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Abstract⎯Gene regulatory networks control the complex programs that drive development. Deciphering the
connections between transcription factors (TFs) and target genes is challenging, in part because TFs bind to
thousands of places in the genome but control expression through a subset of these binding events. We
hypothesize that we can combine natural variation of expression levels and predictions of TF binding sites to
identify TF targets. We gather RNA-seq data from 71 genetically distinct F1 Drosophila melanogaster embryos
and calculate the correlations between TF and potential target genes' expression levels, which we call “regu-
latory strength.” To separate direct and indirect TF targets, we hypothesize that direct TF targets will have a
preponderance of binding sites in their upstream regions. Using 14 TFs active during embryogenesis, we find
that 12 TFs showed a significant correlation between their binding strength and regulatory strength on down-
stream targets, and 10 TFs showed a significant correlation between the number of binding sites and the reg-
ulatory effect on target genes. The general roles, e.g. bicoid’s role as an activator, and the particular interac-
tions we observed between our TFs, e.g. twist’s role as a repressor of sloppy paired and odd paired, generally
coincide with the literature.
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1. INTRODUCTION

Intricate gene regulatory networks are responsible
for the patterning events during development that gen-
erate a complex adult animal from a single fertilized
egg. These networks are composed of transcription
factors (TFs), chromatin remodelers, co-activators,
and signaling pathway components and are largely
encoded in the genome in pieces of regulatory DNA,
e.g. enhancers. Enhancers are located in the non-cod-
ing portions of the genome and are composed of TF
binding sites (Davidson 2010; Peter and Davidson,
2011). The number, strength, and arrangement of TF
binding sites within a enhancer help to determine the
expression pattern driven by the enhancer (Li et al.,
2008; Vaquerizas et al., 2009; Nuzhdin et al., 2010;
Yang et al., 2011; Levo and Segal, 2014).

The networks that specify the anterior-posterior
and dorsal-ventral axes during early Drosophila devel-
opment are established model systems for studying
gene regulatory networks. The anterior-posterior pat-
terning network is a transcriptional cascade, in which
genes in upstream layers of the cascade regulate the
expression of genes downstream. Maternally depos-
ited genes control the expression patterns of gap genes.
These gap genes, which constitute the most upstream
zygotic layer of the cascade, control pair-rule gene
patterns, which then specify the expression patterns of
segment polarity genes (Nasiadka et al., 2002; Bonn
and Furlong, 2008). The dorsal-ventral patterning
system begins with the ventral activation of the Toll
signalling pathway, which activates Dorsal, an NF-
kappaB family TF that activates several other TFs
important for dorsal-ventral axis specification (Levine
and Davidson, 2005; Bonn and Furlong, 2008).

One challenge of studying gene regulatory net-
works is finding all the connections between the TFs
active in the network. Traditionally, this is accom-
plished through a combination of mutant and overex-

1 The article is published in the original.
2 Supplementary materials are available for this article at

10.1134/S0006350918010128 and are accessible for authorized
users.
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Fig. 1. Crossing scheme for F1 samples. We generated F1 embryos using two tester female strains, R380 and R315 from the DGRP.
In total, 71 distinct crosses were performed using these two tester strains and various male strains.
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pression experiments for TFs, enhancer bashing, bio-
chemical footprinting of TF binding sites, and more
recently, functional genomics approaches like ChIP-
seq and RNA-seq have been combined with statistical
inference to elucidate gene regulatory networks (How-
ard and Ingham, 1986; Bergman et al., 2005; Bon-
neau, 2008; Busser et al., 2008; Bumgarner and
Yeung, 2009; Park, 2009; Pepke et al., 2009; Wang and
Huang, 2014).

Here, we combine genome-wide transcriptional
profiling of individual D. melanogaster lines with TF
binding site analysis to find the connections in the
early embryonic patterning networks. We hypothesize
that the levels of a TF and its target genes will co-vary
and use bioinformatic analysis of predicted TF bind-
ing sites to separate direct and indirect effects, in a
similar fashion to previous studies (Kliebenstein,
2009; Lewis et al., 2010; Mostafavi et al., 2014). To
measure covariation between TFs and their target
genes, we used naturally occurring variation in TF and
target gene expression levels, measured in four to five
hour old embryos (Nuzhdin et al., 2008). We expected
to observe significant expression variation between
genotypes because earlier studies have found signifi-
cant transcript level differences among D. melanogas-
ter genotypes for roughly 10% of the whole body tran-
scriptome (Jin et al., 2001; Nuzhdin et al., 2004). We
mated males with different genotypes to two tester
female lines, resulting in F1 embryos with distinct
genetic backgrounds that drive variation in TF and tar-
get gene expression levels (Fig. 1).

Since we used linear regressions for the analysis, we
confined the analysis to mostly additive genetic varia-
tion, which is best exposed in Fl heterozygous individ-
uals (Nuzhdin et al., 2012). Our aim was to determine
how a TF’s control of target genes correlated with the
strength and number of binding sites for the TF in the
target gene’s presumptive regulatory DNA and to see
if our results would coincide with current literature,
indicating a strong correlation between a TF’s binding
strength or number of binding sites and its regulatory
strength on a target gene (Li et al., 2008; Nuzhdin et
al., 2010).

2. MATERIALS AND METHODS

 D. melanogaster Lines and Embryo Collections 

Experiments were conducted using Drosophila
Genetic Reference Panel (DGRP) lines (Mackay et
al., 2012) and Winters lines, which were collected from
an organic orchard in Winters, California and inbred
to achieve homozygosity (Campo et al., 2013). All
stocks were maintained on normal cornmeal-based
food and kept at an approximate temperature of 25°C
in a 12:12 light to dark cycle. Females from two DGRP
lines, Raleigh 315 and Raleigh 380, were crossed to
males from various Raleigh and Winters lines (Fig. 1).
Crosses were performed in 6 oz square bottom bottles
that were capped with a Petri dish containing grape
juice agar. The next morning at 8 h bottles were
recapped with Petri dishes containing yeast to collect
embryos laid overnight. At 9 h, these Petri dishes were
then discarded and the bottles were recapped with new
Petri dishes for exactly one hour. At 10 h, the new Petri
dishes containing the embryos were collected and
incubated at 25°C for 4 h, yielding 4–5 h old embryos.
After incubation, the embryos were dechorionated by
submerging them in a 50% bleach solution for one and
a half minute. The embryos were then washed with
deionized water and stored in Ambion TRIzol reagent
(Life Technologies no. 15596-026) at –80°C.
71 crosses were analyzed in this study. 25 crosses were
sequenced as two biological replicates and the remain-
ing 46 crosses were sequenced without replicates
(Table S1). In total, 96 samples were sequenced.
BIOPHYSICS  Vol. 63  No. 1  2018
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Construction of transcriptome Libraries
and RNA-Sequencing

For each sample, RNA was extracted using the
Direct-Zol RNA-prep Kit following the protocol from
Zymo Research. mRNA was purified with the Ambion
Dynabeads mRNA Purification Kit (Product no.
61006) and fragmented using the Fragmentation Kit
(Product no. AM8740), followed by cDNA synthesis
with random hexamer primers. Blunt ends were gener-
ated with the help of the Quick Blunting Kit (NEB
Product no. E1201L) and a single A base was added
with the Klenow Fragment 3'–5' exo-nuclease (NEB
Product no. M0212L). Illumina adaptors were ligated
onto the cDNA fragments with the Quick Ligation Kit
(NEB Product no. M2200L). Size selection of frag-
ments were done using Agencourt AMPure XP beads
(Beckman Coulter Product no. A63880) with a ratio of
0.7 beads to total volume. Finally 96 samples were
tagged by 12 Illumina indexes and 8 custom built bar-
codes and enriched before being sequenced in a 96-
well platform (Dunham and Friesen, 2013) on an Illu-
mina HiSeq 2500 in paired end 100 base-pair mode.
Raw Illumina reads will be deposited on NCBI (SRA
ID will be inserted here) after acceptance and reads are
currently available here: http://rri-nuzhdin-2.cts.usc.
edu/thkitapci/data/.

RNA Analysis Including Mapping and Normalization 
of Sequencing Reads

RNA-Seq reads were mapped to D. melanogaster ref-
erence genome sequence (dm3/BDGP5.75) using STAR
(2.4.0k) with default parameters (Dobin et al., 2013).
Only uniquely and concordantly mapped reads were used
for the further analysis. Raw read counts were generated
using HTSeq with default parameters (Anders et al., 2014)
and using the annotation file (dm3/BDGP5.75.gtf). Read
counts from samples corresponding to the same genotype
were merged together. Raw read counts were normalized
using RPKM (reads per kilobase per million reads) (Mor-
tazavi et al., 2008). Analysis scripts are available at
(https://github.com/thkitapci/Inference_of_TF_regula-
tory_networks.git).

Gene Expression Covariation Analysis

We were interested in segmentation genes (mater-
nally-expressed TFs (bicoid and caudal), gap genes
(giant, Kruppel, knirps, hunchback, and tailless), pri-
mary pair-rule genes (even skipped, hairy, runt and
fushi tarazu), and segment polarity gene (engrailed)),
in addition to genes in dorsal-ventral patterning (snail
and twist), all of which play an important role in pat-
terning during D. melanogaster embryogenesis (Sand-
mann et al., 2007; Campos-Ortega and Hartenstein,
2013). Furthermore, the segmentation genes have
shown an abundance of expression variation during
D. melanogaster embryogenesis (Nuzhdin et al., 2010).
BIOPHYSICS  Vol. 63  No. 1  2018
To characterize the regulatory strength between
TFs of interest and their target genes we calculated the
Spearman’s correlation coefficient between the
expression levels of each TF and other mapped genes
(7805 genes) that had a high expression levels across
59 samples. Positive regulatory strengths are those
with correlation coefficients > 0, negative strengths are
those with correlation coefficients < 0.

To find the presumptive regulatory DNA for each
target gene, we found the DNase accessible regions
within a 5000 bp window upstream of each target gene,
using earlier measurements of DNase accessible
regions of stage 10 (4 h) and stage 11 (5 h and 40 min)
embryos of D. melanogaster (Thomas et al., 2011). To
find binding sites in each accessible region, we used
the PATSER program (Hertz and Stormo, 1999),
assuming 47% GC content, and the position weight
matrices (PWMs) for each TF of interest from Fly
Factor Survey Database (Zhu et al., 2011) (Table S2).
We used the PATSER option -li to calculate a binding
score cutoff based on each PWM’s information con-
tent. We further refined the sites by selecting the stron-
gest 5, 10 or 15% of binding sites, based on the
PATSER binding scores, which correlate with binding
strength. We used the 10% threshold in the main text,
because the 5% threshold seemed too stringent and
significantly reduced our samples size and the 15%
threshold seemed too permissive and abolished cor-
relations between regulatory strength and binding site
content (Fig. S5).

Using these sites, we calculated the average
strength or number of binding sites in each target
gene’s accessible upstream DNA, discarding any tar-
get genes with fewer than three binding sites. Restrict-
ing the analysis to target genes with more than two
binding sites increased the correlation between bind-
ing site content and regulatory strength. PATSER’s
calculated scores, which roughly correspond to the
log-likelihood of a k-mer being a TF binding site,
were used as a proxy for binding site strength in this
analysis.

To test whether there was a significant correlation
between a TF’s binding site content and its regulatory
strength, we calculated the Spearman’s correlation coef-
ficient between positive and negative regulatory strengths
and average strengths or numbers of binding sites, using
R. P-values were corrected using the Benjamini and
Hochberg method (Benjamini and Hochberg, 1995). All
figures were generated using the R statistical program and
all scripts were written in PERL language. Raw and nor-
malized count files and scripts were used for analysis can
be retrieved from (https://github.com/thkitapci/Infer-
ence_of_TF_regulatory_networks.git).

Regulatory Interaction Analysis between TFs

For this analysis, we used the potential target genes
for each TF of interest to find the subset of potential
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targets that were TFs themselves. Spearman’s correla-
tion coefficients between these TFs were calculated
and tested for significance (p < 0.001, after multiple
testing correction by Benjamini and Hochberg
method) using R.

Replication Analysis
To confirm that our results on the regulatory inter-

actions between TFs are reproducible and have biolog-
ical significance, we divided our dataset into two data-
sets based on the tester genotype used, namely crosses
with R315 and crosses with R380. The Spearman’s
correlation coefficients of these TFs were calculated
independently in these datasets and tested for signifi-
cance (p < 0.05, after multiple testing correction by
Benjamini and Hochberg method) using R.

3. RESULTS
Measuring the Transcriptome of D. melanogaster Lines

To measure the covariation between TFs and pre-
sumptive target genes, we characterized the transcrip-
tomes embryos of individual D. melanogaster F1 lines
(Fig. 1) four to five hours after fertilization. The tran-
scriptomes of 96 D. melanogaster samples were
sequenced and reads were mapped to 15682 genes that
were annotated in the D. melanogaster reference
genome. To characterize the sequencing quality of the
data, the number of mapped genes and the average
number of reads in each sample were analyzed. We
define a gene as being mapped in a sample when it has
a non-zero read count. There was variation in the aver-
age read count in each sample (Fig. 2a). A higher aver-
age read count allowed more genes to be identified,
and as expected, there was a positive relationship
between average read count and mapped gene count in
a sample. However, this relationship is not linear,
since increasing the sequencing depth will identify
more genes only to a certain point. We see that as the
mean read count is increased, the number of genes
sequenced approaches 11000, suggesting an upper
limit to the number of genes detectable in each sample
(Fig. 2a). 

To account for differences in sequencing depth,
due to either poor sample preparation, lower concen-
trations of RNA, or sequencing bias that results from
mRNA fragmentation (Wang et al., 2009), we normal-
ized the data by the lengths of each mapped gene and
millions of reads to calculate the Reads Per Kilobase of
transcript per Million mapped reads (RPKM), a
quantitative measure of gene expression (Mortazavi
et al., 2008). The average RPKM value across all
mapped genes is consistent across all the samples that
were included in downstream analysis, with mean =
37.9 RPKM and standard deviation = 2.8 RPKM.
Twelve samples with fewer than 7500 mapped genes
displayed a wide range in average and standard devia-
tion RPKM values and were removed from further
analysis (Fig. 2b). Among the remaining 59 samples,
7805 genes were detected in at least 50 samples
(Fig. 2c). We considered these 7805 genes in the
59 samples in the downstream analysis. To measure
“regulatory strength,” we calculated the Spearman’s
correlation coefficient between the expression levels of
14 TFs active in the anterior-posterior and dorsal-ven-
tral patterning networks with their potential target
genes.

Gene Expression Covariation Is Related
to TF Binding Site Content

To test the hypothesis that gene expression covari-
ation (regulatory strength) between a TF and a poten-
tial target gene is related to TF binding site content in
the target gene’s regulatory DNA, we generated two
data sets that describe either the average strength or
number of TF binding sites in each target gene’s pre-
sumptive regulatory DNA region. To start, we
assumed that a gene’s regulatory DNA was in the 5 kb
upstream region of its transcription start site and fur-
ther narrowed down this region to include only the
regions identified as DNAse hypersensitive during
stage 10 and stage 11 of development, which roughly
corresponds to the time of our embryo collection win-
dow. Because we do not have comprehensive annota-
tions of the enhancers in the genome, we assume that
these proximal, accessible regions of the genome will
contain the enhancers of the potential target genes and
consider the implications of this assumption in the
Discussion. Binding sites for each TF of interest were
detected in these regions using each TF’s position
weight matrices (PWMs) and the PATSER program
(see Methods and Materials). To determine which
binding sites to consider, for each TF, PATSER was
used to calculate a binding score cutoff based on
PWM’s information content, and then we considered
sites that fell into the top 5 and 10% of the binding site
score distribution as potential binding sites for each
TF. We then calculated the average strength or number
of binding sites located in each potential target gene’s
presumptive regulatory DNA for each TF. In the main
text, Figs. S1 and S3, we show the results for the 10%
cutoff, and results for the 5% cutoff are in Figs. S2 and
S4. Using a 15% cutoff abolished correlations between
regulatory strength and binding site content, and
therefore was considered to be too permissive as a
threshold (Fig. S5).

To compare each TF’s regulatory strengths to each
potential target’s TF binding site content, we sepa-
rated the regulatory strength data into positive and
negative correlations. We found a strong relationship
between the positive regulatory strengths and average
binding site strengths of bicoid and engrailed, while
giant and hunchback have a strong relationship
between negative regulatory strengths and average
binding site strength in this stage of D. melanogaster
development (Fig. 3). We also found a significant cor-
BIOPHYSICS  Vol. 63  No. 1  2018
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Fig. 2. Analysis of D. melanogaster line transcriptome data.
(a) Here we plot average read count as a function versus the
number of genes expressed before RPKM normalization.
As read count increases, so does the number of expressed
(mapped) genes reaching until a plateau of ~11000
expressed genes. (b) Here we plot average RPKM versus
the number of genes expressed. For samples with more
than 7500 mapped (expressed) genes, the average RPKM
value is consistent. For samples with less than 7500
expressed genes (red dots), the average RPKM values vary
greatly. These samples were discarded from downstream
analysis. (c) Here we plot the number of genes mapped
across the samples. Only genes that are expressed in at least
50 samples were used in downstream analysis.
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relation between the regulatory strength and the aver-
age strength of TF binding sites for even skipped, fushi
tarazu, hairy, Kruppel, runt, snail, tailless and twist
(Figs. S1, S2, Tables S3, S4). Bicoid, engrailed, fushi
tarazu, runt and twist show significant correlations
between positive regulatory strength and the average
strength of TF binding sites, suggesting that these TFs
act as activators in this stage of development. Even-
skipped, giant, hairy, hunchback, Kruppel, snail and
tailless had a significant correlation between negative
regulatory strength and the average strength of TF
binding sites, suggesting that they act as repressors in
this stage of the development (Figs. S1, S2, Tables S3,
S4).We also found a significant correlation between
the number of binding sites and the activating strength
of bicoid, engrailed, fushi tarazu, Kruppel, runt and
snail. Engrailed, even skipped, giant, hunchback, Krup-
pel and tailless had a significant correlation between
the number of binding sites and their repressing
strength (Figs. S3, S4, Tables S3, S4).

These observations are somewhat consistent with
the known biology of these TFs. Bicoid and twist
(Struhl et al., 1989; Leptin, 1991; Cripps et al., 1998;
Stathopoulos et al., 2002; Schroeder et al., 2004;
Zeitlinger et al., 2007; Ochoa-Espinosa et al., 2009;
Porcher and Dostatni, 2010) are known to act as tran-
scriptional activators. Giant, tailless (Wu et al., 1998;
Hewitt et al., 1999; Schroeder et al., 2004; Morán and
Jiménez, 2006; Yáñez et al., 2013), even-skipped, and
hairy (Manoukian and Krause, 1992; Barolo and
Levine, 1997; Jiménez et al., 1997; Kobayashi et al.,
2001; Fujioka et al., 2002; Bianchi-Frias et al., 2004)
are known as transcriptional repressors. Runt and fushi
tarazu can act as activators or repressors, but we only
detect their roles as activators in our study (Hiromi
and Gehring 1987; Kramer et al., 1999; Yu et al., 1999;
Nasiadka et al., 2000; Wheeler et al., 2000). Hunch-
back can act as transcriptional activator or a repressor,
though we only detect its repressive role in our study
(Zuo et al., 1991; Schroeder et al., 2004; Staller et al.,
2015). There is some evidence that Kruppel (Sauer and
Jäckle, 1991; Zuo et al., 1991; Sauer et al., 1995; La
Rosée-Borggreve et al., 1999), engrailed (Heemskerk
et al., 1991; Tabata et al., 1992; Alexandre and Vin-
cent, 2003) and snail (Rembold et al., 2014) can act as
bifunctional TFs.

Uncovering Regulatory Interaction between TFs

Because the anterior-posterior and dorsal-ventral
patterning networks involve interactions between TFs;
we analyzed our data to see if we could uncover these
interactions. We found that the maternal gene bicoid
had a positive correlation with most TFs, which is
consistent with bicoid’s role as an activator. Mean-
while, tailless showed a repressive interaction with
giant and knirps, again consistent with the known biol-
ogy (Sánchez and Thieffry, 2001; Jaeger et al., 2004;
Jaeger, 2011; Liu et al., 2013; Gula and Samsonov,
BIOPHYSICS  Vol. 63  No. 1  2018
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Fig. 3. The relationship between regulatory strength and average TF binding site strength. Here we plot the relationship between
regulatory strength and average TF binding strength for bicoid, engrailed, giant and hunchback with their target genes using the
top 10% of binding scores for each TF. The x-axis shows the correlations between the expression level of each TF and its target
genes across all our samples. The y-axis shows the average TF binding site strength for binding sites located in the assumed region
of regulatory DNA for each target gene. Each black dot represents a target for the TF in the panel with at least three binding
motifs. The blue and red lines show the linear regression for the positively and negatively correlated target genes, respectively, and
r2 values are displayed for these best fit lines. (a, b) Activating strengths (positive expression covariation) of bicoid and engrailed
are correlated with the average binding site strength, suggesting bicoid and engrailed act as activators at this stage of the develop-
ment. (c, d) Repressing strengths (negative expression covariation) of giant and hunchback are correlated with average binding site
strength.
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2015). Twist seems to repress sloppy paired and odd
paired, as suggested in a previous study (Sandmann
et al., 2007) (Table 1, Fig. S6).

To make sure our findings do not depend on
genetic background, we have used two tester female
strains (R315 and R380), similar to (Nuzhdin et al.,
2010). When we analyzed the data for each of these
tester strains separately, the estimates of regulatory
strength appear nearly identical between two testers
(Fig. S7, Table S5). This high degree of replication
establishes the robustness of the technique.

4. DISCUSSION
In this study, we used transcriptional profiling of

D. melanogaster lines to analyze the relationship
between the TF binding sites and the regulatory con-
trol of their target genes using two metrics of binding
site content: average strength and number of binding
sites. We found significant correlations for several TFs
of interest. This suggests that the strength and number
of binding sites for a particular TF in regulatory DNA
regions are correlated with the regulatory control of its
target genes. Our results are consistent with previous
studies, which suggested that the numbers and
strengths of TF binding sites are correlated, albeit
imperfectly, with a particular TF’s regulatory strength
on its target genes (Li et al., 2008; MacArthur et al.,
2009; Franco-Zorrilla et al., 2014). A previous study of
five TFs (bicoid, caudal, giant, hunchback, and Krup-
pel) during the first 5–8 h of D. melanogaster develop-
ment showed that there was an association between
BIOPHYSICS  Vol. 63  No. 1  2018
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Table 1. Regulatory interaction between TFs. We consider
corrected p-values < 0.001 to be significant

TF Target
Spearman’s 
Correlation 
Coefficient

Corrected
p-value

Bicoid Caudal 0.62 1.56E-05
Bicoid Knirps 0.66 3.00E-06
Bicoid Kruppel 0.69 5.33E-07
Bicoid Giant 0.67 1.72E-06
Bicoid Hunchback 0.61 1.56E-05
Bicoid Tailless 0.64 7.46E-06
Bicoid Runt 0.68 1.43E-06
Bicoid Hairy 0.60 4.10E-05
Bicoid Tailless –0.53 6.54E-05
Bicoid Twist –0.59 4.25E-05
Bicoid Sloppy paired –0.62 7.46E-06
Bicoid Odd paired –0.68 5.33E-07
the strength of TF binding and the regulatory control
of their target genes (Nuzhdin et al., 2010).

Engrailed exhibited the highest correlation between
the regulatory control of its target genes and its
strength and number of binding sites (Tables S3, S4).
We hypothesize that this strong correlation is due to
engrailed having a generally high level of expression at
this time point in development, especially compared
with the previous developmental stages, while other
TFs we examined do not show the same distinct differ-
ence in expression (Graveley et al., 2011; Hammonds
et al., 2013).

Overall, our results show that the number and
strength of the significant associations of covariation
in expression with binding strength and number of
binding sites is modest. There are many reasons for
this observation. Each of these TFs is expressed in a
complex spatial and temporal pattern, so whole-
embryo expression data will obscure regulatory events
in a small number of cells. Predicted TF binding sites
may not correspond to in vivo binding (Biggin and
Tjian, 2001; Levine and Tjian, 2003). Our assumption
that the DNAse accessible regions 5 kb upstream of a
target gene will regulate its expression will cause us to
miss enhancers located in other parts of the genome
and may include regions that do not act as enhancers.
Therefore, our proxy for TF binding is only approxi-
mate. TFs can interact with co-factors that modify the
TF’s ability to activate or repress transcription of their
target genes (Björklund et al., 1999; Tanay, 2006).
Furthermore, some instances where we found high
covariance between TFs and genes with low affinity
binding sites could be due to the presence of interme-
diate proteins that bind to a given site and increase the
binding potential of the TF (Björklund et al., 1999;
Mannervik et al., 1999). Despite all these caveats, we
are able to use predicted TF binding sites and expres-
sion covariation to confirm some known regulatory
interactions in this gene regulatory network (Li et al.,
2008; MacArthur et al., 2009; Nuzhdin et al., 2010).

We can envision how the expression of TFs and
regulated genes could co-vary due to indirect regula-
tion. However, the observed relationship between
strength of regulation and binding site strength indi-
cates a direct component in this covariance. Further
insight comes from comparing activation and repres-
sion. Consider the activator bicoid, for instance. If the
covariances are due to indirect effects, their signs
might be both positive and negative. One would then
hypothesize that negative regulation must be indirect,
while positive regulation might be either direct or indi-
rect. Then, the strength of binding shall not be associ-
ated with the magnitude of negative covariances, while
the positive regulation may, exactly as observed on the
Fig. 3. The strength of such a covariance likely reflects
the proportion of direct influences in our dataset.

Generally speaking, the number of the significant
associations of covariation in expression with binding
BIOPHYSICS  Vol. 63  No. 1  2018
strength and number of binding sites is small. Taking
into consideration that transcriptional machinery is
complex and the potential influence of intermediate
proteins, we are not alarmed that the magnitude of sig-
nificant associations of covariation is low. The correla-
tions we observed with multiple TFs between the bind-
ing strength with a particular target gene and the regu-
latory strength supports the idea that the strength of
TF binding is a mechanistically sound predictor of the
strength of the regulatory effect. Moreover, our results
on the regulatory interactions between TFs validate
findings in previous studies, such as bicoid’s role as an
activator.
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