has a certain organi-
zation level that is called critical. When the system
organization is below the critical level, ordering pro-
cesses and, possibly, self-organization prevail in the
system. When the actual level is higher than critical,
disorganization processes prevail. At the critical level,
which is sometimes called the entropy balance level,
ordering and disorganization processes are balanced,
and the system assumes a steady state [18]. The extent
of the balance was studied at the next step of our work.

At the third step, the oscillatory modes of a time
series of R–R intervals of the ECG signal were studied
in the phase plane. Entropy oscillations suggest an
alternation of self-organization and disorganization
periods, that is, increases in orderliness alternate with
increases in disorderliness. The entropy change ΔE
assumed both negative and positive values (the
entropy E is always positive, as is evident from the
compensatory minus sign in Shannon’s equation).
Shapovalov [18, 19] was the first to theoretically
demonstrate the possibility of entropy oscillations.
Such oscillations were believed to be basically impos-
sible because they contradict Prigogine’s theorem of
minimal entropy production. The theorem states that
the second derivative of entropy with respect to time
cannot change its sign in the vicinity of a steady state.
However, mathematically, equations that describe
oscillations must include an alternating derivative of at
least order two. Second- and higher-order derivatives
of entropy have been shown to change in sign when the
system is affected by an entrostat. An entrostat is
defined as a system whose entropy changes are possi-
ble to neglect in comparison with entropy changes of
the system of interest [19]. In our study, young males
(18–19 years) who differed in adaptation potential dis-
played significant differences in mean entropy H, its
variation range ΔH, and the variation range ΔH' of its
rate of change in the observation period in the phase
plane; the signal was detected by rheography (Table 3).
In the second subgroup, which included young males
with a higher adaptation potential, the entropy was
lower by 50.0% (p < 0.001), the entropy variation
range was half as high on average (p < 0.001), and the
variation range of entropy rate of change was 44.8%
lower (p < 0.05) than in young males of the first sub-
group. When the same parameters were compared in
middle-aged males (40–45 years of age), the phase-
plane analysis similarly showed significant differences
in the entropy variation range ΔH and the range of the
rate of change of the entropy ΔH', while the mean
entropy H did not significantly differ between the sub-
groups (Table 4).

It should be concluded that the cardiohemody-
namics system functions far more strenuously to
maintain homeostasis and the adaptation cost is
higher in the subgroups with a lower training level and,
therefore, a lower adaptation potential. It may be pos-
sible to use this finding as an early prognostic sign of
dysfunction.

Entropy periodograms of time series of R–R inter-
vals were additionally analyzed in the same young
BIOPHYSICS  Vol. 63  No. 5  2018
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Table 3. Changes in parameters of the entropy phase portrait of a time series of R–R intervals in the subgroups of young
males (18–19 years of age) who differed in adaptation potential

Subject subgroup
Parameter

Н, % ΔН, % ΔН ′, %/C

Cohort A 110.3 ± 3.9 62.2 ± 4.1 4.3 ± 0.3

Cohort B 77.2 ± 2.2 22.5 ± 3.2 2.5 ± 0.5

Significance of difference p < 0.001 p < 0.001 p < 0.05

Table 4. Changes in the parameters of the entropy phase portrait of a time series of R–R intervals in the subgroups of males
aged 40–45 years who differed in adaptation potential

Subject subgroup

Parameter

Н, % ΔН, % ΔН′, %/C

Cohort C 114.4 ± 8.1 70.2 ± 8.3 10.4 ± 0.9

Cohort D 98.3 ± 4.1 45.9 ± 6.4 7.5 ± 1.1

The significance of the difference – p < 0.05 p < 0.05
males of cohorts A and B, but using the ECG signal
(Fig. 8). The results were quantitatively comparable
BIOPHYSICS  Vol. 63  No. 5  2018

Fig. 8. (a, b) Entropy oscillations and (c, d) entropy PGs of a tim
old athlete and (b, d) a 43-year-old male with a lower adaptation

90

80

70

100

(c)

1.0–1.0 –0.5 0 0.5

Y

90

80

70

100

(а)

400 450500 100 150 250 350200 300
with the results obtained using the rheographic signal,
supporting the reliability of the findings.
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Fig. 9. The characteristics of a time series of R–R intervals
in individuals with an optimal regulatory status and suffi-
cient reserves of cardiohemodynamis: (a) a rheogram frag-
ment (heart rate 76 bpm), (b) dynamics of entropy of the
time series (a window of ten beats), and (c) PG of entropy.
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Fig. 10. The phase curve of the periodogram of a time
series of R–R intervals with optimal reserves.
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At the fourth step, the phase-curve method was
used to evaluate the periodicity vs. chaotic character of
the entropy of a time series of R–R intervals of the
ECG signal; the results were compared with earlier
findings.

When the regulation of a system is in a normal bal-
anced state, the following periodogram is presumably
observed and reflects the specifics of the temporal sys-
temic organization (Fig. 9). As is seen from Fig. 10,
cryptic temporal features of the systemic organization
can be detected using the Abbe–Lafler–Kinman
method to analyze the periodogram and constructing
a phase-curve. If we disregard the theoretical periodo-
gram “curve,” which consists of “point–point”
groups, then points of entropy change values seem sto-
chastic. However, a conversion to a phase-curve
reveals cryptic regular periodicity (Fig. 10). Certain
issues were observed in the periodogram characteris-
tics of individuals with a lower adaptation potential
(Fig. 11). As is seen from Fig. 11, the entropy PG was
asymmetric relative to the horizontal axis and was
broader, reflecting an inadequate character of system
rearrangement during adaptation; a greater range of
entropy variation suggested a substantial cost of adap-
tation. The analysis can be expanded to include the
phase-curve of the periodogram (Fig. 12).

A further qualitative analysis was performed in the
young male cohorts that differed in functional poten-
tial; it showed that the phase curve of the entropy peri-
odogram had a distinct temporal organization in
78.2% of the subjects in the cohort with a high adapta-
tion potential. In contrast, qualitative temporal orga-
nization was not observed for the phase-curve of the
entropy periodogram in the cohort with a lower adap-
tation potential and a less “trained” cardiohemody-
namics system. The phase-curve method used to addi-
tionally analyze the entropy periodogram of R–R
intervals made it possible to observe cryptic features of
the temporal systemic organization of cardiohemody-
namics and to identify prognostic signs by analyzing
the system state vector [20]. Thus, several different
methods were used to increase the reliability of study-
ing the oscillatory modes in the ECG signal, as is char-
acteristic of a triangulation approach (Fig. 13).

CONCLUSIONS

(1) The significance of studying the oscillatory
modes in ECG signals was achieved by using and com-
paring different methods (triangulation), making it
possible to evaluate the results obtained by studying
the spatiotemporal variances, the ordered vs. stochas-
tic character, and the periodic vs. stochastic character
of the dynamics of the ECG signal.

(2) Oscillatory processes of electrogenesis are
described by PG parameters. Dysfunctions and
pathological conditions are associated with either a
substantial expansion of the PG shape with substantial
variations in amplitude and temporal parameters and
an increase in the degree of chaos or a distinct period-
icity with a loss of variability, a decrease in the chaotic
BIOPHYSICS  Vol. 63  No. 5  2018
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Fig. 11. The characteristics of a time series of R–R inter-
vals in individuals with lower reserves of cardiohemodyna-
mis: (a) a rheogram fragment (heart rate 75 bpm), (b)
dynamics of entropy of the time series (a window of en
beats), and (c) PG of entropy.
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Fig. 12. The phase curve of the periodogram of a time
series of R–R intervals with lower reserves.
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Fig. 13. The scheme of triangulation in studying the oscil-
latory modes of the ECG signal.
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component, and a mathematical degeneration of the

cycle.

(3) Alternation of ECG elements and, in particular,

that of T-wave shape with changes in T-wave symme-

try in consecutive cycles led to a characteristic PG

splitting, which additionally characterized the oscilla-

tory mode of the biological signal.

(4) The increase in βT MSD in neophyte boxers was

20.5% higher than in experienced boxers (p < 0.05).

(5) Changes in PG scatter were indicative of how

efficiently the system switches the regulatory modes

and reflects the transition to a new dynamic state with

another level of homeokinesis.

(6) The extent of T-wave symmetry or variance of

T-wave shape, as well as changes in dimensions, in a

PG characterized the oscillatory modes of electrogen-

esis and reflected various components of its regula-

tion.
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(7) Characteristics of R–R interval entropy and its
changes are indicative of the adaptation potential of
the function of the cardiohemodynamics system.

(8) In young males with a higher adaptation poten-
tial, the entropy was lower by 50.0% (p < 0.001), the
entropy variation range was half as high on average
(p < 0.001), and the variation range of the entropy rate
of change was 44.8% lower (p < 0.05) than in young
males of the first subgroup. When the same parame-
ters were compared in middle-aged males (40–
45 years of age), significant differences were similarly
observed in entropy variation range ΔH and the range
of the entropy rate of change ΔH', while the mean
entropy H did not significantly differ between the sub-
groups.

(9) The results of the ECG-based entropy analysis
and its PG were quantitatively comparable with data
obtained by a rheographic recording of the biological
signal; the finding support the reliability of the results.

(10) A phase curve constructed by the Abbe–Laf-
ler–Kinman nonparametric method helped to detect
the cryptic adaptive possibilities of the cardiohemody-
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namics system. The phase-curve of the entropy peri-
odogram had a distinct temporal organization in
78.2% of the subjects in the cohort with a high adapta-
tion potential. In contrast, a qualitative temporal orga-
nization was not observed for the phase curve of the
entropy periodogram in the cohort with a lower adap-
tation potential and a less “trained” cardiohemody-
namics system.

(11) This study substantially contributes to the
development of preventive methods of cardiac activity
testing in the primary medical and social care system.
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