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Abstract⎯This review describes integrated mathematical models of processes, such as calcium homeostasis,
pathogen–host interaction (with hepatitis C virus as a pathogen), and the response of the human brain to a
stimulating event. It is shown that integrated mathematical models provide a deeper insight into the mecha-
nisms and conditions that lead to the development of diseases of different natures (musculoskeletal disorders,
viral infections, and various impairments in brain function) and aid identification of the key targets and con-
ditions for a directed effect of new generation drugs, as well as  the interpretation of the results of state-of-the-
art CT imaging.
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Research into the interactions in complex biologi-
cal processes is one of the central challenges in systems
biology and contributes to the insight into the mecha-
nisms that underlie many diseases, their patterns, and
course as well as to explanation of the effects of the
used therapies [1–3]. In particular, intersection of the
signaling pathways of the estrogen and growth factor
receptors is one of the causes of tamoxifen resistance
(tamoxifen is a selective modulator of the estrogen
receptor and a well-known anticancer drug used for
breast cancer treatment) [1]. The review by Javelaud
and Mauviel [2] described the interaction of mitogen-
activated protein kinase (MAPK) and the Smad sig-
naling pathways, which are activated by transforming
growth factor β (TGF-β). Individual MAPK and
Smad pathways lead to activation of the transcription
factors that regulate cell proliferation, differentiation,
mobility, and apoptosis as well as tumorigenesis. The
MAPK and Smad pathways intersect when the linker
regions of Smad proteins are phosphorylated by MAP

kinases; in many cases, this influences the ability of
Smad proteins to translocate to the nucleus, where
they are involved in formation of manifold heteroge-
neous transcription complexes. An indirect interac-
tion of the MAPK and Smad pathways includes the
expression control of some Smad proteins and their
posttranslational modification by MAP kinases. In
particular, the interaction of MAPK and Smad path-
ways has a strong effect on carcinogenesis by depleting
the antiproliferative response, inhibiting apoptosis,
enhancing tumor cell transdifferentiation into a highly
aggressive metastatic phenotype, and accelerating
bone spreading in breast and prostate cancers.

Another review [3] described the mechanism that
underlies the function of the NF-κB family of tran-
scription factors and their role in expression of over
100 genes, most of which are involved in the immune
response, as well as in carcinogenesis, stress response,
and regulation of apoptosis. The signaling pathways
that activate NF-κB are an attractive target for viruses,
which having infected a cell are able to induce cellular
signals that activate these pathways. In addition, some
viral proteins can directly interact with signaling mol-
ecules and stimulate NF-κB induction. In this case,
the NF-κB activity can stimulate transcription not
only of cellular genes, but also of viral genes in the
virus-infected cells. In particular, NF-κB factor and

Abbreviations: MAPK, mitogen-activated protein kinase; TGF-β,
transforming growth factor; HCV, hepatitis C virus; PTH, para-
thyroid hormone; RANK, receptor activator of nuclear
factor NF-κB; RANKL, RANK ligand; OPG, osteoprotegerin;
IFN-α, interferon α; fMRI, functional magnetic resonance
imaging; MRS, magnetic resonance spectroscopy; BOLD sig-
nal, blood oxygen level–dependent signal; ANLS, astrocyte–
neuron lactate shuttle.
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the upstream multisubunit IKK (IκB kinase) complex
of the signaling NF-κB pathway in the cell
lines infected with human immunodeficiency virus
(HIV-1) are constantly active. It is known that the
HIV-1 promoter proximal (enhancer) region contains
two adjacent NF-κB binding sites [3]; correspond-
ingly, this transcription factor plays a key role in
induction of the HIV-1 gene expression. This expres-
sion is additionally boosted by the Sp-1 transcription
factor, which interacts with several sites adjacent to the
NF-κB binding sites. Other viruses, for example,
human T-cell leukemia virus (that causes acute T-cell
leukemia), γ-herpes virus (that causes lymphoprolifer-
ative diseases and is associated with Kaposi sarcoma
and multiple myeloma), and hepatitides B and C
(which potentially lead to hepatocarcinoma develop-
ment), also follow analogous strategies for stable acti-
vation of cellular NF-κB pathway to stimulate tran-
scription of their genes. The strategies used by viruses
for activation of the NF-κB pathway lead to an
increase in virus replication, preserve the viability of
infected cells, enhance their unlimited proliferation,
and inhibit the immune response and apoptosis.

One of the approaches to studying the functioning
of the gene networks that describe the interactions in
complex biological processes is mathematical model-
ing. The major problem when constructing mathe-
matical models is the knowledge of kinetic parame-
ters; correspondingly, most of the currently existing
models have been built for well-studied processes,
such as cholesterol metabolism [4], influenza virus A
infection [5], RNA replication of hepatitis C virus
replicon [6], and inflammation development in rheu-
matoid arthritis [7]. Since complex processes are
described via the interactions of gene networks, inte-
grated models, describing the interactions both within
individual gene networks and between networks in an
integrated manner, have recently appeared. Construc-
tion of such integrated models requires that the com-
mon objects (common variables) involved in the inter-
action of gene networks or the interaction between dif-
ferent objects (different variables) of networks are
known. Although data about direct interactions of
gene networks is frequently absent in the literature, the
indirect data on mutual effects of gene networks on
one another is abundant. One example of such infor-
mation is the changes in expression levels of all genes
or part of them in a gene network in response to
knockout or inhibition of a specific gene or group of
genes in another gene network [8, 9]. A new approach
has been recently proposed based on such experimen-
tal data that allows for integration of independent
mathematical models of replication of hepatitis C
virus subgenomic replicon in cells and apoptosis
induction pathways via introduction of control func-
tional [10].

This review describes some examples of integrated
mathematical models that describe interactions in the
intricate functioning systems, such as calcium homeo-
stasis in the body, host–hepatitis C virus, and human
brain–stimulatory event. Integrated models explain in
a formalized form the dynamics of pathological pro-
cesses in these systems, the mechanisms leading to
disease progression, as well as clinical and therapeutic
effects, while analysis of such models forms the back-
ground for development of new treatment strategies.

AN INTEGRATED MODEL OF CALCIUM 
HOMEOSTASIS AND BONE 

RECONSTRUCTION IN THE HUMAN BODY

The system of calcium homeostasis in the human
body is extremely intricate and consists of hormones,
most of which are known; the key players here are
parathyroid hormone (PTH), calcitriol 1α,25-dihy-
droxyvitamin D3), calcitonin, as well as the free cal-
cium of the body’s extracellular compartment. The
parathyroid glands are a calcium-dependent endo-
crine organ, which instantly responds via its calcium-
sensing receptors by an increase in PTH secretion to
even the most insignificant decrease in intracellular
calcium concentration. PTH fulfills several functions;
namely, it activates D-1α-hydroxylase, the enzyme
that hydroxylates 25-dihydroxyvitamin D3 to give cal-
citriol in the kidneys; regulates the critical level of
excretion of calcium and phosphate ions, and calcium
exchange between bone tissue and extracellular f luid.
Calcitriol inhibits its own synthesis, stimulates the
absorption of Ca2+ and phosphate ions in the small
intestine, and inhibits excretion of calcium and phos-
phate ions in the kidneys. In the presence of PTH, cal-
citriol regulates calcium exchange between the bone
tissue and the extracellular compartment. In turn, cal-
cium and calcitriol regulate PTH production in the
parathyroid glands. The calcium excretion in the kid-
neys and its accumulation in the bone tissue are also
regulated by free calcium and calcitonin [11]. Distur-
bance of the calcium homeostasis cause severe dis-
eases, such as hypocalcemia and hypercalcemia, oste-
oporosis, and rachitis.

A minimal model [12] describes the dynamics of
the key players and regulators of the systemic calcium
homeostasis in the human body, including calcium
and phosphate in the total bone and intercellular
compartments, phosphate in the total cellular com-
partment, PTH in the intercellular compartment,
1α-hydroxylase in the kidneys, calcitriol in the inter-
cellular compartment, calcium transporters in the
intestine, and the pool of active cells that secrete
PTH in the parathyroid glands. The model consists
of 11 nonlinear differential equations that describe
the dynamics of component x (calcium, phosphate,
PTH, 1α-hydroxylase, calcitriol, calcium transport-
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ers, and active parathyroid gland cells) in compart-
ment y (intercellular compartment, bone tissue, total
pool of the body’s cells, intestine, kidneys, and para-
thyroid glands) as the result of the total f low of com-
ponent x into compartment y. The model accurately
describes the published clinical data on the effect of
calcium concentration in the plasma on the PTH
secretion as well as the correlations of calcium con-
centration in plasma and urine of the patients with
hypo- and hyperfunctions of the parathyroid glands.
The model has demonstrated its utility for analysis of
the general mechanisms of the diseases associated
with impaired calcium metabolism and their detailed
characterization.

The bone tissue is constantly reconstructed. Osteo-
blasts (the cells that produce new bone tissue) and
osteoclasts (the cells dissolving old bone tissue) con-
certedly function in a 3D mineral structure of the
bone. The interaction between osteoblasts and osteo-
clasts provides the balance of growth and loss in the
bone mass, which are processes that are tightly cor-
related. A chronic disturbance of biochemical or cellu-
lar associations between the bone cells results in met-
abolic diseases of the bone tissue. The model that
takes the major mechanism of interaction between
osteoblasts and osteoclasts was proposed by Lemaire
et al. into account [13]. This model implements the
idea that, on the one hand, the ratio of the pools of
immature and mature osteoblasts controls the degree

of activity of osteoclasts and, on the other hand, osteo-
clasts are able to release the cytokine that regulates
osteoblast differentiation, and correspondingly, their
activity, from the bone matrix into the local microen-
vironment (Fig. 1).

The model takes the fact into account that differen-
tiation of osteoclast precursors and subsequent forma-
tion of active multinuclear osteoclasts results from the
contacts of osteoclast precursors and active osteo-
blasts. Receptor activator of nuclear factor NF-κB
(RANK), which is expressed on the surface of osteo-
clast precursors, and RANK ligand (RANKL),
expressed on the surface of osteoblasts, are the agents
for such contact. Note also that the osteoblast precur-
sors secrete soluble osteoprotegerin (OPG) receptor
into the intercellular space; this receptor interacts with
RANKL and inhibits the RANK/RANKL interac-
tion, thereby inhibiting activation of osteoclasts. The
model takes the fact into account that active osteo-
clasts influence the pool of active osteoblasts by
releasing transforming growth factor TGF-β from the
bone matrix; TGF-β stimulates selection, migration,
and proliferation of osteoblast precursors and concur-
rently inhibits the final stage of osteoblast differentia-
tion. The model also takes the fact into account that
PTH (together with vitamin D) is the most important
hormone that regulates the reconstruction of bone tis-
sue. At a steady state concentration in the plasma and
when therapeutically administrated, PTH binds to the

Fig. 1. The scheme of the processes considered in the model describing the interactions of active osteoblasts and osteoclasts [13]:
ovals, cell types considered in the model and rectangles, cell types omitted in the model. Zigzag arrows denote the signaling path-
ways that lead to an increase (decrease) in the production of the corresponding agent (adapted from [13]).
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PTH receptors of osteoblasts and stimulates PANKL
production by inhibiting OPG production. This leads
to an increase in the number of active osteoclasts.
Thus, the RANK/RANKL/OРG pathway, as well as
different effects of TGF-β on the osteoblast precur-
sors at different stages of differentiation, play a key role
in regulation of the bone reconstruction and form the
basis of the model. The model consists of three differ-
ential equations that describe the dynamics of the pre-
osteoblast, active osteoblast, and osteoclast pools.

This model has been used to compute the concen-
tration dynamics for bone cells when the system is per-
turbed by addition or removal of one of the cell types
(active osteoblasts, immature osteoblasts, or active
osteoclasts) at a constant rate as well as by a long-term
exposure (60 days) of the system to PTH, RANKL, or
OPG. The model allows the specific features in recon-
struction of the bone tissue to be clarified. In particu-
lar, an increase in the concentration of osteoclasts is
observed during continuous addition of PTH or
RANKL to the system versus addition of OPG, which
causes a rapid decrease in the concentration of osteo-
clasts on the background of a considerably slower
decrease in the concentration of osteoblasts. The
model has also demonstrated that the balance between
bone formation and destruction is determined by the

RANKL/OPG ratio, which eventually determines the
osteoclast to osteoblast (C/B) ratio in the system as an
important therapeutic characteristic (for example,
when administering PTH or glucocorticoids). The
parameters for the model were assessed based on the
published data. One of the interesting model results is
that the calculated C/B ratio is 1.25 for the bone with
a constant mass (homeostasis). The relevant literature
gives this ratio in the range of 0.28–1.47 [14, 15]. That
simulate the conditions of bone diseases (deficiency in
estrogen, vitamin D3, TRG-β, or some others) are
varied, the model demonstrates a good fit of the com-
puted values for the changes in C/B ratio, total num-
ber of these cells (a characteristic of the bone tissue
metabolism), and concentrations of bone cells to the
clinical data. Variation of the corresponding parame-
ters also allowed the authors to conclude that the ther-
apy aimed at bone tissue formation is more efficient as
compared with the inhibition of bone resorption.

Using the models described in [12, 13], Peterson
and Riggs [16] constructed an integrated physiologi-
cally justified model of calcium homeostasis and bone
reconstruction; the model includes description of the
intracellular anti-apoptotic Runx2–Bcl-2–CREB
signaling pathway in osteoblasts induced by intermit-
tent PTH administration [17]. The scheme of the pro-

Fig. 2. The scheme of the processes considered in the integrated model of cell reconstruction and systemic homeostasis: OB,
osteoblasts; ROB, pre-osteoblasts that differentiate into OB; and OC, osteoclasts (adapted from [16]).
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cesses considered in the model is shown in Fig. 2. The
goal of the work was to construct a model that would
make it possible to study the causes and state of dis-
eases, as well as therapeutic effects in patients.

Unlike models [12] and [13], the integrated model
[16] allows for study of the bone remodeling taking the
regulation and maintenance of the systemic homeo-
stasis in the human body into account. The initial
minimal models were extended when constructing the
integrated model. In particular, the integrated model
considers in more detail the exchange of calcium and
phosphates between the bone and plasma, activity reg-
ulation of bone cells with involvement of TGF-β and
PTH, and apoptosis in osteoblasts with involvement of
Runx2–Bсl-2–СREB control mechanism under
intermittent administration of PTH. In addition, this
integrated model describes the dynamics of RANK,
RANKL, and OPG, which are the key players in the
interaction of osteoblasts and osteoclasts. Involvement
of these molecules has made it possible to simulate
formation of the RANK/RANKL and RANKL/OPG
complexes taking the effects of active TGF-β and
PTH on these processes into account. The integrated
model consists of 28 differential equations with
49 parameters and 19 hyperbolic functions describing
the effect of a variable on the dynamic of other vari-
ables. Five parameters that characterize the degrada-
tion rate constant for PTH in the plasma, exchange of
phosphate between the plasma and bone tissue and
between the plasma and cells of the overall body, and
calcitriol production and elimination were taken from
the model described in [12]. The remaining parame-
ters of the model equations were estimated by fitting
the model solutions to various clinical data, including
the data obtained before, during, and after the therapy
aimed at a growth in bone tissue density or inhibition
of its resorption and the data for the patients with
parathyroid disturbances and different degrees of kid-
ney failure. The model accurately describes the pub-
lished data on the long-term concentration dynamics
of PTH, Ca2+, and biochemical markers of osteoblast
and osteoclast functions in the patient’s plasma during
denosumab (monoclonal antibodies to RANKL)
therapy [18]. The model also accurately describes the
long-term concentration dynamics of the osteoblast
and osteoclast function markers in the plasma during
teriparatide (PTH 1-34) therapy [19]. Moreover, the
model allows for prediction of the concentration
dynamics of other important plasma characteristics
(phosphate, calcitriol, and others) during denosumab
and teriparatide therapies that fit the clinical data [20].
The model predicted a severalfold increase in the con-
centrations of PTH and biochemical markers of osteo-
clast function by the end of a 12-month period in
patients suffering from primary hyperthyroidism (a
progressive growth in endogenous PTH concentration
in the plasma) compared with the norm, as well as a

considerable increase in the concentrations of Ca2+

and biochemical markers of osteoclast function and an
elevated phosphate concentration in the plasma. The
value and direction of each predicted effect matched
the corresponding clinical data [21]. In the case of sec-
ondary hyperthyroidism caused by progressive renal
failure, the model demonstrated entirely different
concentration dynamics for the PTH, calcitriol, phos-
phate, Ca2+, and the biochemical markers of osteo-
blast and osteoclast functions in the plasma. Model
calculations matched the relevant clinical data [22].
For primary hypothyroidism (a decrease in the endog-
enous PTH in the plasma to 50%), the model pre-
dicted a considerable decrease in the concentrations of
Ca2+, as well as biochemical markers of osteoblast and
osteoclast function, a certain decrease in the calcitriol
concentration, and an almost constant concentration
of phosphates in the plasma, which agrees with the
clinical data [23]. Thus, the integrated model quanti-
tatively describes the cellular aspects and key control
mechanisms that underlie bone reconstruction and
calcium homeostasis and significantly contributed to
the insight into intricate dynamic processes of the
physiology of bone tissue and the endocrine system, as
well as the relevant clinical and therapeutic effects.

INTEGRATED MODELS FOR THE HEPATITIS 
C VIRUS–HOST SYSTEM

Hepatitis C virus (HCV) infection has become a
global problem, since over 180 million people are
already infected with this virus [24]. HCV infection
progresses into a chronic frequently asymptomatic
disease of the liver eventually leading to cirrhosis and
liver cancer [25]. Mathematical models have been
developed to study the mechanisms that underlie the
interactions between the virus and host as well as HCV
dynamics during its treatment. The models of cell
infection by HCV that describe the infection in the
body and effects of the therapy while omitting intra-
cellular processes have been most actively developed
[26–32]. Recently, deterministic models that compre-
hensively describe the intracellular processes of HCB
RNA replication and the effects of therapeutics on
these processes have been also constructed [35]. A sto-
chastic model was recently proposed to describe intra-
cellular RNA replication of wild-type HCV in fine
detail, as well as the emergence and production of
drug-resistant mutants and the effects of new anti-
HCV therapeutics on these processes [6].

The first model that describes HCV infection in
interferon-α (IFN-α) therapy at the level of the over-
all body was proposed by Neumann et al. [26]. This
model consists of three differential equations that
describe the dynamics of target cells (T), infected cells
(I), and virus (V) with the rate constants for target cell
production (s) and death (d), infection by the virus
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circulating in the HCV–host system (β), death of
infected cells (δ), production of free virions (p), and
elimination of virions from circulation (c). It was
assumed that IFN-α blocks new infection of cells T
and production of virions by cells I with efficiencies η
and ε, respectively (Fig. 3).

The model parameters were estimated using the
clinical data on a decrease in HCV RNA in the
patient’s blood by IFN-α therapy, as well as the rele-
vant literature data. The model accurately describes a
two-phase dynamics of a decrease in HCV RNA in the
plasma during IFN-α therapy. These dynamics com-
prise the initial phase with a rapid decrease in HCV
RNA during the first 1–2 days of the therapy and the
second slower phase of this decrease. The model
demonstrates that the efficiency of HCV RNA
decrease in the first phase is determined by the rate of
virus elimination from circulation, c, versus the sec-
ond phase, when the key parameter is the mortality
rate of infected cells, δ, which considerably varies for
individual subjects (being even zero in some cases).
The model has been considerably modified in order to
make it more realistic and able to explain other types
of HCV RNA dynamics during IFN-α therapy and
new therapies utilizing the drugs that act on the viral
targets in infected cells [27, 28]. The proliferation of
infected and uninfected hepatocytes are taken into
account in this model [27, 28] by adding a new param-
eter r, related to the maximum rate of hepatocyte pro-
liferation; this made it possible to explain a three-
phase kinetics of the decrease in viral RNA during
IFN-α therapy and its frequently observed increase
after the therapy is completed, including restoration to
an initial level. Note that adaptation of this model [27,
28] gave realistic values for the mortality rate constant
of infected cells, δ. Another modification adapted the
model to study the development of HCV drug resis-

tance to telaprevir, a specific inhibitor of HCV NS3
protease; drug-sensitive wild type (Vs) and drug-resis-
tant mutant (Vr) virus variants are additionally consid-
ered [29]. It is assumed that Vs and Vr infected cells T
to give two types of infected cells (Is and Ir). The
model was supplemented with new parameters related
to the rate of Vs and Vr virion production (ps and pr),
inhibition efficiency of Vs and Vr virions for telaprevir
(εs and εr), and the probability that cells Is produce
drug-resistant virus Vr (μ). The values of the parame-
ters were assessed utilizing published and clinical data.
The model succeeds in explaining a complex dynamics
of HCV RNA with the initial (rapid) and second
(slow) phases of decrease in HCV RNA and the third
phase of an increase in HCV RNA in the case of tela-
previr monotherapy. The model accurately describes
the dynamics of HCV RNA for the combined therapy
with telaprevir and IFN-α on the assumption that the
virus variant resistant to telaprevir, Vr, is sensitive to
IFN-α.

Other models [30, 36] constructed based on the
model described in [26] take the pharmacokinetics of
NS3 protease inhibitors (telaprevir and boceprevir)
into account by adding the parameter ε as a function
changing with time. This makes it possible to describe
the long-term dynamics of HCV RNA of the patients
treated with these inhibitors and explain the higher
efficiency of this therapy compared with the IFN-α
variant.

The model described in [26] was used to construct
a multi-variant viral dynamic model [31] to assess the
replicative ability in vivo of HCV drug-resistant
mutants (A156V/T, V36A/M, R155K, T54A, and
V36M/R155K) that are frequently present in the
patient’s plasma during telaprevir therapy and to com-
pute the HCV RNA dynamics for these variants, wild
type, and total HCV RNA dynamics. This model takes
the infection of cells T by virus Vi giving variant-i–
infected cells, Ii, into account based on the assump-
tions that each cell Ii is infected by one variant, cells T
represent a limited replication space for all variants,
and each cell Ii produces the populations of both virus
i variant and mutant virus j fraction. The model is con-
structed on the assumption that the parameters of
mutation rate (m), production of target cells (s), virus
death (c), infection rate (β) and target cell death (d)
are the same for different variants of virus Vi, while the
production parameters (pfi) and the efficiency of sup-
pression of virion production (εi) depend on the type
of mutant. It was also assumed that the mortality rate
of infected cells (δi) is constant for different virus vari-
ants in IFN-α therapy and depends on the type of
mutant in telaprevir therapy. This approach [32] addi-
tionally considers pharmacokinetics of telaprevir and
IFN-α/ribavirin, which has allowed for prediction of
RNA dynamics for the wild-type and mutant viruses
as well as total HCV RNA based on a large cohort of

Fig. 3. The scheme of the processes considered in the stan-
dard kinetic model [26]. Target cells (T) are produced with
a rate constant s, die with a rate constant d, and are trans-
formed into infected cells (I) by virus (V) with a rate con-
stant β. Infected hepatocytes die with a rate constant δ.
Virus V is produced by cells I with a rate constant p and are
eliminated from the system with a rate constant c. It is
assumed that IFN-α therapy blocks the new infection with
an efficiency ε (adapted from [26]).
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patients subject to a combined therapy with telaprevir
and IFN-α/ribavirin.

A deterministic model of intracellular replication
of the HCV subgenomic replicon was proposed by
Dahari et al. [33] for the first time. This model
describes the main intracellular processes that under-
lie the replication of subgenomic replicon, including
the viral RNA synthesis in membrane vesicles. The
model implies that the number of ribosomes involved
in translation of the viral genome is limited. This
makes it possible to control the unlimited growth of
viral RNA and proteins in the cells. In general, the

model accurately describes the production of viral
RNA and proteins, as well as their arrival to steady
state concentrations after the cells are transfected with
HCV RNA replicon but it fails to reproduce the exper-
imentally observed decrease in the viral components
in the presence of drugs. Concurrently, another model
of intracellular replication of the HCV subgenomic
replicon that explicitly contained the mechanisms that
underlie the effects of drugs on the viral and cellular
targets was proposed [35]. Unlike the model by Dahari
et al. [33], this model contains the cellular factor
involved in formation of replicative complexes, which
controls the unlimited increase in the amounts of viral

Fig. 4. The scheme of the intracellular processes of HCV RNA replication in the model described in [34]: (1) HCV plus-strand

RNA,   enters the cell cytoplasm by transfection and is structurally remodeled to give translation-competent RNA, 

(rate constant, K0); (2) ribosomes Ribo bind  into translation complex Tc (rate constant, k1); the complex translates RNA into
polyprotein P (rate constant, k2); (3) polyprotein P is processed to give mature viral proteins Ecyt (rate constant, kc); intracellular
membrane vesicles, viral replication compartments in the cell, are formed in the presence of viral proteins; (4) viral proteins Ecyt,
associating with one another to give replicase, one or several host factors HF, and actively translated RNA plus strand of the trans-
lation complex Tc are imported to membrane vesicles to form replication initiation complex, RIP, for RNA plus strand (rate con-
stant, kPin); (5) replication complex RIP produces complementary RNA minus strand within double-stranded RNA, Rds (rate
constant, k4m); (6) in turn, RNA minus strand within Rds after forming the corresponding initiation complex RIds (rate constant,
k5) with involvement of viral proteins E  serves as a template for synthesis of the RNA plus strand (rate constant, k4p); (7) RNA
plus strand Rp is exported from the membrane vesicles to cytoplasm (rate constant, RPout), where it can again be translated into
polyprotein P or remain in the vesicles to give new replication initiation complexes for RNA plus strand RIP (rate constant, k3);
adapted from [34].
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RNA and proteins. This allowed this model [35] to
accurately describe the effect of drugs on the dynamics
of intracellular steady state concentration of HCV
RNA for short-term (to 3 days) exposure to drugs. A
model proposed later [34] for the replication of subge-
nomic HCV RNA replicon was based on the model
described in [33]; this model also contains a cellular
factor analogous to that in [35]. The scheme of the
HCV RNA replication processes that were taken into
account in [34] is shown in Fig. 4.

The above-mentioned model [34] has made it pos-
sible to describe the specific features for how the viral
RNA reaches a steady state after transfection in the
cell lines that differ in the initial concentrations of cel-
lular factor HF. However, this model omitted the
mechanisms of drug action, similarly to [33].

Numerous recent papers have described adminis-
tration of anti-HCV drugs that directly attack the
HCV NS3 protease and NS5B polymerase, as well as
the HCV NS5A protein, involved in the virus replica-
tion [37, 38]. These drugs decrease the HCV RNA in
both the first and second phases of its dynamics con-
siderably faster compared with IFN-α administration
[39–43]. The need to study the effects of these drugs
with the use of mathematical models stimulated con-
struction of models containing descriptions of specific
intracellular interactions between the drugs and viral
targets. Correspondingly, the multi-scale models con-
sider the virus–host interactions in the presence of
drugs both at the levels of cells and intracellular level.
The first model that described the HCV dynamics was
the model by Guedj and Neumann [44]. This model
can be regarded as an extension of [26] obtained by

addition of two new variables that describe intracellu-
lar processes of viral RNA replication: R(t) is the num-
ber of genomic HCV RNA plus strands that are avail-
able for transcription and translation and U(t) is the
number of replication units (the number of minus
strands within the double-stranded HCV RNA) that
are available for synthesis of the genomic plus strands.
It was assumed that R is the template for formation of
replication units U, which, in turn, are the template for
synthesis of R. The limitation for production of units
U is specified by parameter Umax. The intracellular rep-
lication dynamics and dynamics of cell infection are
linked by replacing the rate of virus production by
infected cells, p = const [26], with the function p(t) =
ρR(t). The intracellular antiviral effect of the drug is
simulated by introducing the parameter ε that reflects
the blocking efficiency for the synthesis of HCV RNA
plus strands (Fig. 5). The HCV resistance to the drug
is taken into account by introducing several variables
to the model, such as Rwt and R res (RNA plus strands
of the wild-type and drug resistant variants); Uwt and
Ures (replicating units of the wild-type and drug-resis-
tant variants within each infected cell); and Vwt and
V res (wild-type and drug-resistant virus types, respec-
tively).

To describe the processes of viral RNA replication,
eight parameters were added to the model by Guedj
and Neumann [44], including the rate constants for
formation and degradation of replication units (β and
γ), RNA export from infected cells (ρ), and synthesis
of wild-type and mutant HCV RNA (αwt and αres).
The model showed a fast continuous decrease in HCV
RNA in the absence of virus drug resistance, i.e., the
dominance of its wild type during the therapy and a
high antiviral effect of the drug; the slope of the sec-
ond phase is proportional to the intracellular parame-
ter γ (mortality rate of replicating units). The patterns
of HCV RNA dynamics under selection of drug-resis-
tant HCV variants during the therapy depend on the
degree of drug resistance and replicative ability of
these variants. A high degree of drug resistance and a
high replicative ability of HCV variants lead to the
dynamics with the initial rapid decrease in its RNA
followed by its growth to a new steady state, lower
compared with the level before the therapy. The aver-
age degree of drug resistance and average replicative
ability of HCV variants result in the dynamics with the
initial rapid decrease in RNA followed by its tempo-
rary growth and eventual continuous decrease; the
efficiency of this decrease is determined by the
δ parameter (the rate of infected cell death).

Another multi-scale model constructed for com-
putation of drug effects that directly influence the viral
targets involved in the viral RNA intracellular replica-
tion was proposed by Guedj et al. [45]. This model
extends the standard model [26] by adding the variable

Fig. 5. The scheme of the model by Guedj and Neumann
[44], which takes HCV intracellular replication and cell
infection into account. The virus RNA, R, is translated
and transcribed in infected cell I to give replicating units U
(rate constant, β). In turn, replicating units U synthesize
HCV RNA R (rate constant, α) and die (rate constant, γ);
ε is the blocking efficiency of R synthesis by the inhibitors
of HCV RNA polymerase NS5B. RNA R is also involved
in formation of virus V and its secretion from cell c (rate
ρR(t) per cell). Virus V is able to infect cells T (rate con-
stant, b); adapted from [44].
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R(t), intracellular HCV genomic RNA. The authors
assume that R is produced in the cell at a constant rate
α, is degraded with the rate constant μ, and is involved
in virion assembly/secretion with the rate constant ρ.
The authors assume that α depends on the age of the
infection, i.e., on the time period from the moment
the first virion carrying the RNA genome enters the
cell. The scenario is considered where the therapy with
drugs that attack the viral targets involved in HCV
RNA replication commences when the HCV RNA
attains the intracellular steady-state concentration and
blocks viral RNA production, assembly/secretion of
the virus, and increases HCV RNA degradation with
efficiencies εα, εs, and κ, respectively. Unlike the stan-
dard model [26], which does not describe intracellular
processes associated with HCV RNA, this model
makes it possible to distinguish different potential
intracellular effects of therapy. This model was con-
structed to comprehensively examine the kinetics of
decrease in HCV RNA at the initial period of drug
administration (to 2 days) and, therefore, does not
consider the emergence of drug-resistant HCV vari-
ants and their production in infected cells (Fig. 6).
Compared with the standard model [26] (Fig. 3), the
integrated model [45] additionally includes α, μ, ρ, εα,
εs, and κ parameters. The estimate for the parameter δ
fits the corresponding value averaged over different
patients examined in [26]. The remaining parameters
were estimated using the kinetics of changes in HCV
RNA during the therapy with daklatasvir, an inhibitor
of the HCV NS5A protein.

The model was constructed to explain rapid kinet-
ics of a decrease in HCV RNA in the patients treated
with a single daklatasvir (BMS-790052) dose (the level
of HCV RNA in the serum decreased by approxi-
mately two orders of magnitude over the first 6 h after
drug administration). The kinetics of decrease in HCV
RNA during the therapy with a single daklatasvir
(BMS-790052) dose have three phases; the first
phase, 6–7 h after drug administration; the second,
from 6–7 h to 2 days; and the third, over 2 days after
drug administration. The model has shown that these
phases are determined by parameters c, kμ + δ, and δ,
respectively. It has emerged that BMS-790052 has two
main modes of action on the virus: (1) efficient block-
ing of intracellular synthesis of viral RNA and assem-
bly/secretion of virions and (2) increase in the rate of
intracellular degradation of HCV RNA. The model
demonstrated that the first phase in the kinetics of
viral RNA decrease can be experimentally observed
only in the case of very efficient blocking of virion
assembly/secretion (εs ~ 1), which is the case of dak-
latasvir. Correspondingly, this phase in the kinetic
pattern of the change in RNA is unobservable for
IFN-α therapy; instead, the second phase is observed
first. The model estimate for the average half-life of
HCV particles in the serum is ~45 min. This corre-
sponds to c = 22.3 days–1, which is approximately four
times higher compared with the average estimate for
parameter c in the standard model [26]. The integrated
model also accurately describes the kinetics of a
decrease in HCV RNA for the therapy with telaprevir,

Fig. 6. The scheme of the multi-scale model by Guedj et al. [45]: T, target cells, which are produced and killed (rate constants, s
and d, respectively); I, infected cells, dying with the rate constant δ; V, virus infecting cells T (rate constant, β) and killed (rate
constant, c); a, age of infection (the time span from the moment the first virion carrying RNA genome enters cell T); R(a), intra-
cellular viral RNA, which is produced in the cell at the rate α, degraded (rate constant, μ), and is involved in virus assembly/secre-
tion (rate constant, ρ). The efficiency of drug in blocking RNA production, virus assembly/secretion, and increase in RNA deg-
radation in the cell are εα, εs, and k, respectively (adapted from 45].
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an NS3 protease inhibitor, and demonstrates that dak-
latasvir efficiency in blocking the assembly/secretion
of viral particles is 30 times higher compared with tel-
aprevir. Rong et al. [46] performed a comprehensive
mathematical analysis of the integrated model [45], as
well as examining the kinetics of a decrease in HCV
RNA in the therapy with danoprevir, an NS3 protease
inhibitor. This analysis shows that the main modes in
the danoprevir effect are blocking of the intracellular
HCV RNA production, an increase in intracellular
RNA degradation, and a moderate inhibition of the
assembly/secretion of HCV particles.

Unlike the above-described multi-scale models
[44–46], which consider only the main intracellular
processes of HCV RNA replication and assem-
bly/secretion of viral particles, the multi-scale model
by Clausznitzer et al. [47] represents the intracellular
processes of HCV RNA replication in detail. This
model [47] is based on integration of the models of cell
infection by HCV [26] and replication of HCV RNA
subgenomic replicon in cells [34]. This integration
into a multi-scale model made it necessary to add a
new variable to the model describing the number of
structural proteins in the cell ( ) and a description
of the formation/export of the viral particles via the
interaction of  and RNA plus strand (Rp). The
addition of these processes to the integrated model

cyt
SE

cyt
SE

required new rate constants, namely, for the forma-
tion/export of viral particles (p), blocking of RNA plus
and minus strands (es), and virus assembly/secretion
(ep) during daklatasvir (an inhibitor of HCV NS5A)
therapy. The scheme of the processes described by the
model is shown in Fig. 7.

The integrated model [47] contains 13 ordinary dif-
ferential equations. All parameters for the description
of intracellular processes except for the interactions
with host factor, HF, were taken from the model
by Binder et al. [34]. HF concentrations and parame-
ters es, ep, and p were estimated for each patient based
on the kinetic data for the changes in viral RNA during
daklatasvir therapy. The model accurately describes
the dynamics of a decrease in viral RNA during 2 days
after administration of a single dose of daklatasvir, an
inhibitor of HCV NS5A protein. According to the lit-
erature data, the viral protein NS5A is involved in both
the synthesis of viral RNA [48] and assembly of the
viral particle [49, 50]. This integrated model [47]
makes it possible to examine the effects of the drugs
that directly influence the specific intracellular
molecular processes that underlie HCV replication
that are observed during 2–3 days. The model is useful
for optimizing therapeutic schemes and predicting the
effects of combined therapy, for example, daklatasvir
with inhibitors of HCV NS5B polymerase or IFN-α.

Fig. 7. The scheme of the processes considered in the integrated model by Clausznitzer et al. [47]. Target cells T are produced

(rate, s), killed (rate, d), and transformed into cells I infected by virus V. Virus V enters the cell as an RNA plus strand,   In

the cytoplasm,  binds to cell ribosomes Ribo to form translation complex Tc, which translates  into polyprotein P. This

polyprotein is processed (cleaved) to give viral polymerase,   and structural proteins,  The RNA from the translation

complex Tc together with  polymerase and host factor HF form the corresponding replication initiation complex RIP in the
membrane replicative compartment of the cell (membrane vesicles), which, in turn, produces double-stranded RNA intermedi-

ate, Rds. After the interaction of  polymerase with Rds intermediate, the corresponding replication initiation complex RIds is
formed. This complex produces a new RNA plus strand, Rp. The synthesized Rp can again enter the replication cycle and associate

with viral structural proteins  with assembly/export of viral particles V (adapted from [47]).
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The above-described methods for integrating mod-
els require the knowledge about all players that deter-
mine the interactions between subsystems as well as
numerical values for these interactions, which consid-
erably complicates application of these approaches. A
new approach to integration of the models that
describe dynamics of two and more molecular genetic
networks when the available data on their interactions
are insufficient has been recently proposed [10]. The
authors introduced the concept of mosaic gene net-
works for describing the complex systems of this type.
The main idea of this approach is the use of a control
functional, by means of which one subsystem of a
mosaic gene network can control the function of
another subnetwork. The authors considered the inte-
gration of two subsystems for a unilateral control when
only one subsystem influences the dynamics of the
other [10]. A linear function that depends on the con-
centrations of the variables of the control subsystem
was used as the control functional. This function was
in the right-hand part of the system of differential
equations that described the controlled subsystem.
The fact that the use of a linear control functional
made it possible to achieve a good fit between the
dynamics of the complete network and its mosaic ana-
logs was rather unexpected. Mosaic networks were
generated with the use of computer experiments by
removal of certain fragments from the complete net-
work to separate it into two unconnected subsystems.

This approach was applied to integrate the models
for replication of the HCV subgenomic replicon [34]
and the TNF-α–induced signaling pathways of apop-
tosis and activation of NF-κB transcription factor [51]
in cells, which gave the description of how HCV is
controlled by these signaling pathways. The parame-
ters of the control functional were determined based
on the experimental data from gene expression screen-
ing of one of the subnetworks in response to perturba-
tions of the elements in the other subnetwork. The
authors considered expression inhibition or activation
of specific genes, including both host and pathogen
genes as the perturbation of subnetwork elements. The
integrated model [10] showed that HCV is most effi-
ciently controlled via the RIP, TRADD, TRAF2,
FADD, IKK, IkBa, c-FLIР, and BAR genes. The com-
puted dynamics of the RIP, TRADD, TRAF2, FADD,
IKK, IkBa, c-FLIР, and BAR genes in cells over 72 h
after the cell culture was infected with HCV demon-
strated a good fit to the experimentally observed
expression dynamics of these genes [52]. In particular,
analysis of the model shows that even a small increase
in c-FLIP expression can significantly block induction
of apoptosis. The predictions of the roles of the
TRADD, TRAF2, FADD, IKK, IkBa, and c-FLIР
genes in the regulation of apoptosis and NF-κB acti-
vation signaling pathways by HCV agreed well with the
previously published data [53, 54].

INTEGRATED MODELS THAT DESCRIBE 
PHYSIOLOGICAL PROCESSES 

IN THE HUMAN BRAIN
State-of-the-art technologies for functional visual-

ization, namely, functional magnetic resonance imag-
ing (fMRI), magnetic resonance spectroscopy
(MRS), positron emission tomography, and electro-
magnetic encephalography play an important role
when studying the activation of human brain neurons
in response to sensory, locomotive, or cognitive
events. fMRI is used to record high-frequency signals
that reflect one of the parameters that characterize
regional neuronal brain activity, for example, a change
in the regional cerebral blood flow or a change in the
oxygen content in the blood. In particular, positron
emission tomography records the γ-radiation that
reflects the intensity of glucose uptake by neurons.
Electromagnetic encephalography makes it possible to
record very weak electric and magnetic fields and their
gradients generated by the concerted activity of a neu-
ron population. MRS is useful for recording the con-
centrations of various metabolites of neurons, such as
N-acetylaspartate, choline, creatine, phosphocre-
atine, lactate, and ATP. However, a physiological
interpretation of the results obtained by these methods
is still a challenge.

An integrated mathematical model was con-
structed for interpretation of fMRI and MRS data
[55]; this model describes the dynamics of synchro-
nous processes in neurons in response to a stimulatory
event, including hemodynamic, metabolic, and elec-
trophysiological events. The authors integrated the
model of glycolysis in erythrocytes [56, 57] and the
model of oxygen transport across the blood–brain
barrier [58] by introducing links between the electric
activity of the postsynaptic membrane in neurons,
neuronal energy metabolism, and hemodynamics.
The scheme of the processes taken that were into
account in the model is shown in Fig. 8. The model is
based on the assumption that stimulation of the brain
increases the membrane transport of Na+ ions into
neurons. The increase in intracellular Na+ concentra-
tion activates the Na pump or Na/K-ATPase, which
by reducing the initial membrane potential extrudes
three Na+ ions from the cell and accumulates two K+

ions using the energy of one ATP molecule. In turn,
the change in the intracellular ATP/ADP ratio stimu-
lates ATP regeneration via three main processes: the
buffer effect of phosphocreatine (reaction of phospho-
creatine and ADP giving ATP and creatine), glycolysis
(enzymatic reactions converting intracellular glucose
into pyruvate and lactate yielding ATP), and mito-
chondrial oxidation of pyruvate by intracellular oxy-
gen yielding ATP. The cells are supplied with energy
substrates (glucose and oxygen) and freed from lactate
via exchange with the cerebral blood flow across the
blood–brain barrier. The cerebral blood flow
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increases with brain activation and influences the rate
of glucose, oxygen, or lactate exchange across the
blood–brain barrier.

The dynamics of many variables in the model by
Aubert et al. [55] (glucose, lactate, ATP, phosphocre-
atine, and the level of cerebral blood deoxygenation)
can be experimentally measured using MRS and
fMRI. This model is useful for qualitative and quanti-
tative testing of the hypothesis on physiological and
biochemical processes involved in the activation of
neurons, for example, on the character of mitochon-
drial activity during stimulation, change in the cere-
bral capillary f low during stimulation, concentration
of intracellular oxygen, and the characteristics of the
flexibility of veins. This allows a broad interpretation
of the experimental data obtained by functional CT
imaging.

Local changes in the content of deoxyhemoglobin
per unit brain volume indicate its activation. The
deoxyhemoglobin concentration is the main compo-
nent of the blood oxygen level–dependent (BOLD)
signal, which is measurable using fMRI. To theoreti-
cally calculate the dynamics of the BOLD signal [59],
the model described in [55] was extended by incorpo-

rating the model by Buxton et al. [60]; according to
this model the cerebral capillary volume during brain
activation remains constant, while the venous volume
Vv can change (dilatation). However, the change in Vv
is delayed compared with the increase in the cerebral
capillary blood flow Fin(t) caused by stimulation. The
dynamic of Vv is determined by the difference in the
flows Fin(t) and Fout, where Fout is the blood flow from
venous dilatation, depending on Vv. The deoxyhemo-
globin concentration in the brain tissue depends on
Fin(t), the level of cerebral oxygen metabolism, and Vv.
The main physiological hypotheses of this integrated
model [59] are shown in Fig. 9.

The authors demonstrated that the computed
dynamics of the variables in this integrated model
[59], including lactate, glucose, phosphocreatine,
ATP, Na+, BOLD signal, etc., fit the published MRS
and fMRI data well for volunteers under a stable stim-
ulation [61, 62]. The model has been also used to test
the hypotheses on the mechanisms that underlie a
decrease in the BOLD signal near brain tumors.
According to experimental data, the cerebral blood
flow is decreased in brain tumors and adjacent regions

Fig. 8. The scheme of the processes involved in activation of neurons: GLСT, intracellular glucose concentration; GLCm, con-
centration of the glucose passing across the blood–brain barrier; GLCA, arterial glucose concentration; GLСV, venous glucose
concentration; GLСС, capillary glucose concentration; GAP, glyceraldehyde-3-phosphate concentration; HK, hexokinase;
PEK, phosphofructokinase; PGK, phosphoglycerate kinase; AK, adenylate kinase; PEP, phosphoenolpyruvate; PK, pyruvate
kinase; PYR, pyruvate concentration; LGH, lactate dehydrogenase; NADH, nicotinamide adenine dinucleotide (reduced form);
NAD+, nicotinamide adenine dinucleotide (oxidized form); LACT, intracellular lactate concentration; LACm, concentration of
the lactate passing across the blood–brain barrier; LACA, arterial lactate concentration; LACV, venous lactate concentration;
LACC, capillary lactate concentration; РUMР, Na/K ATPase; Cr, creatine concentration; PCr, creatine phosphate concentra-
tion; CK, creatine kinase; O2T, intracellular oxygen concentration; O2m, oxygen concentration in the blood–brain barrier; O2A,
oxygen concentration in arteries; O2V, oxygen concentration in veins; and O2C, oxygen concentration in capillaries (adapted from
[55]).

Stimulus

Activity

EEG–MEG

Membrane

BOLD
signal O2V O2C O2A

O2T
vAero

vPYRd

vShuttle
vTransvTrans

vPump

Cr + ATP ADP + PCr
ATP ADP

vCK

vO2m

2K+

2K+

e

vPump vStim

vHK-PFK

vPK

vPGK vAK

vATPases

vLeak-Na+

vPump

2Na+e

P
um

p

i 2Na+
i Na+

i

GLCV

GLCT

GLCA

vGLCC

vGLCm

GLCC

2ATP
2ADPGAP

PEP

PYR
NADH

LACv LACC

vLACm

vLDG LACT

vLACC
LACA

NADH
ADP

ADP ADP

AMP

ATP

ATP

NAD+

NAD+



790

BIOPHYSICS  Vol. 62  No. 5  2017

MISHCHENKO et al.

[63]. The model shows that a decrease in the initial
cerebral blood flow in quiescence, Fin(0), leads to a
decrease in the initial peak and steady-state level of the
BOLD signal during stimulation, as well as an increase
in the lactate peak under these conditions [64].

These models [55, 59] consider the interrelation
between neurons and cerebral blood flow. It has been
hypothesized [65] that part of the lactate secreted by
astrocytes (glial cells of the brain) during brain stimu-
lation can be taken up by neurons and act as an energy
substrate for them, since the reaction of pyruvate con-
version into lactate, as catalyzed by lactate dehydroge-
nase, is reversible (astrocyte–neuron lactate shuttle,
ANLS). To test this hypothesis using the latter model
[59], the authors constructed a model of the compart-
mentalized brain energy metabolism; this model con-
sists of three compartments along with the blood ves-
sels: astrocytes, neurons, and the intercellular space
[65]. This model is based on the assumption that the
brain stimulation in both cell types, that is, astrocytes
and neurons, increases the Na+ ion f lux into the cells,
while the subsequent activation of the Na pump acti-
vates ATP regeneration via the phosphocreatine buf-
fer, glycolysis, and mitochondrial oxidation. The cells
exchange oxygen, glucose, and lactate with the cere-
bral blood flow across the blood–brain barrier. More-
over, the model described the glucose and lactate
exchange between the intracellular space, neurons,
and astrocytes. The scheme of the processes described
in the model is shown in Fig. 10.

In particular, the model described in [65] showed
that ANLS occurs along with growth in neuronal gly-
colysis and depends on the relative stimulation inten-
sity of neurons and astrocytes. In particular, ANLS at
a low relative stimulation intensity of neurons contin-
ues over the entire period of stimulation and after its
cessation; however, in the case of a high relative stim-
ulation of neurons, ANLS occurs only at the begin-
ning of stimulation and after it is stopped. The com-
puted concentration dynamics of the extracellular lac-
tate for both a single stimulation and periodically
repeated stimulations fit the experimental dynamics of
extracellular lactate in the rat brain hippocampus
under analogous conditions well. This favors the idea
that the lactate produced by brain astrocytes can be
taken up by neurons and metabolized there to serve as
an energy source [66].

The model described in [65] was used to construct
a model of energy metabolism and hemodynamics in
grade II (low malignancy) gliomas (primary brain
tumors) [67–69]. It is known that low-grade gliomas
undergo anaplastic transformation with an unfavor-
able prognosis; however, the period to such transfor-
mation varies for different subjects. Thus, insight into
the evolution of gliomas is most important for timely
therapy. An fMRI monitoring of the tumor volume
allows observation of tumor development; however,

the knowledge of metabolic and hemodynamic
changes that underlie the pathophysiological mecha-
nisms of gliomas transformation can provide earlier
and more valuable data. The model described in [67–
69] simulates the hemodynamics and lactate metabo-
lism (lactate is an early marker of changes in the
metabolism of tumor cells) in low-grade gliomas. The
major variables of this model are the intracellular and
intracapillary lactate concentrations, cerebral blood
flow, lactate concentration in arteries, intracellular
and intracapillary H+ concentrations, intracellular
and intracapillary volumes, and the maximum rate of
lactate–H+ transport across the blood–brain barrier
(Fig. 11).

The values of the model parameters were deter-
mined by MRS and MRI of the blood flow and
extracted from the relevant literature. This model is
useful for examining the metabolism and hemody-
namics in gliomas, as well as the search for new thera-
peutic strategies. As an example, analysis of the sensi-
tivity of the model has predicted that changes in the
model parameters, including a decrease in the
regional cerebral blood flow and in the rate of the lac-
tate transport across the blood–brain barrier, as well as
an increase in the lactate concentration in arteries and

Fig. 9. The main physiological hypotheses of the model by
Aubert and Costalat [59]: Fin(t), regional cerebral blood
flow through capillaries; Fout, the blood flow from venous
dilatation; Vv, volume of venous dilatation; GLCc, glucose
concentration in capillaries; GLCi, glucose concentration
in cells; LACc, lactate concentration in capillaries; LACi,
lactate concentration in cells; O2c, oxygen concentration
in capillaries; O2i, oxygen concentration in cells; PYR,
pyruvate concentration in cells; Cr, creatine concentration
in cells; PCr, phosphocreatine concentration in cells; and
PUMP, Na/K-ATPase (adapted from [59]).
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a decrease in the intracellular pH, force glioma cells
from their viability domain, i.e., can kill them.

The model of basal physiological interaction of
quiescent neurons and astrocytes was constructed by
Cakir et al. [70]. This model describes the central
metabolism (glycolysis, pentose phosphate pathway,
and tricarboxylic acid cycle), oxidative phosphoryla-
tion, lipid metabolism, neutralization of reactive oxy-
gen species, amino-acid metabolism, metabolism of
neurotransmitters (dopamine, acetylcholine, norepi-
nephrine, epinephrine, and serotonin), and metabo-
lism between astrocytes and neurons (glutamate/glu-
tamine cycle, serine/glycine cycle, etc.) in both cell
types. The model contains 184 reactions in neurons
and astrocytes, 33 intercellular metabolic processes,
and 216 metabolites. The lactate transport from astro-
cyte to neuron (ANLS) was not taken into account

based on the assumption that all reactions occur in
quiescence. The scheme of the process considered in
this model is shown in Fig. 12.

The use of this model for computing the distribu-
tion of metabolite f lows between quiescent neurons
and astrocytes agreed well with the published experi-
mental data [71, 72]. The model was also applied to
examine the dynamics of metabolite f lows in hypoxia,
i.e., under conditions of a gradual decrease in oxygen
supply to cells. It is known that many brain diseases are
associated with neurovascular disorders caused by an
oxygen deficiency. A decrease in the cerebral blood
supply leads to hypoxic regions in the brain, which
substantially interfere with the brain’s electric activity
(for example, in epilepsy) or lead to progressive dis-
ease, such as dementia, Alzheimer’s disease, and emo-
tional disorders. In particular, the model demon-

Fig. 10. The scheme of the processes described in the model of compartmentalized energy metabolism between astrocytes and
neurons [65]. Each cell compartment contains all of the corresponding elements of the homogeneous model [59]. The intercel-
lular space is the space for exchange between neurons and astrocytes. The regional cerebral blood flow through capillaries is des-
ignated CBF(t); dHb, deoxyhemoglobin; Vv, volume of venous dilatation; GLCc, glucose concentration in capillaries; GLCg,
glucose concentration in astrocytes; GLCn, glucose concentration in neurons; GLCe, extracellular glucose concentration; PYRg,
pyruvate concentration in astrocytes; PYRn, pyruvate concentration in neurons; LACc, lactate concentration in capillaries;
LACe, extracellular lactate concentration; LACg, lactate concentration in astrocytes; LACn, lactate concentration in neurons;
O2c, oxygen concentration in capillaries; O2T, oxygen concentration in astrocytes and neurons; Crg, creatine concentration in
astrocytes; Crn, creatine concentration in neurons; PCrg, creatine phosphate concentration in astrocytes; PCrn, creatine phos-
phate concentration in neurons; Na PUMPg, glial Na/K-ATPase; Na PUMPn, neuronal Na/K-ATPase; ATPg, ATP concentra-
tion in astrocytes; ADPg, ADP concentration in astrocytes; ATPn, ATP concentration in neurons; ADPn, ADP concentration in
neurons; NADHg, nicotinamide adenine dinucleotide (reduced form) concentration in astrocytes; NADHn, nicotinamide ade-

nine dinucleotide (reduced form) concentration in neurons;   nicotinamide adenine dinucleotide (oxidized form) con-

centration in astrocytes;   nicotinamide adenine dinucleotide (oxidized form) concentration in neurons;   extracel-

lular Na+ concentration;   Na+ concentration in astrocytes; and   Na+ concentration in neurons (adapted from [65]).
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strated that a decrease in the oxygen flow to neurons
(hypoxic conditions) leads to a drastic growth in the
glucose influx there; this also fits the corresponding
experimental data [73, 74]. An increase in the rate of
glucose uptake by neurons in hypoxia is also a mecha-
nism for combating the progression of Alzheimer dis-
ease [75].

CONCLUSIONS
Integration of mathematical models that describe

specific biological and pathophysiological processes is
a powerful tool for gaining insight into the complex
molecular mechanisms that underlie the development
of complex phenotypic traits and various diseases. It is
expectable that elaboration of approaches to modeling
the intricate biological systems will utilize the integra-
tion of simpler models that describe their components.
Construction of integrated models for various specific
features in the functioning of complex systems, such as
calcium homeostasis in the body, virus–host interac-
tions, and the human brain is the first step in this area.
Such models have made it possible to study new
mechanisms and conditions causing progression of
various severe diseases, including musculoskeletal dis-
orders and HCV infection at the levels of both intra-

cellular processes and interaction of the virus with
hepatocytes as well as various disorders in the brain
function. The use of integrated models has enhanced
the identification of the key targets and conditions for
the directed effects of a new generation drugs, as well
as interpretation of the results of state-of-the-art
tomography technologies for examination of the brain
in various pathologies. However, when integrating
mathematical models, researchers inevitably encoun-
ter the problem of the description of the molecular
mechanisms that underlie the interactions of biologi-
cal processes, which makes the models considerably
more complex and requires determination of manifold
new parameters. The currently available data on the
interactions between biological macromolecules are,
as a rule, of an indirect character. Numerous as-yet-
unknown mediators can be potentially involved in
such interactions. Even when all players in the interac-
tions are known, it is still difficult to experimentally
determine the reaction rate constants and permissible
ranges of their values. All these problems together
make a challenge for mathematical biologists involved
in construction of integrated models. One of the
promising directions to solve the problem of a
decrease in the number of estimated parameters that
emerge when integrating models is the variant of

Fig. 11. The scheme of the processes considered in the model of hemodynamics and lactate metabolism in low-grade gliomas

[67–69]:   is the concentration of protons in cells; LACi, intracellular lactate concentration; LACc, intracapillary lactate con-
centration; LACa, lactate concentration in arteries; and LACv, lactate concentration in veins (adapted from [67]).
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mosaic gene-network models that utilize a control
functional. This approach to integration based on the
control function, first, does not require the addition of
numerous new parameters; second, the corresponding
parameters are assessable using abundant transcrip-
tome experimental data on the changes in gene expres-
sion in a gene network in the case of gene knock-
out/knockdown in another gene network involved in a
complex biological process.

ACKNOWLEDGMENTS

This work was supported by the Russian Science
Foundation (project no. 14-44-00011 Programmed
cell death induced via death receptors: identification

of molecular mechanisms initiating apoptosis with the
use of molecular modeling).

REFERENCES
1. C. K. Osborne, J. Shou, S. Massarweh, et al., Clin.

Cancer Res. 11, 865s (2005).
2. D. Javelaud and A. Mauviel, Oncogene 24, 5742

(2005).
3. J. Hiscott, H. Kwon, and P. Génin, J. Clin. Invest. 107,

143 (2001).
4. M. T. Mc Auley, D. J. Wilkinson, J. J. Jones, et al.,

BMC Syst. Biol. 6, 130 (2012).
5. M. Fribourg, B. Hartmann, M. Schmolke, et al., J.

Theor. Biol. 351, 47 (2014).

Fig. 12. The scheme of the main metabolic and exchange processes in the interaction of quiescent neurons and astrocytes con-
sidered in the model by Cakir et al. [70]: arrows denote the reactions of uptake and removal of metabolites; dashed arrows denote
exchange transport of metabolites between cells of two types. For simplicity, only the main f lows are shown (adapted from [70]).

B
lo

od

B
lo

od

Neuron AstrocyteSynaptic cleft

Oxygen
Oxygen

Glucose Glucose

Pyruvate

AKG

AKG

GLT

GLT

Pyruvate

Lysine
AKG

GLT

r51–r57

r65–r66

r63–r64

r59–r62

r71–r72

r38–r47 r1–r10

r31–r32

r27–r28

r29–r30
r23–r26

r14–r21
r138–r142r120–r124

r142–r145

r84–r85

r115–r116

r126–r127 r180–r181

r175–r177

r171–r172

r167–r168

r132, r133

r104, r111

r134

r117
r99, r107

r114

r128

r125

r179 r130 r170r131

r119

r113

r106

r100–r103, r108–r110,

r104–r111, r117

PPP PPP
r50

r94

r96

r90

r87

r75

r78
r79 r77 r84

r81

r95 r98
r68

r67
r58

r75

r48

r89

r86

r80

r11

r91
r88

r76

r12

r22

r93

r92

r14

r33

r13r49
Acetyl CoA Acetyl CoA

Lipid

Lipid

Oxaloacetate Oxaloacetate

Citrate CitrateMalate
Malate

α-Ketoglutarate α-Ketoglutarate
Succinate

Succinate

Ox-PHOS r35–r36
Ox-PHOS

Tryptophan

Serotonin

Melatonin

Phenylalanine

Tyrosine Dopamine

Norepiniphrine

Serine Serine

Glycine Glycine

Lactate Lactate
AKG

GLT
Alanine Alanine

Aspartate Aspartate

Glutamate Glutamate

Glutamine Glutamine

Leucine Leucine AKG

GLT

KIC
KMV

KIVKIC
KMV

KIV

Valine Valine

Isoleucine

GABA GABA

Isoleucine

Glutathione
(reduced)

Glutathione
(reduced)

Glutathione

Cystine
O2

O2

(oxidized)
Glutathione (oxidized)

Dopamine

Norepiniphrine



794

BIOPHYSICS  Vol. 62  No. 5  2017

MISHCHENKO et al.

6. N. V. Ivanisenko, E. L. Mishchenko, I. R. Akberdin,
et al., PLOS ONE 9, e91502 (2014).

7. M. Baker, S. Denman-Johnson, B. S. Brook, et al.,
Math. Med. Biol. 30, 311 (2013).

8. M. Krupp, J. U. Marquardt, U. Sahin, et al., Bioinfor-
matics 28, 1184 (2012).

9. R. Leinonen, H. Sugawara, and M. Shumway, Nucleic
Acids Res. 39, D19 (2011).

10. O. V. Popik, E. D. Petrovskiy, E. L. Mishchenko, et al.,
Virus Res. 218, 71 (2016).

11. G. Jones, S. A. Strugnell, and H. F. DeLuca, Physiol.
Rev. 78, 1193 (1998).

12. J. F. Raposo, L. G. Sobrinho, and H. G. Ferreira, J.
Clin. Endocrinol. Metab. 87, 4330 (2002).

13. V. Lemaire, F. L. Tobin, L. D. Greller, et al., J. Theor.
Biol. 229, 293 (2004).

14. S. Pozzi, M. Fulciniti, H. Yan, et al., Bone 53(2), 487
(2013).

15. A. A. Ali., R. S. Weinstein, S. A. Stewart, et al., Endo-
crinology 146(3), 1226 (2005).

16. M. C. Peterson and M. M. Riggs, Bone 46, 49 (2010).
17. T. Bellido, A. A. Ali, L. I. Plotkin, et al., J. Biol. Chem.

278, 50259 (2003).
18. M. R. McClung, E. M. Lewiecki, S. B. Cohen, et al.,

N. Engl. J. Med. 354, 821 (2006).
19. P. Chen, J. H. Satterwhite, A. A. Licata, et al., J. Bone

Miner. Res. 20, 962 (2005).
20. D. M. Slovik, R. M. Neer, and J. T. Potts, J. Clin.

Invest. 68, 1261 (1981).
21. S. J. Silverberg, E. Shane, T. P. Jacobs, et al., N. Engl.

J. Med. 341, 1249 (1999).
22. M. Rix, H. Andreassen, P. Eskildsen, et al., Kidney Int.

56, 1084 (1999).
23. K. Kruse, U. Kracht, K. Wohlfart, et al., Eur. J. Pediatr.

148, 535 (1989).
24. J. P. Messina, I. Humphreys, A. Flaxman, et al., Hepa-

tology 61, 77 (2015).
25. J. F. Perz, G. L. Armstrong, L. A. Farrington, et al., J.

Hepatol. 45, 529 (2006).
26. A. U. Neumann, N. P. Lam, H. Dahari, et al., Science

282, 103 (1998).
27. H. Dahari, A. Lo, R. M. Ribeiro, et al., J. Theor. Biol.

247, 371 (2007).
28. H. Dahari, R. M. Ribeiro, and A. S. Perelson, Hepatol-

ogy 46, 16 (2007).
29. L. Rong, H. Dahari, R. M. Ribeiro, et al., Sci. Transl.

Med. 2, 30ra32 (2010).
30. J. Guedj and A. S. Perelson, Hepatology 53, 1801

(2011).
31. B. S. Adiwijaya, E. Herrmann, B. Hare, et al., PLoS

Comput. Biol. 6, e1000745 (2010).
32. B. S. Adiwijaya, T. L. Kieffer, J. Henshaw, et al., PLoS

Comput. Biol. 8, e1002339 (2012).
33. H. Dahari, R. M. Ribeiro, C. M. Rice, et al., J. Virol.

81, 750 (2007).
34. M. Binder, N. Sulaimanov, D. Clausznitzer, et al.,

PLoS Pathog. 9, e1003561 (2013).
35. E. L. Mishchenko, K. D. Bezmaternykh, V. A. Likho-

shvai, et al., J. Bioinform. Comput. Biol. 5, 593 (2007).

36. C. Laouénan, P. Marcellin, M. Lapalus, et al., Antimi-
crob. Agents Ch. 58, 5332 (2014).

37. B. Roche, A. Coilly, A. M. Roque-Afonso, et al.,
Viruses 7, 5155 (2015).

38. V. Belousova, A. A. Abd-Rabou, and S. A. Mousa,
Pharmacol. Ther. 145, 92 (2015).

39. B. S. Adiwijaya, B. Hare, P. R. Caron, et al., Antivir.
Ther. 14, 591 (2009).

40. H. W. Reesink, G. C. Fanning, and K. A. Farha, Gas-
troenterology 138, 913 (2010).

41. M. Gao, R. E. Nettles, M. Belema, et al., Nature 465,
96 (2010).

42. N. Forestier, D. Larrey, D. Guyader, et al., J. Hepatol.
54, 1130 (2011).

43. J. de Bruijne, A. van Vliet, C. J. Weegink, et al., Antivir.
Ther. 17, 633 (2012).

44. J. Guedj and A. U. Neumann, J. Theor. Biol. 267, 330
(2010).

45. J. Guedj, H. Dahari, L. Rong, et al., Proc. Natl. Acad.
Sci. U. S. A. 110, 3991 (2013).

46. L. Rong, J. Guedj, H. Dahari, et al., PLoS Comput. 9,
e1002959 (2013).

47. D. Clausznitzer, J. Harnisch, and L. Kaderali, Virus
Res. 218, 96 (2016).

48. N. David, Y. Yaffe, L. Hagoel, et al., Virology 475, 139
(2015).

49. N. Appel, M. Zayas, S. Miller, et al., PLoS Pathog. 4,
e1000035 (2008).

50. S. Yamauchi, K. Takeuchi, K. Chihara, et al., J. Biol.
Chem. 290, 21857 (2015).

51. M. Schliemann, E. Bullinger, S. Borchers, et al., BMC
Syst. Biol. 5, 204 (2011).

52. N. Papic, C. I. Maxwell, D. A. Delker, et al., Viruses 4,
581 (2012).

53. N. Zhu, C. F. Ware, and M. M. Lai, Virology 283, 178
(2001).

54. Y. M. Chung, K. J. Park, S. Y. Choi, et al., Biochem.
Biophys. Res. Commun. 284, 15 (2001).

55. A. Aubert, R. Costalat, and R. Valabrègue, Acta Bio-
theor. 49, 301 (2001).

56. T. A. Rapoport and R. Heinrich, Biosystems 7, 120
(1975).

57. R. Heinrich and S. Schuster, The regulation of Cellular
Systems (Chapman & Hall, New York, 1996).

58. M. S. Vafaee and A. Gjedde, J. Cereb. Blood Flow
Metab. 20, 747 (2000).

59. A. Aubert and R. Costalat, Neuroimage 17, 1162
(2002).

60. R. B. Buxton, E. C. Wong, and L. R. Frank, Magn.
Reson. Med. 39, 855 (1998).

61. J. Frahm, G. Krüger, K. D. Merboldt, et al., Magn.
Reson. Med. 35, 143 (1996).

62. G. Krüger, A. Kastrup, A. Takahashi, et al., Neurore-
port 10, 2939 (1999).

63. A. Toglia, J. M. Kittelson, R. B. Roemer, et al., Int. J.
Hyperthermia 2, 461 (1996).

64. A. Aubert, R. Costalat, H. Duffau, et al., Acta Bio-
theor. 50, 281 (2002).



BIOPHYSICS  Vol. 62  No. 5  2017

INTEGRATED MATHEMATICAL MODELS 795

65. A. Aubert and R. Costalat. J. Cereb. Blood Flow
Metab. 25, 1476 (2005).

66. A. Aubert, R. Costalat, P. J. Magistretti, et al., Proc.
Natl. Acad. Sci. U. S. A. 102, 16448 (2005).

67. R. Guillevin, C. Menuel, J. N. Vallée, et al., Compt.
Rend. Biol. 334, 31 (2011).

68. R. Costalat, J. P. Francoise, C. Menuel, et al., Acta
Biotheor. 60, 99 (2012).

69. M. Lahutte-Auboin, R. Guillevin, J. P. Françoise,
et al., Acta Biotheor. 61, 79 (2013).

70. T. Cakir, S. Alsan, H. Saybaşili, et al., Theor. Biol.
Med. Model. 4, 48 (2007).

71. L. Hertz, Neurochem. Int. 45, 285 (2004).
72. J. Shen, K. F. Petersen, K. L. Behar, et al., Proc. Natl.

Acad. Sci. U. S. A. 96, 8235 (1999).
73. L. R. Drewes and D. D. Gilboe, J. Biol. Chem. 248,

2489 (1973).
74. S. I. Harik, R. A. Behmand, and J. C. LaManna, J.

Appl. Physiol. 77, 896 (1994).
75. N. J. Allen, R. Káradóttir, and D. Attwell, J. Neurosci.

25, 848 (2005).

Translated by G. Chirikova


