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Abstract⎯The Gabor transform allows quantitative estimation of the non-stationarity of the electromyo-
graphic signal in the low-frequency region with the maxim permissible time–frequency resolution. The cal-
culation of the parameters of the Gabor transform was conducted on different time and frequency intervals
to estimate the slow-wave activity of the intestine. It was demonstrated that the efficient size of the 32-s time
window, which provides the efficient resolution of the frequency spectrum at 0.01 Hz, is suitable for the accu-
rate study of the change in the frequency of slow waves. The ability to construct the dependence of the change
in the frequency of slow waves of electromyograms on time with the specified accuracy was demonstrated.
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INTRODUCTION
Slow-wave activity associated with membrane-

potential f luctuations is peculiar to the smooth mus-
cles of the intestine. Slow waves are not directly related
to contractions, but are a factor in synchronizing and
coordinating contractions [1]. The literature data also
show that there is a proximal–distal gradient of the
frequencies of slow waves throughout the intestine.
Thus, for example, the frequency of slow waves of the
small intestine in rats changes in the proximal–distal
direction from 0.7 to 0.4 Hz [2, 3].

The slow-wave frequency varies in a narrow range
with long-term registration of an electric signal in a
particular region of the smooth-muscle tissue of the
intestine; this can be explained by many factors,
including electric potential input from neighboring
tissue regions. Thus, the electromyographic signal of
the small intestine is not stationary in time.

The inability to provide both good time and fre-
quency resolution simultaneously is the main diffi-
culty during time–frequency analysis of these signals
(the narrower the signal time region is, the higher the
time resolution is and the lower the frequency resolu-
tion is).

The window Fourier transform (WFT), Gabor
transform (the WFT with a Gaussian function as a
window), continuous wavelet transform, and Hilbert
transform are used for the time–frequency analysis of
bioelectric signals [4]. The Gabor transform is charac-
terized by the maximum resolution in the time–fre-

quency region and by a fixed size of the sliding time
window for all of a studied frequency range. The use of
the Gabor transform is appropriate in the case of a
change in the studied signal frequency in a relatively
small region. Thus, by choosing the length of the slid-
ing window, it is possible to obtain the optimal fre-
quency resolution fixed at all of the studied frequency
range.

The aim of this work was to justify the application
and to select the parameters for the Gabor transform
in the analysis of slow-wave activity in the intestine.

MATERIALS AND METHODS

Analysis of the electromyograms of the small intes-
tine with a duration of 3600 s obtained in chronic
experiments on rats in the Laboratory of Experimental
Pathology of the Sklifosovsky Research Institute of
Emergency Medicine was conducted in this work.

The basic scheme of the implantation of electrodes
was as follows: monopolar needle electrodes were
implanted during the preliminary operational training
in the serous–muscular layer of the small intestine
wall in rats and their wires were led out through the
tail; the reference comparison electrode was anchored
in the internal part of the abdominal wall and was also
led out through the tail. Thus, a monopolar scheme of
electromyographic signal registration was used. An
NVX-52 electron encephalograph (OOO MKS, St.
Petersburg) was used as a bioelectric signal amplifier.
The signal recording was conducted in the frequencyAbbreviations: WFT, window Fourier transform.
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band from 0.05 to 35 Hz at the discretization fre-
quency of 250 Hz.

In order to accurately estimate changes of the slow
waves in the frequency region, a particular case of
WFT (namely, the Gabor transform) was selected.
The best uncertainty ratio in the time–frequency
region, as well as the constant time-window size (and,
as a consequence, a fixed resolution in the frequency
region), were the main criteria in the selection of this
approach; this provided good conditions for quantita-
tive study of the changes in the slow-wave frequency
fluctuation in a relatively narrow range.

The calculations were carried out using the func-
tions of the Python 3.6 programming language. In
particular, the NumPy and SciPy libraries were used
to construct the signal-processing algorithms; The
Matplotlib library was used for visualization of the
data.

RESULTS
The discrete signal Gabor transform. In general, for

a function , the WFT has the form:

(1)

where γ(t) is a window function that decreases rapidly
at infinity and , , and ,
are the size of the shift of the window function. Here,
F(ω, τw) is called the signal spectrum f(t), which is
obtained as a result of the WFT depending on the win-
dow-function shift (τw). The window-function spec-
trum has the form

(2)

The radius of the window function and the radius
of the window-function spectrum are the characteris-
tics of the window function. The window-function
radius is determined as
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where 

The values  and  are called the window-function
centers. The multiplication of two radii satisfies the
following inequality:

(5)

This equation only occurs for the Gaussian win-
dow function

(6)

where , α > 0.
The inequality (5) indicates that it is impossible to

determine t and ω accurately at the same time, but
only with some degree of uncertainty [5]. Thus, using
the Gaussian function as a window in the Fourier
transform, we obtain the best ratio of the time–fre-
quency resolution. The WFT with a Gaussian function
as a window is called the Gabor transform. Based on
the expressions (3), (4), and (6) it is possible to calcu-

late that Δt =  and Δω =  for the Gabor trans-

form [6].
A discrete signal with the specified discretization

frequency Δtdisc and final number of counts N ∈  is
considered. The signal is then divided into the sample
of values tn = nΔtdisc for n = 0, 1, 2 … N – 1 and it is pos-
sible to make a transition to a discrete window Gabor
transformation:

(7)

where ωk = , τl = , k = 0, 1, 2, 3 … N – 1, l =

0, 1, 2 … N – 1. Thus, we obtain:
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Formula (8) allows one to carry out the Gabor
transform of the discrete signal for different window-
function shifts and to construct the dependence of
local discrete Gabor spectra on time. The efficient
spectral resolution is determined as dω = 2Δω; the effi-
cient time window width dt = 2Δt. Thus, we obtain
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Fig. 1. An electromyogram of the proximal part of the jeju-
num with a duration of 3600 s (a), the frequency spectrum
in the slow-wave region from 0 to 1 Hz (b).

0

6
4
2

8 (b)

1.00.90.80.70.60.50.40.30.20.10
Frequency, Hz

|F
(ω

)| 
 · 

10
–

7

–1000
–500

0
500

1000
(а)

3500500 1000 1500 2000 2500 30000
Time, s

Po
te

nt
ia

l, 
μV
from expression (5) and the calculated values for Δt
and Δω:

(9)

It is more convenient to work with linear frequen-
cies expressed in hertz during the analysis of electro-
myograms. It is possible to transform the expressions
in (9) to the appropriate form setting dω = 2πd

v
, where

d
v
 is the efficient spectral resolution expressed in hertz:

(10)

Separately, it is worth noting that the efficient
spectral resolution dω differs from the spectrum dis-
cretization frequency and contains information about
the accuracy of the frequency determination on a
specified efficient time-window size. The spectrum
discretization frequency from expression (7) is

.

In the general case, the Gabor transform spectrum
is a complex function that contains information about
the phase and amplitude of the appropriate frequency
component. When constructing spectra in this work,
we take the value , which only carries informa-
tion about the amplitude.

The Gabor transform during calculation of the spec-
trum of electromyograms. The Kotelnikov theorem,
which states that any function F(t) that consists of fre-
quencies from 0 to v0 can be continuously transmitted

using numbers that follow each other in Δt =  sec-

onds, is used. Thus, assuming that the frequencies of
the slow-wave activity of the rat small intestine are in
the range from 0 to 1 Hz, it is possible to decrease the
discretization interval of an initial signal to 0.5 s per
one count. The fast Fourier transform algorithm is
used everywhere below to construct the Gabor trans-
form frequency spectra. The performance of the fast
Fourier transform algorithm restricts the number of
analyzed signal counts and assumes that their amount
is equal to the degree of the number two, that is, N =
2n, n ∈ N. With the signal duration of 3600 s and signal
discretization interval Δt = 0.5 s, we obtain the nearest
number N = 8192. Thus, by lowering the discretization
interval of the initial electromyogram and filling the
missing number of counts with zeros, we obtain the
discretization frequency of the spectrum obtained
during the fast Fourier transform from expression (11):

Δv =  Hz. It should be noted that the

signal addition with zeros changes the discretization
frequency of the spectrum of the entire signal accord-
ing to the expression (11) [7]. The parameter α, which
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is required to perform the Gabor transform and to
construct the frequency spectrum of the entire signal,
is calculated from expression (10). The efficient time-
window width in this case will be dt = 3600 s, the effi-
cient spectral resolution d

v
 10–4 Hz, and the param-

eter α = 3.24 · 106 s2. An example of the frequency
spectrum of the entire electromyogram is presented in
Fig. 1.

It is seen from Fig. 1 that the frequency of slow-
wave activity is in the range ΔυSW  0.1 Hz throughout
all of the electromyogram and reaches a maximum at
the frequency υSW  0.6 Hz. The common amplitude–
frequency characteristics of the slow-wave activity for
the considered region of the intestine can be found
from the amplitude spectrum of the Gabor transform
with a continuous window width. To track changes in
the slow-wave activity depending on time, it is neces-
sary to have amplitude–frequency information from
electromyogram regions of a small duration. To ana-
lyze the amplitude–frequency distribution of slow
waves in certain electromyogram regions it is neces-
sary to decrease the value of the efficient time-window
width in the Gabor transform, due to which a decrease
in the efficient spectral resolution will occur in the fre-
quency region d

v
. From expression (10), it is possible

to find the efficient time window width for different
resolutions in the frequency region or the resolution in
the frequency region for different efficient time-win-
dow widths. The calculated parameters α and dt for
d
v

= 0.1, 0.01, and 0.001 Hz, respectively, are given in
Table 1.

The electromyographic signal spectrum presented
in Fig. 1 shows the expediency of the study of fre-
quency behavior at different regions of smaller dura-
tions with the frequency resolution in d

v
  0.01 Hz.

Thus, we obtain a high level of time localization with
dt  32 s. As stated above, a further decrease in the
window width decreases the resolution in the fre-

≅

≅

≅

≅

≅
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Table 1. The parameters of the Gabor transform for different efficient spectral resolutions

Resolution
by d

v
 frequency, Hz α coefficient, s2 Efficient window width dt, s

0.1 2.53 3.2

0.01 253 32

0.001 25330 320
quency region and it will be impossible to obtain any
new information from the spectrum at dt  3.2 s with
the resolution d

v
  0.1 Hz. Different electromyogram

regions with a duration of 32 s and their spectra with
the appropriate efficient resolution in the 0.01 Hz fre-
quency region are given in Fig. 2.

≅
≅
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Fig. 2. Time regions of an electromyogram and their spectra wit
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It can be seen from Table 2 that the amplitude max-
imum is reached at different frequencies for different
time regions of the electromyogram given in Fig. 2.
The clearly pronounced amplitude peak on all of the
given spectra allows us to uniquely identify the slow-
wave frequencies in the considered time periods.
h centers of time-window functions  = 185 s (a, c),  = 1220 s
ow size of the Gabor transform dt = 32 s.
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Table 2. Spectral estimation of the slow-wave frequency with an efficient spectral resolution of 0.01 Hz for different values
of window-function centers with an efficient width of 32 s

Window-function center, , s Efficient window width, dt, s Slow-wave frequency υSW, Hz

185 32 0.59

1220 32 0.62

2670 32 0.62

3185 32 0.55

t

The ability to analyze the dynamics of changes in the
slow-wave frequency over time. The Gabor transform
on a sliding time window is applied to construct a pic-
ture of the changes in the slow-wave frequency over
time. The efficient width of the time window is 32 s,
the time step is accepted as 1 s. The frequency on the
spectrum that corresponds to the amplitude maxi-
mum will be taken as the slow-wave frequency on the
instantaneous spectra of the sliding time window. The
initial electromyogram is given in Fig. 3a; the depen-
dence of the frequency on time that is thus constructed
is shown in Fig. 3b. The fact should be taken into
account that the time-frequency localization obeys
the uncertainty ratio (5). Each time moment on the
frequency–time graph corresponds to the time of the
time window shift τ, and it is possible to talk only
Fig. 3. An electromyogram of the proximal part of the jeju-
num with a duration of 3600 s (a), the dependence of the
slow-wave frequency on time for dt = 32 s (b) and dt =
320 s (c).
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about the presence of certain frequency in the time
region, which corresponds to the efficient time win-
dow width and this shift.

The Gabor transform on a sliding time window
with an efficient width that differs on the larger side,
that is, 320 s, is applied to the signal. The thus-
obtained frequency–time dependence reflected in
Fig. 3c demonstrates the more stable behavior of the
slow-wave frequency throughout the entire signal. At
the same time, the lack of stability of the slow-wave
frequency depending on time is clearly observed and
preserved. It is seen from Fig. 3 that an increase in the
time-window size decreases the effect of local and
short-term (relative to the window size) signal ampli-
tude jumps on the frequency spectrum. Such compo-
nents are often a reason for the false identification of
the slow-wave frequency under conditions of artifact
signal noise or the presence of another process that is
not related to slow waves that has a complex fre-
quency–time structure.

CONCLUSIONS
The application of the Gabor transform and con-

struction of spectra of different electromyogram
regions allows one to identify the slow-wave frequency
with the maximum frequency–time localization. The
presence of a clear single amplitude peak in the slow-
wave frequency range is typical after the application of
the Gabor transform on all spectra of the analyzed
electromyogram regions. It was demonstrated that the
maximum amplitude peaks on the spectrum can cor-
respond to different frequencies that depend on time.
Thus, the frequency range of the slow-wave activity of
the studied region of the intestine observed on electro-
myogram spectra of a large duration (3600 s) is
explained by a change in the slow-wave frequency over
time. Consequently, the Gabor transform allows one
to establish the presence and to study the non-station-
arity of an electromyographic signal in the slow-wave
activity region with sufficient accuracy (0.01 Hz) and
the maximum possible time localization (32 s) for this
resolution.
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