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INTRODUCTION

The main principles and concepts of the modern
approach to solving tasks of binary classification and
regression restoration, which is based on using support
vector machines (SVMs), have been considered in our
previous work [1]. SVM methods, which are part of
the technology called data mining, are remarkable in
that they require almost no additional a priori infor�
mation and are capable of processing large databases
of high dimensionality.

A new approach to inductive learning on finite
sample sets is based on the principle of structural risk
minimization and leads to the problem of regularized
risk minimization [2]. Some SVM�based algo�
rithms—e.g., the Naive Online Risk Minimization
Algorithm (NORMA)—directly solve this problem by
using kernel machines.

The standard formulation of the problem of binary
classification allows the initial task of minimization of
the upper bound of expected risk to be reduced to a
problem of quadratic programming with equality type
constraints for dual variables, which fully determine
the decision rule [2]. A direct solution of the dual
problem of quadratic programming is usually impossi�
ble because of its vast dimensionality. The main
approaches to constructing an indirect solution are
based on the property of sparseness that is inherent in
SVMs. Some SVM algorithms—such as SVM�Light
and Sequential Minimal Optimization (SMO)—are
based on decomposition the initial problem of qua�
dratic programming into a series of subproblems of
significantly smaller dimensionality.

This work is devoted to consideration of the main
SVM�algorithms construction for binary classification
tasks and comparative analysis of their efficiency.

QUALITY OF LEARNING ALGORITMS

Evaluation of the generalization performance of
various learning algorithms employing some selected
training sets is an important stage in the SVM
approach. Once a training set is given, it is important
to determine how well a particular learning algorithm
will operate with new data—i.e., to evaluate its gener�
alization performance. When this information is avail�
able, it is possible to proceed to choosing the algo�
rithm, model, and parameters of learning.

It is common practice to use methods of the gener�
alization error estimation based on the k�fold cross�
validation (CV) procedure. However, the theoretical
aspects of this approach are still not sufficiently stud�
ied. The most popular CV method is based on the so�
called leave�one�out (loo) procedure, which provides
the corresponding error (loo�error) upon the l�fold
CV, where l is the size of the training set. The loo�error
is an important statistical characteristic of the quality
of learning algorithms. Data that can be used to justify
the use of loo�errors in machine learning are presented
in [3].

Let X be the space of input objects x with a fixed
(unknown) distribution of probabilities P(x); Y is the
space of output objects y with a fixed (unknown) dis�
tribution of probabilities P(y/x); D is the training set of
size l, i.e., a set of independent observations (samples)
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(x1, y1), …, (xl, yl) distributed according to the law P(x,
y) = P(x) × P(y/x); Di is the training set of size l – 1
obtained by leaving one (ith) sample (xi, yi) out of D;
and fD: X → R is a solution obtained using a given
learning algorithm on training set D. The loss function
L: R × Y → R, L = L(f(x), y) ≡ L(f, (x, y)), rates the
deviations of estimates f(x) from observables y.

The generalization error of the given learning algo�
rithm with respect to loss function L is characterized
by the expected risk defined as

An empirical error of the given learning algorithm
with respect to loss function L can be represented
either by the empirical risk

or by the loo�error

Note that, in the latter case, sample (xi, yi) is not
used in the learning process and only employed for
testing a solution obtained using training set Di of size
l – 1. 

In contrast to the empirical risk, the loo�error
obtained using training sets of size l gives an almost
unbiased estimation of the generalization error upon
learning on a set of l – 1 samples. Since the computa�
tion of loo�error is time�consuming, many researchers
have attempted to determine the simple (in respect of
calculations) bounds of this value.

EVALUATION OF THE QUALITY 
OF SVM�BASED CLASSIFICATION

One of the characteristics of quality of a classifica�
tion algorithm is its ability to correctly classify new
samples. It is necessary that this ability be adequately
characterized without large volume of computations.

The generalization performance is usually charac�
terized using CV methods—in particular, loo proce�
dures. According to this, one sample is removed from
the training set, the remaining l – 1 samples are used
for algorithm learning, and the result is tested on the
removed sample. The number of errors divided by the
training set size represents the loo�error of generaliza�
tion. The upper bounds of the loo�error of classifica�
tion, which assume the construction of only one SVM
based on the initial training set of size l, have been
given in [3, 4].

Joachims [4] proposed the following upper bound
for loo�error of generalization in the case of a standard
support�vector (SV) classifier:
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where ρ = 2; αi is Lagrange’s multiplier, ξi is the slack

variable corresponding to the ith sample,  is the
upper bound of difference K(x, x)–K(x, x') for all per�
missible input vectors x and x', and K is the kernel

function (for linear and Gaussian kernels,  = 1). It
has been proven that estimation (1) exceeds the true
fraction of classification errors [4].

Elisseeff and Pontil [3] showed that, for
binary classification using the Heaviside loss function
δ(–y ⋅ f(x)), the loo�error of a kernel machine mini�
mizing the regularized risk based on training set D is
bounded from above as

Receiver Operator Characteristic (ROC) analysis
offers a graphical method for representation of the
results of binary classification during machine learn�
ing, which reflects the quality of a given classifier of a
comparative efficiency of several classifiers. The ROC
curves are very useful in the case of an asymmetric dis�
tribution of input vectors and unequal ratings of clas�
sification errors. These characteristics are especially
important in the case of unbalanced classes.

In order to determine the quality of classification
separately for each class (one class with positive sam�
ples and one with negative samples), it is possible to
use the characteristics of sensitivity and specificity or
recall and precision (where recall is identical to sensi�
tivity). The sensitivity characterizes the efficiency of
binary classifier operation and determines the fraction
of true positive observations relative to the total num�
ber of actually positive observations. A classifier pos�
sessing high sensitivity ensures greater probability of
the correct recognition of positive samples. The spec�
ificity characterizes the accuracy of binary classifier
operation and is defined as the ratio of true negative
observation to the total number of actually negative
observations. A classifier possessing high specificity
ensures greater probability of correct recognition of
negative samples.

The value of precision determines the fraction of
true positive observations relative to the total number
of observations classified by the model as positive. For
example, for the classification of patients into ill (pos�
itive samples) and healthy (negative samples), a high�
sensitivity classifier will most reliably prevent ill
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patients from being missed, while a high�specificity
classifier will most reliably detect actually ill patients.

A practical guide on the correct use of ROC curves
and the main characteristics of classification quality is
given in [5]. The interrelation between ROC curves
and precision–recall curves has been considered in
[6].

DESCRIPTION OF DECISION ALGORITHMS 
FOR BINARY CLASSIFICATION

Let us consider the formulation of the dual task of
SVM learning for binary classification:

(2)

Here, (x1, y1), …, (xl, yl) ∈ Rn × {–1; +1} is the
training set of size l; αi ≥ 0 are Lagrange’s multipliers;
C > 0 is the regularization parameter that controls the
margin width; and K(x, x') is the kernel function obey�
ing Mercer’s conditions [2].

The optimum decision function takes the form of a
linear combination of kernel values on training set
vectors:

Let Q be a symmetric positive determined an l × l
matrix with elements Qij = yiyjK(xi, xj). The procedure
of expansion [7] splits quadratic programming prob�
lem (2) into several problems of much smaller dimen�
sionality q (q � l), thus eliminating problems related
to the computation and full�volume storage of
matrix Q.

SVM�LIGHT ALGORITHM

The decomposition procedure has been effectively
implemented in the SVM�Light algorithm proposed
by Joachims [8]. According to this, only some of
Lagrange’s multipliers (the working set) are optimized
at each step of the iterative learning process, while the
other multipliers are fixed. Elements of the working set
are the “worst” violators of the Karush–Kuhn–
Tucker conditions, which are selected using a specific
heuristic procedure. The size of the working set is not
changed in all iterations. When dual variables for the
working set are no longer available, the quadratic pro�
gramming problem turns out to be solved.

Optimum conditions. Let λeq denote Lagrange’s
multiplier for equality type constraints in quadratic
programming problem (2), while λlo and λup are
Lagrange’s multipliers for the lower and upper
bounds, respectively, of the components of vector α.

Find  W α( )
α
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Then, the Lagrangian for dual problem (2) can be
written as

The conditions of optimum for this problem are as
follows:

(3)

and

(4)

where gi(α) is the ith element of the gradient of target
function W(α) with respect to α:

(5)

Decomposition of problem (2). Convergence of the
expansion procedure is guaranteed, provided that the
working set obeys certain minimum requirements [8].
Let us divide variables αi of the initial problem (2) into
two groups: free variables with indices constituting set
B and fixed variables with indices constituting set
N, N = {1, 2, …, l}\B. Let us decompose problem (2)
by separating α, y and Q sets into parts corresponding
to sets B and N:

(6)

Taking into account the symmetry of matrix Q and
excluding constant terms from the target function, we
arrive at the following optimization problem:

(7)

subject to: (8)

(9)

Selecting a working set. The efficiency of decom�
position algorithm is directly related to the procedure
of selecting a working set. This construction is based
on Zoutendijk’s method, according to which a steep�
est descent direction vector d is determined that has
only q nonzero elements. Variables corresponding to
these elements constitute the working set. For select�
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ing this set on the tth iteration step, it is necessary to
solve the following problem:

Find 

subject to: yTd = 0, –1 ≤ d ≤ 1,

|{di: di ≠ 0}| = q,

di ≥ 0, i: αi = 0, (10a)

di ≤ 0, i: αi = C. (10b)

Let us define vector ω as ωi = yigi(α(t)) and arrange
elements αi in the order of decreasing ωi. For an even
q number, let us select q/2 elements from the top of the

list, for which either 0 <  < C or di = –yi satisfies
conditions (10a) or (10b). In the same way, we select
q/2 elements from the bottom of the list, for which

either 0 <  < C or di = yi satisfies conditions (10a)
or (10b). The selected q elements constitute the work�
ing set.

Structure of SVM�Light algorithm. The working
set size q is put such that q � l. If the optimum condi�
tions are not satisfied,

—q variables for the working set are selected as
described above and the remaining l–q elements are
fixed; and

—problem (2) is decomposed and the quadratic
programming subproblem (7) of dimensionality q is
solved under constraints (8) and (9).

Otherwise, the process is terminated because the
optimum solution is found.

Effective implementation of SVM�Light algorithm.
The validity of optimum conditions (3) and (4) is con�
veniently checked using the following relations:

(11)

which are equivalent to relations (3) and (4) for ε = 0.
In solving most problems, an acceptable value is ε =
1e – 3.

Let us define vector s(t) on the tth iteration step as
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Then, when vector α changes from α(t – 1) to α(t) on

the tth iteration step, the sums  in relations (11) can
be rapidly recalculated as

and, hence, the value of the gradient g(α(t)) (see for�
mula (5)).

In the course of iterations, it is possible to reduce
the dimensionality of initial problem (2) (i.e., produce
its “shrinking”) via removal of αi variables that will
probably be equal 0 or C. Since these values are fixed
and, hence, neither gradient g(α(t)) (5) nor the opti�
mum conditions for these quantities are recalculated,
which significantly decreases the volume of kernel
computations. Detailed description of the “shrinking”
procedure is presented in [8].

SEQUENTIAL MINIMAL OPTIMIZATION 
(SMO) ALGORITHM

The SMO algorithm that has been proposed by
Platt [9, 10] implements an extremal form of expan�
sion for problem (2) with the minimum possible work�
ing set size of 2, since the vector of dual variables α
must obey a linear equality type constraints. A very
important advantage of SMO over other SVM algo�
rithms consists in that a solution of the problem with
two variables is found analytically.

Computational problems that can arise during the
implementation of the SMO algorithm are only
related to the kernel matrix {K(xi, xj)}. The SMO pro�
cedure is especially effective in the case of sparce data
(more than 80% zero values of components in input
vectors x) and rapidly converges for linear SVMs.

Here we consider the second modification of the
SMO algorithm [11], which proved to be more effec�
tive than the original Platt variant [9]. An investigation
of the influence of the working set selection on the effi�
ciency of SMO classification was reported in [12].
Convergence of the SMO algorithm in classification
problems was proved in [13].

At each step, the SMO algorithm selects by certain
means two violators {αi, αj} of the optimum conditions
(i.e., working set), determines the optimum values of
these variables, and accordingly improves the SVM.
When no new variables for the working set are avail�
able, the initial problem (2) turns out to be solved.

Optimum conditions and SMO stopping criterion.
In order to establish a criterion of stopping for the
SMO algorithm in solving dual problem (2), let us
consider the conditions of optimum for this problem.
The corresponding Lagrangian can be written as

si
t( )

si
t( ) si

t 1–( ) αj
t( ) αj
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j B∈
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where w(α) =  Let us

. (12)

The Karush–Kuhn–Tucker conditions for any i can
be expressed as follows:

Consider three possible variants of variables αi. In
each case, the Karush–Kuhn–Tucker conditions
acquire a simple form:

(i) αi = 0, then δi ≥ 0, μi = 0 ⇔ (Fi – β)yi ≥ 0,

(ii) 0 < αi < C, then δi = 0, μi = 0 ⇔ (Fi – β)yi = 0, (13)

(iii) αi = C, then δi = 0, μi ≥ 0 ⇔ (Fi – β)yi ≤ 0.

Let us define the following sets of indices for a fixed
vector α:

I0 = {i: 0 < αi < C};

I1 = {i: yi = 1, αi = 0};

I2 = {i: yi = –1, αi = C};

I3 = {i: yi = 1, αi = C};

I4 = {i: yi = –1, αi = 0};

and introduce the quantities

(14)

(15)

Then, the conditions of optimum are satisfied for
vector α such that

(16)

Let us introduce the positive parameter of toler�
ance τ and use it to write the approximate optimum
conditions (13) in the following form that will be used
as the criterion of SMO algorithm stopping:

(17)

For a given vector α, a pair of indices {i, j} is classi�
fied as violating the Karush–Kuhn–Tucker condi�
tions in one of the following cases:

LW
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Fi β–( )yi τ,  for  αi≤ C.=

(18a)

(18b)

Note that the optimum conditions for α are satis�
fied when and only when no one pair of indices {i, j}
exists that corresponds to violation for this α.

In practical calculations, it is convenient to use tol�
erance parameter τ. Then, condition (16) takes the
following form:

(19)

For detecting violations, conditions (18a) and
(18b) are replaced by

(20a)

(20b)

The SMO algorithm employs condition (19) or
(20) to check the optimum for current vector α. Note
that it is not necessary to know the current value of b.
In addition, with this method of checking for validity
of the Karush–Kuhn–Tucker conditions, the second
term is automatically determined provided that the
first term of the working set is given.

Working set selection. At each iteration step, the
SMO algorithm selects a pair of variables of dual prob�
lem (2) for their joint optimization:

The initial approximation of unknown vector α
usually represents a zero vector. The initial bound
quantities are bup = –1 and blow = 1, i_up is set equal to
any index from the first class, and i_low is selected to
be any index from the second class. First, all members
of the training set are tried to reveal violators of the
optimum conditions. During the trial cycle involving
only indices of set I0, the SMO algorithm always works
with the worst violating pair—i.e., that selected from
set B = {i1, i2} ⊂ {1, 2, …, l} as follows: i2 = i_low and
i1 = i_up, where i_low and i_up are found from the
conditions Fi low = blow and Fi up = bup. Thus, the first
and second members of the working set are selected
simultaneously, in contrast to the original SMO vari�
ant [10], where the second member was chosen using
certain heuristic procedure under assumption that the
first member is already known.

After a successful step of the algorithm with indices
{i1, i2}, a new set I* is formed such that I* = I0 ∪ {i1, i2}.
Note that both sets I* ∩ {I0 ∪ I1 ∪ I2} and I* ∩ {I0 ∪
I3 ∪ I4} are not empty. Therefore, it is possible to partly
calculate blow and bup using set I* = I0 ∪ {i1, i2}. How�

i I0 I3 I4  and  j I∈ 0 I1 I2∪ ∪∪ ∪∈

  and  Fi Fj,>

i I0 I1 I2  and  j I∈ 0 I3 I4∪ ∪∪ ∪∈

  and  Fi Fj.<

blow bup 2τ.+≤

i I0 I3 I4  and  j I∈ 0 I1 I2∪ ∪∪ ∪∈

  and  Fi Fj 2τ+ ,>

i I0 I1 I2  and  j I∈ 0 I3 I4∪ ∪∪ ∪∈
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αi1
αi2

,{ }.



18

BIOPHYSICS  Vol. 60  No. 1  2015

KADYROVA and PAVLOVA

ever, we abstained from this attractive possibility
because it leads to an “underlearned” machine.
Indeed, the optimum hyperplane is constructed cor�
rectly, but the margin is too wide. In the proposed
implementation of the SMO algorithm, the approach
involving I* = I0 ∪ {i1, i2} set is not employed and the
values of blow and bup at each iteration step are deter�
mined according to rules (14) and (15), respectively.

Upon establishing the optimum conditions
according to relation (19) on set I0, the SMO algo�
rithm returns to trial over the entire (initial) training
set for checking the optimum with respect to all indi�
ces. Since (blow, i_low) and (bup, i_up) have been cal�
culated only on set I0, these quantities are updated for
each current index by calculating Fi and checking for
the optimum using current (blow, i_low) according to
condition (20). If this trial cycle with running i reveals
no violations, it is concluded that the optimum condi�
tions are satisfied for all elements of vector α, that is,
the optimum solution is found. 

Solution of the quadratic programming problem for
a selected working set. The working set consists of a
pair of variables {αi, αj}. A constraint of the equality
type can be used for excluding one of them. For the
convenience of presentation, all quantities related to
the first and second variable will be distinguished by
indices 1 and 2, respectively.

Then, if the labels of classes are different (y1 ≠ y2),
then α1– α2 = const, while identical labels (y1 = y2)
imply that α1 + α2 = const. Thus, at each step of the
algorithm, we obtain a quadratic programming prob�
lem for only one variable (for certainty, α2). This prob�
lem has the following analytical solution (for a
detailed derivation, see [10, Appendix]):

where η = K(x1, x1) + K(x2, x2) – 2K(x1, x2) is the sec�
ond derivative of target function (7). Taking into
account constraints of the inequality type and assum�
ing that η > 0, the new value of variable α2 can be writ�
ten as

where L and H are the bounds for α2, which are
defined as follows.

(y1 ≠ y2): L = max(0, α1 – α2),
H = min(C, C + α1 – α2);

(y1 = y2): L = max(0, α1 + α2 – C),
H = min(C, α1 + α2).

If the training set contains at least two identical
vectors x, then η can be zero. The SMO algorithm will

α2* α2
y2 F2 F1–( )

η
���������������������+ ,=

α2
new

H,    for  α2* H≥

α2*,  for  L α2* H,< <
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also operate in this case by calculating the values WL
and WH of target function (7) on the ends of a straight
segment determined by the linear relation between α1
and α2:

where s = y1y2.

If WL < WH – τ, then  takes the value of L. For

WL > WH + τ;  takes the value of H. If the target
functions values WL and WH differ by less than τ, the
current value of α2 remains unchanged and a new set

is selected. The corresponding value of  is calcu�

lated using the value of  obtained during optimi�

zation:  = α1 + s(α2 – ).

Brief description of the SMO algorithm. The SMO
algorithm is a process in which every operation con�
sists of two steps: (i) choice of a working set {αi, αj} of
size 2 (heuristic method) and (ii) solution of a qua�
dratic programming problem for the selected working
set (analytical method). When no new variables for the
working set are available, the initial problem (2) turns
out to be solved.

The main steps of the SMO algorithm are as fol�
lows.

1. Take some vector α1 (usually, zero vector) as the
initial approximation of unknown vector α; set k = 1.

2. If αk satisfies the optimum condition (19), the
solution process is terminated. Otherwise, a working
set of dual elements is found with indices constituting
set B = {i, j} ⊂ {1, 2, …, l}, where l is the training set

size. Determine set N = {1, 2, …, l}\B and vectors 

and  as parts of vector α corresponding to sets B and
N. Sets B and N vary from one iteration to another
(i.e., depend on k).
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3. Solve a quadratic programming problem for the

selected {αi, αj} according to Eqs. (7)–(9). Put 
equal to optimum solution of the problem.

4. Put  =  k ← k + 1 and pass to step 2.

SUCCESSIVE OVERRELAXATION (SOR) 
ALGORITHM

Upon adding variable b2/2 to the target function of
the standard SVM problem and minimizing the
obtained function with respect to w, ξ, and b, the dual
problem of Lagrangian minimization (still remaining
a quadratic programming problem) will have no
equality type constraints:

(21)

where Q is a symmetric positive determined l × l
matrix with elements Qij = yiyjK(xi, xj), y is a column
vector with elements representing class labels yi = ±1,
e is a unit vector of l components, and α is the vector
of Lagrange’s multipliers with l components.

Solving problem (21) is equivalent to solving the
system of linear algebraic equations

(22)

where M = Q + yyT is a symmetric positive determined
matrix.

The SOR algorithm proposed by Mangasarian and
Musicant [14, 15] solves system of equations (22) by
the method of successive over�relaxation with allow�
ance for inequality type constraints from problem (21)
at every step. At the (k + 1)th iteration, the compo�
nents or vector αk + 1 are calculated as follows:

(23)

where the symbol ()# denotes

and ω ∈ (0, 2) is the relaxation parameter. For ω = 1,
iterations (23) correspond to the Gauss–Seidel itera�
tive method. By varying ω, it is possible to increase the
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convergence rate of algorithm. The iterative process
converges for any initial approximation α0.

The main steps of the SOR algorithm are as
follows: 1. Select ω ∈ (0, 2). It is possible to begin with
ω = 1 and then select a different parameter in case of
slow convergence of the algorithm.

2. Select the initial approximation α 0 ∈ Rl (usually,
zero vector); set k = 0.

3. Once αk is known, calculate αk + 1 by
formulas (23). Calculations are continued until

 > τ, where τ is a preset tolerance level
(typically, τ = 10⎯3).

INCREMENTAL UPDATING (IU) 
ALGORITHM

The IU algorithm [16, 17] stipulates online delivery
of samples. For a finite number of steps, the algorithm
leads to validity of the Karush–Kuhn–Tucker condi�
tions for the previous data, as well as for the new sam�
ple. This is achieved by changing key variables of the
system through the maximum possible increment of
the dual variable corresponding to the new sample.

Optimum conditions. If an equality type constraint
is directly incorporated into the target function of dual
problem (2) by adding the term

to W(α), the optimum conditions take the following
form:

(24)

(25)

Before the delivery of a new sample, Karush–
Kuhn–Tucker conditions (24) and (25) are valid for all
samples of the training set—i.e., an SVM is con�
structed for l samples. According to these optimum
conditions, vectors of the training set can be subdi�
vided into three groups:

(i) S = {xi: 0 < αi < C}, the set of support vectors
occurring on the optimum support boundaries, for
which gi = 0;

(ii) E = {xi: αi = C}, the set of support vectors vio�
lating these boundaries, for which gi ≤ 0; and

α
k 1+

α
k–
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(iii) O = {xi: αi = 0}, the set of nonsupport vectors,
for which gi ≥ 0.

In addition, let us also introduce the set of vectors
R = E ∪ O.

The sets of indices (denoted by the corresponding
low�case symbols) corresponding to the above sets of
vectors induce certain partition of matrix Q, vector of
labels y, vector of coefficients α, and target function
gradient g. These partitions will be denoted by the cor�
responding subscripts.

Sensitivity relations. Upon delivery of a new vector
xc, the corresponding coefficient αc is initially put
equal to zero. If the expanded vector of coefficients
(with dimensionality l + 1) is not optimum (which
implies that xc must become a support vector), then all
coefficients αi and shift b must be updated so as to
obtain an optimum solution corresponding to the
increased training set of l + 1 size.

Coefficients αi corresponding to vectors of set S
change their values at every step of the IU algorithm so
as to hold all elements of the training set in equilib�
rium—that is, to maintain validity of the Karush–
Kuhn–Tucker conditions.

By writing the Karush–Kuhn–Tucker conditions
before and after the updating of α and assuming that
the compositions of sets S and R remained unchanged,
we obtain the following relations that must be valid
after the updating:

(26)

Since conditions (24) imply that Δgs = 0, it follows
that the second and fourth rows of system (26) lead to
a system of linear equation with respect to Δαj (for all
indices of set s) and Δb:

(27)

where β is the vector of sensitivities of coefficients
αj (j ∈ s) and shift b with respect to a change in αc.

This vector has the structure of  and is deter�

mined as

(28)

where the first matrix term in the product will be
denoted as �.

Substituting expressions (27) into the first and third
rows of system (26), we obtain the following relation:
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(29)

where γ is the vector of margin sensitivities defined as

(30)

Thus, the updating of SVM related to the delivery
of a new training set member must be controlled by
sensitivity relations (27) and (29).

Upper limit of Δαc value. Since the compositions of
sets S and R change when coefficients αj and b are
updated, relations (26) cannot be used directly for
obtaining a new state of the SVM. The IU algorithm
determines the maximum possible increment Δαc for
which some vector can exhibit transition from its ini�
tial set to an adjacent one. In order to take these
changes into account, let us consider the following sit�
uations.

(i) Some coefficient αi, which is an element of vec�
tor αs, reaches a boundary (0 or C). Let ε > 0 be a small
value, define the following sets of indices:

and put

The maximum possible increment of αc preceding
the transition of some vector from S to R is then as fol�
lows:

where p is the index of the minimum  value.
If this minimum value is attained for several indices,
then index p is defined as

(ii) Some gi from set R reaches zero. The maximum
possible increment of αc preceding the transition of
some vector from R to S is then calculated in the fol�
lowing way:

where IR =   = {i ∈ e: γi > ε}, and  =
{i ∈ o: γi < –ε}.
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(iii) gc = 0. Then, if a change is still allowed (i.e.,
γc > ε), the maximum possible increment of αc is

(31)

(iv) αc = C. In this case, the maximum possible
increment of αc is as follows:

A minimum of the four values listed above,

(32)

is the ultimate maximum possible increment of αc. It
is important to establish on which set of indices mini�
mum (32) is attained (for determining the maximum
possible increment of Δαc) and to define the corre�
sponding value of this index.

Recursive updating of matrix �. After determining
the maximum possible increment of αc), the IU algo�
rithm calculates the increments of key variables of the
system (Δαs, Δb, and Δg) using sensitivity relations
(27) and (29). Matrix � must also be recalculated so
as to take into account a change in the composition of
set S. Let us consider an effective method of updating
this matrix in typical cases.

(i) Some vector xk is added to set S. In this case, the
Sherman–Morrison–Woodbury formula for inversion
of a block matrix [18] leads to the following relation:

where ηk =  and βk = –�ηk.

(ii) Some vector xk is removed from set S. In this
case, matrix � is constructed in the following manner:

  

 where index 0 corresponds to b.
Structure of the IU algorithm. The main block of

the IU algorithm represents a procedure for updating
the existing optimum solution upon adding a single
new sample. We have an SVM constructed on a train�
ing set of size l. Upon adding new sample {xc, yc}, we

use the existing solution {  bl}, matrix �, and the
new sample to obtain the new optimum solution

{  bl + 1}, i = 1, …, l + 1 with the aid of the IU algo�
rithm.

The main steps of the IU algorithm (l ← l + 1) are
as follows.

1. Set αc = 0.
2. If gc > 0, the existing solution is retained and the

procedure is terminated.
3. As long as gc < 0 and αc < C, the algorithm

Δαc
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,

—calculates β and γ using formulas (28) and (30);

—calculates  according to Eq. (32) and
determines index k for which the minimum in (32) is
attained;

—updates αc ← αc + 

{if k ∈ s, then {xk passes from S to R}, otherwise {if
k ∈ r, then {xk passes from R to S}, otherwise {if k = c,
then the procedure is terminated}. (Note that, if the
delivery of new samples is continued, termination of
the procedure implies passage to step 1. In this case, if
k = c and the minimum in (32) is provided by formula
(31), then {xc is added to S and matrix � is recursively
updated}, otherwise {xc is added to E}. After that, l ←
l + 1 and the algorithm passes to step 1.)

—recursively updates matrix � and returns to
step 3.

NAIVE ONLINE RISK MINIMIZATION 
ALGORITHM (NORMA)

Investigation [19] of the online learning of kernel
machines led to the development of the simple and
effective Naive Online Risk Minimization algorithm
(NORMA) for a wide circle of problems including
classification, reconstruction of regression, and classi�
fication in the absence of labels (novelty detection)
based on the stochastic gradient descent in a Hilbert
space of approximating functions.

The aim of any learning algorithm consists in con�
structing a machine (f : X → R) based on l�dimensional
training set D of samples (x1, y1), …, (xl, yl) ∈ X × Y.
Let the loss function L: R × Y → R, L = L(f(x), y) rate
the deviation of estimates f(x) from observed labels y.
In the case of classification, where Y = {–1, +1},
sign(f(x)) is interpreted as the prediction of class x
while |f(x)| reflects the level of confidence in this clas�
sification.

Result f of the learning algorithm operation is
called a hypothesis. The set of all possible hypotheses
is denoted H. Let H be a Hilbert space with reproduc�
ing kernel. This implies that the Hilbert space has a
kernel function K: X × X → R and scalar product 〈⋅,⋅〉H
such that

(i) K possesses the reproducing property:

(33)

(ii) space H is a closure of the linear span of all
functions K(x, ⋅), x ∈ X.
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The scalar product in space H is introduced
according to (33) as

and generates a norm that is a measure of the com�
plexity of functions. For any element, we have

Various classes of functions can be learned using
different kernels. A function that minimizes regular�
ized risk as

is unique and represents a kernel machine, i.e., has the
form of

where β ∈ Rl is the vector of attribute weights. Positive
regularization parameter λ matches a small empirical
error to the degree of smoothness (complexity) of the
decision function. Regularization parameter C for
standard SVM learning is related to parameter λ as C =
1/(2lλ).

The NORMA generates a sequence of hypotheses
f1, …, fl+1, where f1 is some arbitrary hypothesis and
fi (i > 1) is a hypothesis constructed upon the
delivery of (i – 1)th sample. Let L(fk(xk), yk) be the loss
function of the learning algorithm for the attempt at
predicting yk based on xk and preceding samples (x1,
y1), …, (xk – 1, yk – 1). An appropriate measure of accu�
racy of the algorithm employing training set D of size l
then would be the cumulative loss function

Note that fk is tested on sample (xk, yk) that was not
involved in the learning of fk. Thus, if a small value of
the accumulated loss function will be guaranteed, the
situation of overfitting can be avoided.

Since we are considering an online algorithm, it is
expedient to define (in addition to the regularized risk)
the instantaneous regularized risk for a single sample
(xk, yk) as follows:

The NORMA produces a gradient descent in the
direction of minimum instantaneous risk. The general
form of the updating rule is as follows:

here fi ∈ H, ∂/∂f is the gradient with respect to f, and
ηk > 0 is the learning rate.
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Taking into account the reproducing property of
the kernel, we obtain the following relation:

where L'(z, y) = ∂L(z, y)/∂z. It is evident that, for any
k, we have ηk < 1/λ.

Let us select the initial hypothesis to be f1 = 0 and
represent hypothesis fk in the form of kernel expansion
as

where coefficients at the kth step are updated as

We then add shift b (b ∈ R) to the decision function
and update b at each step as

NORMA for classification problem. The classifica�
tion problem is solved using the so�called soft margin
loss function Lρ(f(x), y) = max(0, ρ – yf(x)), where
ρ ≥ 0 is the margin parameter. The function Lρ(f(x), y)
is positive, provided that f for (x, y) does not exceed
the margin (at least by ρ value). In this case, f is said to
have a margin error. If f actually made this error, then
Lρ(f(x), y) ≥ ρ.

Let σk be an indicator of f  having a margin error at
(xk, yk). Then,

and the updating rule takes the following form:

In terms of kernel expansion coefficients αi (i = 1,
…, k – 1), the updating appears as

A key point in algorithms of the type under consid�
eration is the choice of step (learning rate) ηk. It is a
usual practice either to set a constant step ηk = η < 1/λ
or to select some rule according to which ηk decreases
with increasing k. A method of automated step correc�
tion using the so�called Stochastic Meta�Descent
algorithm was proposed in [20].

It was shown in [19] that, in the case of soft limita�
tions imposed on the loss function, the average instan�
taneous risk
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of hypotheses produced by the NORMA tends to the
minimum regularized risk

at a speed on the order of O(l–1/2). If samples of the
training set are independent and equally distributed,
the regularized risk of averaged hypothesis with a high
probability also tends to the minimum of expected
risk.

EXPERIMENTAL RESULTS

We have experimentally studied the comparative
efficiency of four algorithms, including SVM�Light,
SMO, SOR, and IU, in solving a classification prob�
lem. The SVMs were constructed on real data with
allowance for commonly accepted recommendations:

—scaling of data;

—use of a nonlinear (in the given case, Gaussian)
kernel; and

—selection of the regularization (C) and kernel (σ)
parameters determined for a small�size sample using a
procedure of search on a rough grid, followed by thor�

1
l
�� Rinst fk xk yk, ,[ ]

k 1=

l

∑

Rreg f b D,+[ ]
f b+

min

ough refinement in a region of best values of the
adopted quality characteristics.

The efficiency of algorithms was evaluated in terms
of the following characteristics:

—time spent for the SVM construction (CPU
time, s);

—total number of support vectors (SV);
—number of bound support vectors (BSV) for

which αi = C;
—fraction of unbound support vectors, (SV–

BSV)/SV, which characterizes stability of the SVM (by
stable SVM is implied a machine for which at least
support vector exists such that αi ≠ C; these support
vectors are called unbound);

—algorithm quality (error) rating obtained by 10�
fold cross�validation test (CV_err);

—upper bound of estimated SV classifier (1) gen�
eralization error (J_err); and

—fraction of incorrectly classified objects in the
testing set (Test_err).

The SV classifiers were tested on real data sets.
Data of the first sample set (size, l = 1050; number of
attributes, n = 10) were dense, while data of the second
sample set (l = 4974; n = 50; test set size, m = 4998)
were sparce.

Table 1 gives an example of preliminary tuning of
the regularization parameter C at a fixed value of the
kernel parameter (σ = 2) on 282 samples of the second
set. Evidently, a successful choice of parameter C pro�
vides a reasonable balance between the algorithm
operation time and quality/stability of a constructed
SV classifier.

Table 2 presents data of numerical experiments on
the comparative efficiency of SV classifiers. Let us
point out the main advantages of algorithms under
consideration. The IU algorithm is accurate. Data for
SVM learning can be delivered both in packages and
one�by�one in the online regime. This is the fastest SV
classifier. The SMO method is the fastest among the
iterative algorithms. As the volume of a training set

Table 1. Dependence of the quality characteristics of the
SMO algorithm on regularization parameter C

C CPU time SV BSV (SV–BSV)/SV

1 2.203 161 135 0.161

10 4.547 82 38 0.293

100 10.343 53 5 0.906

250 9.500 51 2 0.961

500 13.391 49 0 1

Table 2. Characteristics of SV classifiers

Algorithm C σ CPU time SV/BSV (SV – BSV)/SV CV_err

First sample: l = 1050 J_err

SMO 8 1 46.812 429/410 0.044 0.158 0.227

SOR (ω = 0.7) 4 0.25 161.531 328/247 0.247 0.149 0.068

IU 2000 2 8.297 278/247 0.111 0.134 0.264

SVM�Light 100 10 315.937 415/15 0.964 0.127 0.036

Second sample: l = 4974, m = 4998 Test_err

SMO 50 1 11721.704 375/40 0.893 0.002 0.006

SOR (ω = 0.7) 128 1 14326.578 333/5 0.985 0.001 0.005

IU 250 1.5 418.188 234/8 0.957 0.001 0.006

SVM�Light 150 4 17963.963 431/3 0.993 0.001 0.004
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grows, the operation time increases most slowly as
compared to that for other algorithms under consider�
ation. The SOR algorithm admits learning on vast
training sets provided effective organization of the
computational process. Preliminary tuning of relax�
ation parameter ω controlling the convergence speed
allows operation time of the SOR algorithm to be sig�
nificantly reduced. SVM�Light is a fast iterative algo�
rithm that leads to construction of a very stable SV
classifier.

The results of experiments showed that, in process�
ing every sample set, each particular algorithm
requires using its own parameters, which should be
very thoroughly selected. This choice should be ori�
ented toward both the average quality characteristics
and the average algorithm operation time. A successful
choice of parameters significantly decreases the oper�
ation time without loss of the SVM learning quality.

The SVM�based algorithms are widely used in
many fields of basic and practical investigations. Some
algorithms of SV classifiers are implemented in various
program packages such as MATLAB and R. The most
complete information concerning commonly accessi�
ble SVM algorithm software is presented on site [21].
Review [22] presents a summary and comparative
analysis of various SVM algorithms included in various
program packages written on programming language
R. A powerful and convenient modern means of bio�
logical data processing is offered by Bioconductor
project with open code [23], which is also written in R
and provides highly effective software for genome data
processing.
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