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Abstract⎯It has been shown experimentally that the stimulus orientation that elicits the optimal response in
an orientation column in the primary visual cortex (area V1) undergoes rapid systemic changes that last 10–
100 ms. These changes allow different orientation columns to encode information from multiple items in the
visual space (the so-called temporal encoding). However, the mechanism of these changes is still unknown.
In addition, most of the modern biophysical models are unable to reproduce these changes; the peak orien-
tation of their responses is constant over time. In this paper, we suggest a method to improve the firing-rate
ring model of the orientation hypercolumn by replacing the spatial symmetric distribution of local connec-
tions with a spatial anti-symmetric distribution. As a result, we obtained a more perfect model that is capable
of reproducing such changes. Moreover, their amplitude is proportional to the extent of asymmetry in the
spatial distribution of local connections.
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Neurons of the primary visual cortex (V1) selec-
tively respond to the bands or contours of a particular
spatial orientation [1]. The concept of a selective
response implies that at every instant a neuron elicits a
relatively strong response only to a stimulus with a par-
ticular orientation. At the same time, it responds
much less to other directions in space. The direction
that causes such a relatively strong response in the cells
is referred to as the peak orientation of a neuron.

Previously it has been shown [2–12] that such a
peak orientation is temporally unstable: it can shift in
a certain direction during response development: at
some instant a stimulus can induce the optimal neuro-
nal response; at another instant, the cell can be selec-
tive to quite another direction in space. Such changes
were designated as the dynamics of peak orientation.
They can be divided into a rapid type [3–12], with a
characteristic time of approximately 10–100 ms, and a
slow type [2], that lasts approximately 100–1000 ms.
In this work we will consider only rapid changes in the
peak orientation. Some authors believe [6, 13] that
these changes increase the amount of information
transferred by an orientation hypercolumn and, there-
fore, the transmission capacity of connections
between different visual areas.

According to the data described in [6], such rear-
rangements are reproducible: they recur at each

response to some stimuli; the values of their basic
characteristics (amplitude, direction, and duration)
do not vary during at least 5 h of an experiment and do
not depend on the amount of anesthetic administered
to an animal. In addition, studies [6, 7, 9, 10] showed
that reliable dynamic shifts occur only in 50–70% of
all neurons of area V1. Such neurons elicited stronger
and less-selective responses compared to the cells with
a stable peak orientation during a response [10].

Particular neurophysiological correlates of the
shifts in peak orientation were revealed. In particular,
they were shown [7] to be modified under the influ-
ence of intracortical inhibition, although inhibition
per se was not the cause of their emergence. Neverthe-
less, the mechanism of these rearrangements is as yet
unknown.

It can be expected [12] that these changes occur
because one orientation column simultaneously accu-
mulates the data on several spatial orientations
obtained from the neighboring columns. Such accu-
mulation requires a mechanism that would provide the
propagation of visual signal and information transfer
from one column to another. It has been shown [14,
15] that such a signal distribution is actually possible
and that it has an autowave nature. In addition, model
studies have shown [16, 17] that autowaves can occur
solely due to excitatory horizontal connections. In
light of the above, one can suggest that it is the short-
416
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Fig. 1. The spatial structure of local connections in an area V1 orientation hypercolumn. (a) The functional map of V1 taken from
[22]. (b) The enlarged image of the functional map section considered in the text. The dotted line shows the orientation column;
the circle shows the supposed effective radius of short-range horizontal connections. Local connections are shown by arrows.
(c) The presented systems of asymmetric local connections as a set of three subsystems operating in parallel and independently.
The lines with a circle show the connections with prevalence of excitation; the lines with a stroke show the connections with prev-
alence of inhibition. The arrow thickness is proportional to the synaptic “weight” of the connection (the total magnitude of spe-
cific impact on the postsynaptic neuron). (d) An example of the spatial distribution of the weights of the system of local connec-
tions and its subsystems shown in (c). The difference between the preferred orientations of two columns is on the X-axis; the mean
synaptic weight of local connections between these columns is on the Y-axis. In (c) and (d): (1) the configuration of the entire
system of asymmetric local connections; (2) the configuration of its homogeneous component; (3) symmetric component;
(4) anti-symmetric component.
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418 KOZHUKHOV
range horizontal connections that lead to the dynam-
ics of peak orientation.

To verify this assumption, let us consider the basic
properties of these connections. They link any neigh-
boring cortical areas at a distance of 300–500 μm from
each other [18–20], easily crossing the boundaries of
orientation columns and hypercolumns, as well as
other functional modules in V1. Their important
peculiarity is the principle of local nonspecificity, as was
proved experimentally in [21]. This consists of the fol-
lowing: if two orientation columns are located at the
same distance from a cortical area, their local connec-
tions with this area are absolutely identical and have
no specificity. From the principle of local nonspecific-
ity it follows that the properties of horizontal connec-
tions are influenced by the geometric characteristics of
orientation columns, that is, the distance between
them and their sizes. The latter, as follows from the
results of optical mapping of the internal signal [18–
20], are characterized by higher diversity: from several
tens to several hundreds of microns. Small and large
orientation modules very often adjoin each other, as is
shown in Fig. 1a, in a circle. Due to such joining, the
number of horizontal connections between two orien-
tation columns depends not only on the difference of
these columns but also on their location, as well as on
the direction of these connections in space. In the
example presented in Figs. 1a, 1b, the local connec-
tions directed leftwards are terminated at only one ori-
entation column, while the connections directed
rightwards are terminated at three columns. Such a
property of local connections is called asymmetry.

The method of mathematical modeling is exten-
sively used to describe the effects of local connections
on orientation tuning and its potential modifications
[23–28]. The available scientific literature offers a
great diversity of models of the layer of the fourth ori-
entation hypercolumn (pinwheel). Among these are
both the more primitive one-dimensional model [23]
and more-complex models, where a hypercolumn is a
two-dimensional structure [24–26]. In addition,
some studies were carried out with regard to the work
of not only orientation detector neurons but also the
detectors of spatial frequency [24] or color [28]. The
functions of separate neurons or populations were
described both by less realistic methods based on fir-
ing-rate population models [23, 24, 27] and by the
more natural models based on the Hodgkin–Huxley
equations in the original variant [25] and in terms of
refractory density [26] and the Fokker–Planck equa-
tion [27]. Nevertheless, the common property of these
models is their inability to reproduce the experimen-
tally detected dynamic changes of the preferred orien-
tations of neurons.

Such a discrepancy between experimental [6–12]
and theoretical [23–28] data, in all likelihood, is asso-
ciated with the following fact: in the above models it
has been postulated that the local connections in V1
are radially symmetric, while in real hypercolumns
they are asymmetric (Fig. 1b). It can be supposed that

this asymmetry allows any column in area V1 to obtain
information at a particular instant only from certain
orientation columns, which can potentially lead to the
shift of the peak orientation in a strictly definite direc-
tion. This work was aimed at testing this idea and con-
structing a neural network model on its basis.

To achieve this goal, it is proposed to improve the
frequency population ring model of the orientation
hypercolumn presented in [23] by replacing the radi-
ally symmetric system of connections with a more
realistic asymmetric system. The analysis of the pro-
cess of orientation tuning formation, as well as the
changes in the peak orientation of its response in this
model, will be considered below.

MODEL DESCRIPTION

The major structural unit of the improved V1
model is an orientation column. This is linked through
afferent connections to neurons of the lateral genicu-
late nucleus and through local connections to the
neighboring columns. Afferent connections induce a
synaptic current that reaches its maximum in
responses to a strictly definite orientation, which is
referred to as the preferred orientation of the column.

The local connections link the neighboring col-
umns, forming a system similar to that in Fig. 1c, 1.
The spatial distribution of the synaptic weights of
these connections can be described as a certain con-
tinuous function (Fig. 1d, 1). We can distribute this
function to the sum of even and odd components, each
of these is assigned to a particular group or subsystem
of local connections (Figs. 1d, 2–4). Eventually, our
system of connections can be presented as an assembly
of the following three subsystems (Fig. 1c):

1. The subsystem of homogenous connections
described by a continuous function. These connec-
tions have no orientation specificity: they connect
absolutely all columns without exception and their
“weights” do not depend on the properties of the col-
umns (Figs. 1c, 2; 1d, 2).

2. The subsystem of symmetric connections with
spatial distribution described by an even function
(Fig. 1d, 3). Such connections are specific to the col-
umns, but they are also isotropic: their “weights”
depend only on the distance between two functional
modules and on the difference between their preferred
orientations but not on the direction of these connec-
tions in space (Fig. 1c, 3).

3. The subsystem of anti-symmetric connections
that correspond to the odd function (Fig. 1d, 3). Such
connections are not isotropic, but they are character-
ized by two highly unique properties (Figs. 1c, 4; 1d,
4): all excitatory connections are strictly ordered in a
particular direction, while all inhibitory connections
are strictly ordered in the opposite direction; the
“weights” of excitatory connections (proportional to
the arrow thickness in Fig. 1c) and the “weights” of
BIOPHYSICS  Vol. 63  No. 3  2018
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inhibitory connections are equal to each other in abso-
lute values.

Complying with the ideas proposed in [23, 24, 27], we
present the model as the following differential equation:

(1)

where m(θ, t) is the activity of the column with the
preferred orientation θ at time t; l and C are the
brightness and contrast of the stimulus, respec-
tively; J0, J2 and  are the characteristic weights of
homogeneous, symmetric, and anti-symmetric
connections, respectively; τm is the inertia of the
neuronal population; θ0 is the orientation of the
presented stimulus; H(t) is the Heaviside function,
and g(x) is a certain function described by the fol-
lowing equation:

(2)

where T is the threshold value of the total synaptic cur-
rent and β is the amplification factor. In our model, we
have analyzed neuronal responses only to sufficiently
bright stimuli, for which l @ T. We also suppose that
the activity of all neurons of our network at t < 0 is
equal to zero.

This equation compactly describes the behavior of
our neuronal network and all its properties. A further
objective is to determine which of the contributions of
each of the three subsystems of connections (the con-

tributions, as we put it, are the βJ0, βJ2 and  values)

are necessary for the above model to reproduce the key
properties of real orientation hypercolumns in V1,
namely: (a) the sharp orientation tuning amplified due
to horizontal connections (see, e.g., [23–28]) and
(b) the dynamics of the peak orientation of responses
discovered in [6–12]).

In order to accomplish this task, we assessed the
changes in peak orientation and tuning width (in our
work, the tuning width is the width of the range of ori-
entations that the column responds to) during
response development. To assess the characteristic
value of such changes, we determined the difference
between the values of these two characteristics at the
beginning of a response and at the end of a response.
The values in the beginning of a response were deter-
mined as the values at the instant t → + 0, while those
at the end of the response were determined by the
properties of stable equilibrium states of the model.

The analysis of these states will be considered in the
next section.

A PARAMETRIC ANALYSIS 
OF THE PROPERTIES 

OF A NEURAL NETWORK

The detailed parametric analysis of equation (1) is
described in the Supplement at the end of the article.
Here, we will dwell on the results of this analysis.
These are presented in Fig. 2.

As one can see from Fig. 2, the main parameters of
the model that determine the properties of its station-
ary states are the contributions of each of the three
subsystems of connections. The following four
regimes of system function may occur depending on
their ratio.

Regime A. This occurs under conditions of a rela-
tively strong symmetric and weak homogeneous inhi-
bition (Fig. 2a). In this regime, a cell elicits very weak
orientation tuning with the half-width of 90 degrees.
At the end of response, the orientation of the stimulus
that causes the best response in the column (the so-
called peak orientation) differs from its preferred ori-
entation by the value ΔθPO, which is determined on the

basis of the ratio:

(3)

Regime B. This regime is possible at a certain bal-
ance between symmetric excitation and symmetric
inhibition (Fig. 2b). Here, due to the work of horizon-
tal connections, the width of orientation tuning nar-

rows to the value , which is implicitly defined by the

ratios:

(4)

where C is the contrast of the stimulus; θ1(θc), γ2(θc)

are functions that are continuous and monotonously
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Fig. 2. The phase diagram of different stable stationary states of the model. On the axes: the contributions of some or other sub-
systems of connections (values βJ0, βJ2, ). There are four operating regimes altogether: the regime when the simulated neural
network can be only in state F (A); in state F and state W (B); in state M and state W (C); the regime when no state of stable
equilibrium is formed in response to any stimulus (D). The boundaries of the regimes given by condition (A-21) are omitted for
clarity.
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increasing at values ; these take values from

0 to 1. Their analytical expression is given in the Sup-
plement (equations (A-17)).

At the same time, the peak orientation at the end of
response differs from the preferred orientation by a
value defined as:

(5)

Let us note that all columns have the same neuro-
nal activities in regimes A and B in the state of stable
equilibrium corresponding to the background.

Regime C. This is possible in the case of moderate
prevalence of excitation over inhibition (Fig. 2c).
Here, after the responses to oriented stimuli (C ≠ 0),
the system is in the same equilibrium state as in
regime B; however, in case of background presenta-
tion (C = 0), the equilibrium state with uniform distri-
bution of neuronal activity will not already be stable.
In the stable stationary cycle that occurs under these
conditions the activity circulates around a ring and is
spread as autowaves from one column to another with
a definite speed. According to the data obtained in
[29], such an autowave process is a model of visual
hallucinations. Since it describes the behavior of a
hypercolumn in the state of pathology it will not be
considered below.

Regime D. In this case, there is a high prevalence of
intracortical excitation (Fig. 2d). The major property
of such a regime is that any equilibrium state is either
unstable or absent during the presentation of oriented
gratings. After the response, there is an avalanche-like
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increase in neuronal activity, which describes the ini-
tial stage of epileptic seizure well. This regime will not
be considered in our work for similar reasons.

Symmetric and anti-symmetric connections play dif-
ferent roles in the formation of orientation tuning and
rapid changes in peak orientation. Equation (4) speci-
fies the width of orientation tuning for regime B. Its
graphic representation in the space of contributions

(βJ0, βJ2, ) is shown in Fig. 3. The surfaces pre-

sented in this figure correspond to the states where all
columns at the end of the response have a definite tun-
ing width, as indicated on the inserts. These graphs
show the amplification of orientation tuning at
increased contributions of symmetric and homoge-
neous connections. Such amplification was described
in the models in [23–28] and was experimentally con-
firmed in numerous experimental works. We have
shown that this is associated solely with the homoge-
neous and symmetric connections. In its turn, the
increase in the contribution of anti-symmetric effects,
on the contrary, results in lower selectivity of neurons.
This means that anti-symmetric connections do not
determine selectivity correction but play a different
functional role.

In order to elucidate their role, let us examine how
different types of horizontal interactions influence the
changes in the peak orientation of response during its
response. The level of such changes was calculated by
formulas (3) and (5), which are graphically presented
in Fig. 4. In this figure, any plane is a set of states of the
orientation hypercolumn where the peak orientations
of all columns are shifted during the response by the
same amount, as indicated on the inserts. At the same

2
*Jβ
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time, the central plane, which corresponds to the zero
contribution of anti-symmetric connections, rep-
resents the set of states characterized by stable (invari-
able) peak orientation. The figure clearly shows that
the main cause of changes in detector properties is the
presence of anti-symmetric local connections: the
higher their contributions are, the stronger the
dynamic shifts are. At the same time, we can see in
Fig. 4 that symmetric connections influence the
dynamics only implicitly and indirectly: the change in
their contribution leads only to the change in the coef-

ficient of proportionality between parameter  and

the size of the shifts 2ΔθPO but not the 2ΔθPO value per

se. This means that anti-symmetric but not in any way
symmetric connections are responsible for the
changes in the optimal orientation of neuron.

Summarizing the results presented in Figs. 3 and 4,
we can see that symmetric and anti-symmetric inter-
actions perform different functions in V1. In addition,
anti-symmetric connections per se are the mechanism
of the formation of dynamics. In the next section, we
will see how this mechanism works.

NUMERICAL SIMULATION 
OF NEURAL RESPONSES

We performed the numerical solution of
equation (1) by the first-order Euler method. The
time step was chosen to be 1 ms. Integration was car-
ried out by the method of rectangles; the integration
step was preset to be 0.1 rad. Numerical simulation
was performed for the following values of parameters:
β = 1 Hz/pA, T = 5 pA, l = 100 pA, τm = 20 ms, J0 =

–5 pA/Hz, J2 = –5 pA/Hz, and  = –4 pA/Hz.

Unfortunately, due to the low precision of frequency–
population neural network models, we obtained only
the coarse and qualitative simplification of the func-
tion of real neural network. This discloses some, but
far from all, aspects associated with the changes in
peak orientations of responses. Let us consider such
aspects in more detail.

Results of numerical simulation. The rough estimate
of changes in the peak orientation of our model is
shown in Fig. 5a. As the graph shows, the magnitude
of these changes is 37.5°.

Figures 5b, 5c shows the very approximate work of
the mechanism that causes such shifts. In this column,
as the figures show, neural activity at the beginning of
response is formed solely due to the afferent current
(Fig. 5b, the dotted curve), because local connections
have not yet been activated. The maximum value of
this current is 175 pA; it is observed in responses to
gratings with the orientation of 0° (Fig. 5b, 2, the dot-
ted curve). As a consequence, the initial tuning of the
cell is formed exactly to horizontal gratings.

Hereafter, during development of a response, the
peak orientation of this tuning will undergo substantial

2
*Jβ

2
*J
BIOPHYSICS  Vol. 63  No. 3  2018
shifts caused by anti-symmetric connections. The
configuration of such connections is shown in Fig. 5c.
As this scheme shows, the column responsible for dis-
tinguishing the horizontal part (Fig. 5c, in the center)
will be excited during most of the response by another
column that selectively responds to the orientation of
+45° (Fig. 5c, on the right). At the same time, the
functional module responsible for the –45° grating
(Fig. 5c, on the left) will mostly have an inhibitory
effect.

How will it influence the activity in the 0° column?
This will depend on the grating. If a horizontal grating
is used, our column (Fig. 5c, in the center) will first
activate the module responsible for the orientation of
–45° (Fig. 5c, on the left); the latter, in turn, will
inhibit it. This inhibition will result in the formation
of a negative “local” current of high amplitude
(Fig. 5b, 2, the dashed line). As a result, the initially
high activity of the column will gradually decrease
(Fig. 5b, 2, the solid line).

However, quite different processes will occur if the
+45° grating is presented. In this situation, the column
will be exposed to a strong anti-symmetric excitation
by its neighbor with the preferred orientation of +45°
(Fig. 5c, in the center and on the right). Such exci-
tation will compensate for the inhibitory effect of sym-
metric and homogeneous connections by creating an
actually zero “local” synaptic current (Fig. 5b, 1, the
dashed line). As a result, due to the effect of afferent
excitation, the neural activity will mostly increase
(Fig. 5b, 1, the solid line).

Thus, we can see that there will be at least two
opposite processes in our column after the formation
of the initial tuning to the orientation of 0°: the
decrease in neural activity in response to the horizon-
tal grating (Fig. 5b, 2) and its gradual increase in
response to the diagonal of +45° (Fig. 5b, 1). In 20–
30 ms, these activities will become equal and it will
correspond to the dynamic change in peak orientation
by the magnitude of +45° (Fig. 5a).

Thus, we have shown that the main cause of
changes in the peak orientation of V1 neurons is the
“jump” of activity from one column to another, which
allows the neurons of this column to respond to a par-
ticular stimulus in the same way that the neurons of
the neighboring column did 10–20 ms ago. This is the
main idea of our model.

DISCUSSION

Comparison with the existing models. The model of
an orientation hypercolumn constructed in our work
is an extension of the classical ring model [23],
because the model described in our work and the clas-
sical model [23] are completely equivalent in the case
of a zero contribution of anti-symmetric connections.
As a consequence, it reproduces all events and effects
that can be reproduced both in the model described in
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Fig. 3. The dependence of the width of orientation tuning on the contributions of three subsystems of local connections (βJ0, βJ2,
and ). These contributions are shown on the X, Y, and Z axes. Each surface corresponds to numerous states characterized by
the same width of orientation tuning indicated on the respective insert to the graph. On the same insert, dashed and solid lines
show the tuning in the beginning of response and in the state of stable equilibrium, respectively.
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[18] and in other analogous models [24–27]. Such
effects can include, in particular, the sharpening of
orientation tuning due to homogeneous and symmet-
ric local connections and the presence of a stationary
state with a low selectivity (regime A), as well as partial
(regime C, or marginal state) and complete
(regime D) loss in stability of the system at particular
parameter values.

Let us also note that the optimal working parame-
ters of the orientation hypercolumn in the model are
the values in close proximity to the boundary of stabil-
ity loss (Figs. 3 and 4). In other words, the better the
detector neuron displays the local characteristic, the
more easily its balance can be upset (i.e., the less reli-
able it is). These are rather interesting properties that
have been also reproduced in other orientation hyper-
column models (see, e.g., [25]). They have yet to be
verified experimentally.

Novel properties of our model. We have improved
the classical model [23] by adding anti-symmetric
connections (Fig. 1c, 4; 1d, 4). As a result of this
improvement, the above properties were combined
with new features associated with the work of these
connections. The main feature is the rapid changes in
the direction in space to which a neuron responds
most optimally; in the available literature [6–12] such
BIOPHYSICS  Vol. 63  No. 3  2018
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Fig. 4. The dependence of the total magnitude of the shift in preferred orientation on the contributions of three subsystems of
local connections (βJ0, βJ2, and ). These contributions are shown on the X, Y, and Z axes. Each surface corresponds to
numerous states with the particular magnitude of the total shift indicated on the respective insert. The same insert presents an
example of dynamic changes with the same magnitude of dynamic shift. The situation with zero activity of all neurons of the net-
work before the presentation of a stimulus is considered. A set of sinusoidal gratings with different orientations with the contrast
C = 1 and the intensity l = 300 nA were used as a stimulus.
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changes are referred to as the dynamics of the peak ori-
entation (Fig. 5).

The comparison of theoretical and experimental
data leads to a suggestion that these changes were stud-
ied in [6–12], as well as in [4, 5], because:

(a) On presentation of a band or a grating of a par-
ticular orientation, the peak orientation will be shifted
by the ΔθPO value, which is determined by the stimulus

contrast (equation (5)) and the neural network param-
eters but does not depend on the preferred orientation
of the neuron. At the same time, if the peak orienta-
tion is shifted at some values of the contrast, it will also
be shifted at its other values. Analogous features are
typical of the changes obtained experimentally in [6–
12] (an example of experimental data described by the
model is given in [9]).

(b) The neurons characterized by the changes in

peak orientation (  ≠ 0, ΔθPO ≠ 0) have lower selec-

tivity and lower response amplitude compared to the

cells with stable peak orientation (  = 0, ΔθPO = 0):

the model represents it in equations (5) and (A-19)
(see also Fig. 4), while experimental data were
obtained in [11].

(c) If a stimulus with the θ1 orientation is presented

after the response to a grating with the θ2 orientation,

the neural network will pass from the stationary state
with the peak orientation of responses being θ1 + ΔθPO

into the state with θ2 + ΔθPO. As a consequence, the

optimal response orientation per se in this case
changes to the θ2 – θ1 value, depending only on the

parameters of the present and preceding stimuli. This
is in complete agreement with the experimental data
reported in [4].

This model allows us to make certain assumptions
about the main properties of the dynamics of peak ori-
entation. These assumptions are given below.

(1) The lower the asymmetry in spatial configura-
tion of orientation columns is, the smaller the magni-
tude of their dynamic shifts is. In particular, cells with
stable dynamics may be prevalent in the places where
this asymmetry is absent (e.g., in the centers of big col-
umns).

(2) The existence of the dynamics of peak orienta-
tion leads to an increase in the volume of information
contained in an individual neural response and not to

2
*J

2
*J
an increase in the volume of information contained in
responses formed by all neurons of the hypercolumn.

(3). In animals with an ill-defined or absent col-
umn orientation (e.g., in rats or rabbits) the peak ori-
entation either does not change or changes slightly.

Are the rapid changes in peak orientation associ-
ated with the changes in perceived orientation? All
changes in the peak orientation of neural responses in
V1 can be divided into rapid changes that last less than
100 ms [3–12] and cause no changes in the visual
image that is perceived, and slower changes, with the
characteristic time of development being more than
100 ms [2, 30], which cause distortions of the per-
ceived image known as the tilt aftereffect. The model
described in this work can explain the rapid changes in
peak orientation [4–12] but is unable to explain their
slower rearrangements [2, 30], because the character-
istic time of development of slow changes exceeds the
characteristic time of response development in our
model (τm in equation (1)). At the same time, the

alternative model proposed in [2] describes the
changes in perceived orientation. Here, the short-term
rearrangements of afferent connections play the key
role. Since the characteristic time of development of
these rearrangements is approximately 100–1000 ms,
such a model, in contrast, can describe slow [2, 30] but
not rapid [4–12] changes in peak orientation. Com-
bining both results, we can see that rapid [4–12] and
slow [2, 30] changes in peak orientation are funda-
mentally different processes, as they are different in
their properties, mechanisms, and functional signifi-
cance.

The presumptive functional significance of asym-
metric connections. As one can see, in the presence of
asymmetry in spatial distribution, an orientation col-
umn “combines” the information processed by several
neighboring columns (Fig. 5c) and encodes this infor-
mation on the basis of two properties of the response:
the value and position of its maximum (Fig. 5b, 1, 2).
As a consequence, the cell response per se carries
much more information than any of its integral char-
acteristics (e.g., the total number of pulses per
response). Such properties of the model agree with the
properties of real hypercolumns found as a result of
experiments [13]. It has been proposed [6, 13] that a
single neuron of area V1 can transmit the information
processed by several neighboring cells, in other words,
it can perform the procedure of multiplexing a visual
Fig. 5. The visual description of the process of formation of changes in preferred orientation. The graphs in the figure (a) and (b)
are constructed for the column with its own preferred orientation equal to 0°. (a) The dynamics of the preferred orientation; time
is on the X-axis; differently oriented stimuli that induce the maximum response at a given time are on the Y-axis. (b) The post-
stimulus histograms (thick solid line), as well as the dynamics of synaptic currents: total (thin solid line), induced by afferent con-
nections (dots), and induced by local connections (thin dashed line). Different graphs correspond to responses to the gratings in
front of them. Time is on the X-axis; current, pA (for simple curves; the left axis), or pulsation frequency, Hz (for boldface curves;
the right axis) are on the Y-axis. (c) The configuration of anti-symmetric local connections for the orientation column shown in
the figures (a) and (b) and for the neighboring columns. The arrows with dots show the connections with prevalence of excitation;
the arrows with strokes show the connections with prevalence of inhibition. The stimuli that induce the maximum afferent current
for a particular column are indicted in the inserts. The initial conditions and parameters of stimulation are the same as in Fig. 4.
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signal. The significance of such multiplexing is proba-
bly that it contributes to minimizing the number of
channels for transmitting visual information from V1
to the overlying areas.

CONCLUSIONS

The modernized ring model of layer 4 of an orien-
tation hypercolumn with an asymmetric spatial distri-
bution of local connections presented in Fig. 1c makes
it possible to reproduce dynamic shifts in the preferred
orientation of V1 neurons and to describe many exper-
imental facts concerning these shifts in the framework
of a single theoretical concept. We anticipate further
development of this concept, primarily its application
for improving two-dimensional orientation hypercol-
umn models.

APPENDIX

The Appendix presents a detailed description of the
analysis of stable equilibrium states of the system, as
well as the derivation of equations (3)–(6).

Simplification of the equation of the dynamics of
neural activity. For simplicity and obviousness, let us
consider the case of t > 0. Introducing the values

   where i is the

imaginary unit, and applying the Euler formula to all
trigonometric functions of equation (1), we can pres-
ent this equation as:

(A-1)

Let us expand the cell activity m(θ, t) into the Fou-
rier series:

(A-2)

where m0(t), m2(t), m–2(t), … are the respective expan-
sion coefficients, the so-called harmonics. Equation

 follows from the fact that column
activity m(θ, t) is a real quantity.
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Let us then decompose the integral in (A-1) into
separate summands and then substitute (A-2) into
them:

(A-3)

Let us recall that in this equation g(x) is the transfer
function from the ratio (2) and the argument of this
function is the total synaptic current I(θ, t). In order to
expand g(x), let us present this current as follows:

(A-4)

where θp(t) is the peak orientation of the column itself,
whose total synaptic current is maximal at the given
time under. This is defined as

(A-5)

I(θ, t) takes the maximum value at θ = θp and the

minimum value at θ = θp + π/2. Let us write these val-

ues:

(A-6)

According to equations (1) and (2), only the col-
umns with I ≥ T will participate in the formation of
neuronal activity pattern. There are three possible
cases depending on the relationships between the Imax,

Imin and T values.

1. Case F. This is possible when the synaptic cur-
rent in all columns is above the threshold:

(A-7)

Here, the g(x) expression from equation (2) is
expanded as follows:

(A-8)

2. Case C. Imax ≥ T ≥ Imin. Here, the maximum syn-

aptic current exceeds the threshold, while the mini-
mum synaptic current does not:

In this case, some orientation columns achieve a
suprathreshold level of excitation and therefore are
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active, while other columns achieve a subthreshold
level of excitation and therefore are “silent.” These are
separated by columns with the synaptic current equal
to the T threshold. Let us denote their preferred orien-

tations as . We then have a ratio following from

expression (A-4):

(A-9)

Equation (5) for regime C takes the form of

(A-10)

3. If all of the columns achieve a subthreshold level
of excitation, then no activity is generated in the neural
network:

Such a case is possible only during the presentation
of low-intensity stimuli or in their absence:

The analysis of stable equilibrium states for case F.
Let us differentiate m0(t), m2(t) from equations (A-2)

by time and substitute the result of this operation into
(A-8), taking the ratio l @ T into account:

(A-11)

By equating the left parts of equations (A-11) to
zero, we will find the only stationary point for case F

given by the equilibrium values of harmonics , :

(A-10)

Let us denote this stationary point as state F. In this
state, a cell has the maximally broad orientation tun-
ing, the half-width is equal to π/2.

Let us find the shift in peak orientation during the
time of response development. For this purpose, let us
write the spatial distribution of neuronal activity
in state F. We can obtain it by substituting (A-12) into
(A-2) and taking the ratio (A-5) into account:

Now, to find the peak orientation of the column at
the end of the response (in the state of stable equilib-
rium) it is necessary to determine the values of the
grating orientation θ0 where the activity of the column

with preferred orientation equal toθ will have a maxi-

mum value. For this purpose, let us differentiate the
above expression with respect to θ0 and equate the

result of this operation to zero. Eventually, we will
have:

where ΔθPO is the difference between the peak orienta-

tion at the end of the response and the preferred orien-
tation of the column. After simplifying this expression,
we will finally have equation (3).

Now, let us determine the boundaries of existence
of state F. For this purpose, let us substitute equations
(A-12) into condition (A-7) and take the fact into
account that l @ T (we present the stimuli substantially
above the threshold):

(A-13)

Finally, let us find the boundaries of stability of this
state. For this purpose let us write the characteristic
equation for (A-11):

where λ is the eigenvalues of the system.

If we expand the determinant of the matrix on the
left and find the roots of the characteristic equation we
will see that the area of stability characterized by λ < 0
is determined by the following conditions:

(A-14)

The area in the space of parameters described by
equations (A-13) and (A-14) is marked in Fig. 2a. The
operation of the neural network in this regime will be
referred to as system functioning in regime A.

Stable stationary points and cycles for case C. To
search for the states of stable equilibrium in case C it is
necessary to replace the value T in the equation for the
dynamics of activity (A-10) by the left part of equality
(A-9) and then to simplify the result:
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(A-15)

Now, by differentiating the m0(t), m2(t) values from

expression (A-2) with respect to time and substituting

the obtained derivatives into expression (A-15), we

derive the following equations that describe their

dynamics:

(A-16)

where γ1(θc), γ2(θc) are the first and second transcen-

dent functions, respectively. They are determined by

the following conditions:

(A-17)

These two functions at 0 ≤ θc ≤ π/2 take the values

over the interval of [0; 1] and are monotonously

increasing.

The stationary states of the system are determined

on the basis of equations (A-16) and condition (A-9):

(A-18)

where  is the value of the critical angle in the equi-

librium state. The left part of the latter equation

implies the need to consider a general case corre-

sponding to condition  and a special

case, for which equation  is true.

Let us denote these as case W and case M, respectively.

Case W. This occurs when one of the inequalities is

fulfilled: . In this situation, we

can divide both parts of the latter equation in expres-

sions (A-18) by the value  and see that

this case will also correspond to a single stationary

state:

(A-19)

Let us denote this as state W. The value of the crit-

ical angle  here is found by substituting the values of

(A-19) into equations (A-9). As a result of these oper-

ations, we obtain equation (4). The critical angle 

given by this equation corresponds to the half-width of

orientation tuning. In the (βJ0, βJ2, ) coordinates,

equation (4) will describe a conical surface that char-
acterizes numerous states that correspond to a partic-
ular value of θc. For different values of θc, different

conical surfaces are given which, in turn, will be
located inside the cone determined by the following
inequalities:

(A-20)

This will be the area of existence of stationary state W.
The boundaries of this area in the space of parameters at
C = 1 of the neural network are indicated in Fig. 2b. Let
us denote such area as regime B. Let us note that if a low-
contrast stimulus is presented, then, even in regime B the
system will reach state F but not state W, as can be seen
from equations (A-13) and (A-20).

The activity of orientation column in this state is
found by substituting the stationary values of harmon-
ics from (A-19) into (A-2) and taking the ratio (A-5)
into account:

where

As in state F, the shift in preferred orientation of
the column during the time of response development

in state W is found by differentiating  with

respect to θ0 and equating the resulting expression to

zero. As a result, we will obtain equation (5).

Now, let us determine the conditions where this
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make the following substitution in equations (A-14)
and (A-9):

The result of this substitution is

Let us substitute 

 

 into this equation and linearize the

obtained system:

By writing the characteristic equation for this lin-
earized system we will obtain the following conditions
of stability of the stationary state:

(A-21)

The numerical solution of equation (A-19) was
found for each of the points used in making graphs in
Figures 2–4. All points that do not satisfy the condi-
tion Reλ < 0 were removed from the graphs.

Case M. For this case, the ratio  is ful-

filled. According to equalities (A-18), this is possible
only when c = 0. In other words, the stationary state
corresponding to such a case does not exist in the
responses to high-contrast gratings. Let us substitute
the condition c = 0 into equations (A-16):

In the last of these equations, we will substitute

 and multiply the result by :

(A-22)

If we equate the left parts of equations (A-22) to
zero and substitute the result into (A-9) we can see that
only one stationary regime of system operation is pos-
sible in case M, which is found as

where t1, t2 is the time that passes after presentation of
the stimulus. The conditions of existence of case M
follow from these equations. These are represented
parametrically by the following inequalities:

(A-23)

where γ1(x), γ2(x) are the functions determined by the
ratio (A-15). All these equations determine the area in
the space of neural network parameters, whose
boundaries are shown in Fig. 2c.

In such a regime, the θ2 value does not tend to a

certain equilibrium value at ; instead, it

changes with a constant rate at invariable . Such

changes are described on the phase plain as a closed
curve. These are the stationary oscillations of the
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Rem2 and Imm2 values corresponding to periodic

oscillations of neuronal activity in each column. These
oscillation processes circulate over the entire orienta-
tion hypercolumn, jumping from one module to
another, and are referred to as a stationary cycle. Let
us denote it as cycle M.

Let us determine the conditions when this station-
ary cycle will be stable. For this purpose, let us substi-

tute the conditions 

  into equa-

tions (A-22) and linearize the resulting system:

By investigating the characteristic equation for this
system, we will find that our stationary cycle is stable
in the area given by inequalities (A-23).
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