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Abstract—Our previous study on the quantitative nonlinear analysis of integral equations of the averaged
membrane potentials in excitatory (the EEG analogue) and inhibitory neurons of the neocortex has shown
that the characteristic equation has a set of oscillating solutions with negative decrements in the stability
region. We have shown that an electroencephalogram can be represented as a convolution of harmonic func-
tions with negative decrements and discrete (uniformly discontinuous) white Gaussian noise. We have sug-
gested methods of decrement calculation in encephalograms using correlation functions and tested them on
both modeled processes with preset parameters and actual encephalograms of rats and mice. Investigation of
decrements and amplitude-frequency parameters potentially increases the capacity of spectral correlation
analysis of electroencephalograms and expands the results of mathematical processing of brain signals.
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In our previous studies [1—5], we investigated the
model of the development of rhythmic processes in
the cerebral cortex, which was based on the integral
equations of averaged membrane potentials of excit-
atory and inhibitory neocortical neurons. The qualita-
tive nonlinear analysis of these equations revealed that
the stability region included a set of oscillating solu-
tions with negative decrements. Therefore, the solu-
tions of a linearized system represent a sum of convo-
lutions of external signals with corresponding original
functions. Discrete white Gaussian noise used as an
afferent input in the awake resting state caused the
appearance of model electroencephalogram (EEG)
represented by the real part of a convolution of cen-
tered discrete white noise and harmonic functions
with negative decrements. In [6], EEG &(7) was repre-
sented as a convolution of a single harmonic function.
In [7], the autocorrelation function of a signal that
resulted from the sum of two independent processes
was discussed and decrements were evaluated by
power spectra. In this study, we summarize the results
of previous studies. Signal behavior as a convolution of
both independent processes and the same discrete
white Gaussian noise with the sum of harmonic func-
tions, as well as the behavior of two signals with cor-
related discrete white Gaussian noises, are discussed.

RESULTS AND DISCUSSION

An EEG consists of electrical waves of a certain fre-
quency. Averaging of EEG power spectra from several

consecutive epochs of analysis usually results in one or
two wide peaks in different ranges of delta- (0.5—
4.0 Hz), theta- (4—8 Hz), and alpha-rhythm (8—
13 Hz) in animals and alpha- and beta-rhythms (13—
30 Hz) in humans. We modeled the human EEG as a
real part of a sum of convolutions of damped harmonic
functions and discrete white Gaussian noise with the
sampling rate Az. The behavior of a signal consisting of
a sum of main EEG rhythms is described via the equa-
tion:

E(1) = Rex, x(H) = Y x,,
=1

t

where x/(t) = J-q(t')k, exp(z, x(t—1")dt', z;= o0y +
0

Jj,, x;is the EEG rhythm created by the discrete (uni-

formly discontinuous) white Gaussian noise g(7) with

the sample rate A7 and the variance 6;. In the discrete
case:

1

xi = kAt g exp(z, (i — j)Al),

i+l

X = Slxli +k/Atg.,, s, = exp(zAt).

Therefore, the signal x,i is represented as x,i =kit(q; +

sgi 1+ s/q;, +...). Then,
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If the rhythms are independent, the averaged auto-
correlation function is as follows:
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The estimation of the normalized autocorrelation
function of such signal, which is represented by a sum
of independent functions, is defined as:

Zkz
= Sk

where
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Now, we will consider dependent rhythms that originate from the same discrete Gaussian noise g(f). Then:
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In this case, the estimation of the normalized auto-
correlation function consists of the following func-

tions:
_ Z ki (1)
Z ki, (0) ’

r(1) = Re {exr)(zﬂ) > kA (22 )},
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Let us consider the behavior of two correlated sig-
nals; the second process is represented as:

nm = ReY"y, i =

!
Lp(t')k,yxexp(p,yx(t—t'))dt', zl =0y + jo;, and
p(?) is the discrete (uniformly discontinuous) white
Gaussian noise, which correlates with ¢g(7) and has the
same variance. We modeled it as p(r) =

where
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and if the number of independent rhythms in both
processes is even, the cross-correlation function is
represented as:

Ry (1) =%y

! !
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o 1- exp(z,y +z, )At

Similarly,
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For the real parts, the average cross-correlation function is as follows:
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If the rhythms are independent and originate from
the same white Gaussian noise, then:
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These equations show that one branch of the cross-
correlation function represents oscillations of the sig-
nal x, and the other are the signal y, which is accurate
within the coefficients depending on both processes.

In contrast to [7], we simplified the model to cal-
culate the decrements: the coefficients that depend on
decrements and frequencies were included in the fac-
tors in front of the exponents: R:(T)

z k; Re[exp(z,7)]
>0

single harmonic function of the difference between
the maximum of the spectral power and the frequency
of the model depending on the frequency at different
values of the damping decrement (Fig. 1a) and the
dependency of the decrement on the spectral maxi-
mum at various frequencies (Fig. 1b). The graph
shows that in this model, the frequency of the spectral
power maximum is always lower than the one
described by the model. Therefore, this model is more
resistant to the initial approximations at the selection
of parameters for further iterations, since it reduces
the dependency of solutions on the initial conditions.

. Figure 1 shows the curves of a

A half-hour EEG recording from a mouse 20 min
after apomorphine administration was used for the
verification of this method. Normalized autocorrela-
tion functions of 1 s (analyzed epoch 4 s) were calcu-

1- exp((z\’,c + z,y)At) 1- exp((20Qc +z - zf) At)

lated and averaged; the average power spectrum was
defined using the Parzen smoothing function in the
range of 0—20 Hz; extremums and inflection points,
which could cover the presence of rhythms, were
found. We limited the analysis with four harmonic
functions. The frequencies and decrements of the
model EEG were determined using the least-squares
method depending on the number of functions. It was
critical to select initial parameters for the subsequent
iterations. The intuitive formula was used as initial val-
ues of decrements and frequencies. The model param-
eters were selected for the frequency and spectral max-
imum equal to the sum of all maximums or spectral
values in the selected inflection points; x-axis inter-
section of the model autocorrelation function was
used to determine the initial values of coefficients in
this model. The program then searched through all
parameters at a preset rate and calculated the minimal
sum of squares of the difference between the model
autocorrelation function and averaged real function.
These parameters were the initial values for the New-
ton-Kantorovich method. Partial derivatives with
respect to the parameters of sum of squares of differ-
ences of the modeled autocorrelation function and the
real function were set equal to zero. The system of
nonlinear equations was solved using the Newton-
Kantorovich method via the Jacobian matrix. Figure 2
shows examples of experimental and modeled auto-
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Fig. 1. The dependency of the difference between frequencies of spectral power maximums and the model frequency on the fre-
quency at various damping decrements, which are marked with arrows (a); and the dependency of the decrement on the value of
the spectral power maximum at various frequencies, which are also marked with arrows (b) for a selected harmonic function. On
(a): the linear dependency at the frequencies below 1 Hz indicated the absence of the spectral maximum.

correlation functions. Figure 2d shows a single spectral
power maximum at the frequency of 1.8 Hz and
inflection points at the frequencies 3.0, 5.17, 6.63,
9.08, 10.79, and 12.92 Hz. The 3.0, 6.63, and 12.93 Hz
frequencies were chosen. The results are presented in
the table. Figure 2e shows two spectral peaks at 1.5 and
7.1 Hz and inflection points at 9.84, 12.74, and
15.19 Hz. There are also two peaks at 1.7 and 7.1 Hz
and inflection points at 10.02, 12.64, and 14.95 Hz.

These results were preliminarily presented at the 5th
Congress of Russian Biophysicists in 2015 [8].

CONCLUSIONS

Taking both the points of the prominent spectral
power maximums and inflection points of the aver-
aged spectral curve into account helps to reduce the
discrepancy between the theoretical and experimental

The coefficients, frequencies, and decrements determined by the experimental curves presented in Fig. 2

ky Si o ky bp) %) ks Vg O3 ky Ja Oyq
a,d 1 1.645 | —4.609 | 0.653 | 3.23 |-5.868 | 1.257 | 7.202 |—17.681 | 0.085 | 13.77 |—-3.827
b, e 1 1.972 | —8.435 | 0.131 6.986 | 2.54 0.568 | 7917 |-13.73 0.07 | 12.74 |-5.225
c, f 1 2.109 |—8.871 | 0.734 | 7.13 |—6.377 | 0.187 | 10.46 |—7.923 | 0.074 | 13.14 |—5.996
BIOPHYSICS Vol.61 No.4 2016
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Fig. 2. Examples of experimental averaged autocorrelation functions (a—c) and their power spectra (d—f). Results of averaging of
40 analyzed epochs is shown. The dotted lines represent the results of the search of theoretical autocorrelation functions using the
least-squares method.
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