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Abstract— High-affinity and specific agents are widely applied in various areas, including diagnostics, scientific 
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For this reason, development of high-affinity agents extensively utilizes computer methods at various stages for 
the analysis and modeling of these molecules. The review describes the main affinity and specific agents, such as 
monoclonal antibodies and their fragments, antibody mimetics, aptamers, and molecularly imprinted polymers. 
The methods of their obtaining as well as their main advantages and disadvantages are briefly described, with 
special attention focused on the molecular modeling methods used for their analysis and development. 
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INTRODUCTION

Since the first mentioning of using antibodies for 
protein recognition in 1968, there has been an increas-
ing interest in the development of high-affinity and 
specific agents for their application in diagnostics and, 
later, in therapy and other fields [1]. In the 1970s and 
1980s, technologies for production of monoclonal anti-
bodies have been developed, the structure of immuno-
globulins have been determined, and the methods for 
designing chimeric, humanized, and then fully human 
monoclonal antibodies have been created. Antibodies 
have taken their place among the main specific pro-
tein-binding agents in modern biology and medicine 
[2]. Currently, antibodies are used as immobilizing and 
detecting agents in diagnostics, as well as drugs and 
drug delivery systems, labeling and staining reagents, 
research tools, etc. [3-5].

However, even modern monoclonal antibodies 
have their drawbacks, which limits their diversity and 
areas of application.

The necessity to optimize approaches for develop-
ment of binding agents, in particular, the requirements 
for their targeted and rational design, have led to a 
widespread application of molecular modeling meth-
ods. These methods have demonstrated a high efficien-
cy in studying high-affinity protein-binding agents, 
increasing the efficacy and reducing the cost of their 
development, improving the binding parameters, and 
enhancing the stability of such agents. Several stud-
ies have shown the possibility of rational design of 
affinity-binding agents based on the target structure. 
Molecular modeling methods are used at different 
stages in the development of protein-binding agents, 
from the creation of primary monomer libraries to 
system optimization and identification of molecular 
binding mechanisms. Both common (homology model-
ing, molecular docking, molecular dynamics) and spe-
cialized (optimized for a specific type of binding agent) 
methods can be used.
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This review summarizes main advantages, dis-
advantages, and limitations of known protein-bind-
ing agents, as well as key experimental approaches to 
their development. Special attention is given to mod-
ern molecular modeling methods used for investiga-
tion, optimization, and rational design of high-affinity 
protein-binding agents in order to overcome the limita-
tions of experimental approaches and to evaluate the 
modeling results.

PROTEIN-BASED PROTEIN-BINDING 
AFFINE AGENTS

Antibodies: structure, methods of production, 

and applications. Antibodies are globular proteins 
composed of four polypeptide chains: two light chains 
(50-60 kDa) and two heavy chains (100-120 kDa) con-
nected by disulfide bonds. The antigen-binding prop-
erties of an antibody are determined by the variable 
domain (Fv) formed by the heavy and light chains 
(Fig. 1a). The variable domain contains conserved re-
gions responsible for maintaining the structure of the 
binding site and variable loops, or CDRs (complemen-
tarity-determining regions), that provide interaction 
with the antigen (Fig. 1b). Antibodies are produced by 
the immune cells; they are also components of B-lym-
phocyte receptors [6].

The first use of antibodies as high-affinity specific 
agents can be traced back to 1890 when E. von Behring 
and S. Kitasato used a serum containing polyclonal 
antibodies to treat diphtheria in animals. Antibodies 
have become the most popular antitoxins; polyclon-
al sera are still used nowadays. A significant break-

through in the research and application of antibodies 
occurred in 1975, when G. Köhler and C. Milstein pro-
posed the hybridoma technology for producing mono-
clonal antibodies. Monoclonal antibodies have enabled 
to develop unique, reproducible methods for protein 
isolation and identification, protein concentration 
measurement, and labeling of cells based on their anti-
genic composition. Since 1985, monoclonal antibodies 
have been used in drug therapy. Today, they remain 
the most common protein-binding high-affinity specific 
agents [7].

The most frequently used method for developing 
monoclonal antibodies is the hybridoma technolo-
gy, which involves the fusion of genetically modified 
myeloma cells with B lymphocytes, resulting in the 
formation of cells capable of continuously producing 
antibodies against a target protein. The hybridoma 
technology is costly, resource-intensive, and cannot 
be easily automated, partly due to the need for con-
tinuous maintenance of cell cultures in bioreactors 
and monitoring of genetic changes during cell prolif-
eration [8].

A more versatile and cost-effective alternative 
method for obtaining antibodies is phage display. 
In  this technique, a gene of the antibody variable 
domain is inserted into a bacteriophage (e.g., M13) 
genome. The recombinant bacteriophage is used for 
infecting bacteria, and the antibody fragment is ex-
pressed as a part of the virus envelope. Only bacte-
riophages containing the antibody fragment on the 
surface can bind to the corresponding antigen. The 
bacteriophages with a low specificity are removed 
using a mixture of non-target proteins. This allows 
to select a variable domain that can subsequently be 

Fig. 1. The structure of immunoglobulin G (PDB: 1HZH) (a) and variable loops (CRDs) of the Fv domain (b).
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modified to increase its affinity and specificity through 
directed mutagenesis and repeated selection [9].

Despite the existence of two methods for produc-
ing monoclonal antibodies, the costs of development 
and, more significantly, production are substantial, 
since both methods require the use of bioreactors. Con-
sequently, the price of these antibodies can be high, 
limiting their application. Moreover, due to the diffi-
culties in controlling the batch-to-batch reproducibili-
ty, the affinity, specificity, and stability of the produced 
antibodies often differ from those claimed by the man-
ufacturer [10].

Molecular modeling methods for the develop-

ment and study of antibodies. In recent years, mo-
lecular modeling methods have been actively used for 
optimization and development of the structure of an-
tibodies in order to enhance their affinity, specificity, 
and other properties.

Modeling of antibody structure. Five out of six 
hypervariable regions (CDRs) in the variable domain 
exhibit a limited number of possible conformations, 
i.e., differ only slightly between antibodies with dif-
ferent specificity and affinity (RMSD, ~0.7 Å) [11, 12]. 
Analysis of the antibody tertiary structures has shown 
that there are eight main templates for the variable re-
gion conformation – two for the structure of the light 
and heavy chains, five for the hypervariable loops 
within the CDRs (L1, L2, L3, H1, H2), and one used as 
a basis for modeling the H3 loop – which can vary sig-
nificantly between different antibodies (Fig. 1b). The 
structures of most variable antibody fragments can be 
predicted by combining these loop conformations. Five 
of the six loops within the CDRs are typically modeled 
by the homology-based methods. The main challenge 
is modeling of the H3 loop and relative orientation of 
the H and L chains. Since H3 is a part of the HL inter-
face, modeling of both regions is interdependent [13]. 
The  H3 loop is built using ab initio methods that in-
volve either searching for similar loops in known pro-
tein three-dimension structures or constructing the 
loop by sequential addition of amino acid residues, fol-
lowed by optimization of the loop structure using mo-
lecular mechanics and molecular dynamics methods. 
Methods based on stochastic approaches, such as the 
Monte Carlo algorithm, have been proposed, in which 
a set of different geometries is generated and the most 
stable ones are selected by evaluating their energy. 
The  structure is then optimized by minimizing the 
internal energy, and the most energetically favorable 
structure is chosen [14].

The conserved fragments of the antibody are de-
signed by homology modeling based on the known an-
tibody tertiary structure using the programs such as 
Modeller, I-TASSER, and Rosetta [15-18]. Based on these 
approaches, several software packages have been de-
veloped, both commercial (products from Schröding-

er Inc., Chemical Computer Group, and Accelrys Inc.) 
and freely available (PIGS, WAM, SAbPred) [17, 19-21]. 
A  combination of homology and ab initio methods 
forms the basis of the RosettaAntibody software pack-
age, which provides a high correspondence between 
the modeled and experimentally determined struc-
tures [22, 23].

The most significant result in the application of 
methods developed for modeling the antigen-anti-
body interactions has become the ability to alter the 
affinity of such interactions by introducing point mu-
tations in the antibody sequence and rapid estimation 
of the binding affinity in silico [24, 25]. Kiyoshi et al. 
[25] modeled 1178 point mutations including sequen-
tial substitutions of each of 62 amino acid residues in 
the CDRs with other 19 residues in the structure of the 
11K2 antibody directed against the chemokine MCP-1. 
In silico selection demonstrated that twelve of these 
substitutions resulted in increased affinity. Subsequent 
verification by the surface plasmon resonance method 
confirmed that five of them indeed had an increased 
affinity. For example, one of the mutants demonstrat-
ed a 4.7-fold higher affinity compared to the wild-
type antibody. The authors noted that the presence of 
charged residues in the variable domain light chain 
fragment played the most significant role in enhancing 
the antibody affinity [25]. Therefore, the used methods 
have shown the ability to identify amino acid residues 
most important for the antibody-antigen binding.

Modeling of antigen–antibody complexes. In the 
aforementioned study [25], the authors improved the 
affinity of the antibody with already known structure 
of the antibody-antigen complex [25], while the tertia-
ry structures of complexes of new antibodies, as well 
as most commercially available antibodies, are un-
known [26]. Therefore, the ability to correctly identify 
the antibody-binding site on the target protein has be-
come of a particular importance. Various experimental 
and computational approaches have been developed to 
solve this problem [27]. In silico methods use both the 
tertiary structures of target proteins and their amino 
acid sequences as input data. Although prediction of 
linear epitopes based on their amino acid sequence 
yields fine results, they represent only ~10% of all 
epitopes [27, 28]. The attempts to predict conforma-
tional epitopes based on amino acid sequences have 
been mostly unsuccessful due to the difficulties in ac-
counting for the spatial interactions between different 
fragments of protein sequences [29-31]. Therefore, the 
most common method is macromolecular (protein–
protein) docking, in which two proteins are docked 
as rigid structures based on the assessment of their 
electrostatic and steric complementarity. Formation of 
protein–protein complexes is accompanied by mutu-
ally induced adjustments of proteins surfaces, which 
makes rigid protein–protein docking low-informative. 
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For this reason, approaches for modeling protein com-
plexes with rapid mutual geometry optimization have 
been developed [32, 33]. Thus, RosettaFold performs 
rapid geometry adjustments by energy minimiza-
tion using the Monte Carlo algorithm. The SnugDock 
algorithm developed based on the RosettaFold and 
RosettaAntibody software, was specifically designed 
for modeling the antibody-antigen complexes and is 
capable of performing rapid Monte Carlo optimization 
to obtain higher-quality models [34]. It was found that 
an antibody–antigen complex close to the native one 
is usually more energetically favorable, resulting in 
the global energy minimum for the modeled system, 
which makes selection more efficient [33, 35].

However, the use of this approach is limited by its 
low accuracy. The complex optimization step is coarse 
and the energy evaluation function is simplified, lead-
ing to poor correlation between the experimental data 
and predictions [36]. Therefore, the results of docking 
are often further evaluated using molecular dynam-
ics simulations. For instance, in modeling the antibody 
complexes with beta-amyloid, after docking of crene-
zumab (a humanized antibody against beta-amyloid 
peptides 1-40 and 1-42 developed as a treatment for 
Alzheimer’s disease) to beta-amyloid, about 200 com-
plex models were generated and divided into eight 
clusters. Subsequent 200-ns molecular dynamics sim-
ulations were performed on the representatives of 
these clusters in order to optimize the complex struc-
ture, analyze the structure of the obtained complexes, 
and evaluate their interaction energy. Two of these 
complexes were stable, and they explained well the 
experimental data [35].

The Monte Carlo method is stochastic, and its pre-
dictive power depends on the number of iterations, 
which increases the number of possible configurations 
of the complexes and leads to a challenging problem 
of selecting the most probable structures. Special al-
gorithms are employed to increase the conformation-
al sampling in order to reduce random energy fluc-
tuations, re-evaluate complex energies by increasing 
the importance of electrostatic and desolvation ener-
gy, and cluster the complexes. The programs imple-
menting these algorithms are FiberDock, ZRANK, and 
pyDock [37-40].

In addition to the Monte Carlo-based methods, 
direct approaches for searching the interacting surfac-
es have been developed using the fast Fourier trans-
form (FFT). This algorithm can search for correspon-
dences between the protein surfaces by transforming 
them into the frequency domain. Consequently, it 
identifies significantly fewer potential binding sites 
and conformations and in much lesser time, partly 
due to the ability to perform computations on graph-
ics processors. However, the most significant factor 
in this algorithm is geometric matching (rather than 

physicochemical compatibility), which substantially 
limits the applicability of the approach and requires 
additional modeling steps [41].

There are also methods based on predicting the 
interaction energy between two proteins, e.g., in an-
tibody–antigen complexes, that are optimized to find 
correlations between the structure of interacting sur-
faces and experimentally determined affinity. Recent-
ly, the possibility of using the free energy perturbation 
method (FEP) to predict the influence of point muta-
tions on the affinity and stability of antigen-antibody 
complexes has been demonstrated [42]. The FEP meth-
od is based on calculating the difference in changes 
in the free energy of a complex during conversion 
of a ligand (or amino acid residue) into another one 
via small changes in the ligand structure followed by 
optimization of each intermediate complex structure 
by molecular dynamics simulation. The DDMut-PPI 
program has been developed based on deep learning 
methods to predict with a higher efficiency the chang-
es in the free binding energy for two proteins [43]. 
The  increasing number of structures of protein com-
plexes in the PDB database has made possible the de-
velopment of frequency matrices. These matrices have 
shown the preference for polar and charged amino 
acid residues at the interaction interface, thus allow-
ing rapid selection of potential interaction areas based 
on this criterion. This additional selection of complex-
es by their physicochemical properties significantly 
increases the probability of finding correct complex 
geometry [44, 45].

More universal combined approaches have also 
been developed. For instance, the modeling of anti-
body structure by homology, complex optimization, 
and application of sophisticated physicochemical eval-
uation functions have been used in the OptMAVEn-2.0 
program for de novo modeling of variable antibody 
fragments for the interaction with specific epitopes on 
the protein antigen surface. This method implements 
protein–protein docking, pose optimization, side-chain 
positioning optimization, sequence selection, construc-
tion of statistical matrices, and more [46]. The method 
mimics the natural process of V(D)J gene recombina-
tion by designing antibodies from modular Ab parts 
(MAPs) with subsequent structure optimization to in-
crease their affinity. When this approach was used for 
constructing antibodies against peptides, five designed 
antibodies that were tested experimentally demon-
strated correct protein globule folding and stability in 
solution. Three of them exhibited a nanomolar-range 
affinity [47]. This approach was also used to design 
two antibodies against epitopes on the Zika virus enve-
lope protein [46].

An intriguing prospect in the development of an-
tibody modeling methods is the possibility of de novo 
design of antibodies against a specified epitope based 
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Fig. 2. Molecular modeling methods used for the development and optimization of monoclonal antibodies.

on computational models. A new approach has been 
developed that includes an assembly of a library of 
short seed sequences capable of binding to regions 
on the target protein surface. These sequences are 
docked onto the protein surface using the hot-spot 
method that involves the docking of a library of short 
fragments and selection of those showing the highest 
binding energy with the protein (the term “hot spots” 
often refers to amino acid residues that significantly 
contribute to the binding energy). Then, an antibody 
backbone is selected to link these short sequences. 
With a sufficiently diverse library, this approach could 
be used for the directed development of antibodies for 
specific epitopes; however, in the original work, its ap-
plication was limited to the epitopes with the known 
antibody–epitope complex structures [48].

Combining statistical analysis and homology 
modeling is particularly applicable in the modeling 
methods based on deep learning. The AlphaFold2 neu-
ral network based on the transformer model and its 

extension AlphaFold-Multimer have been utilized to 
model antibody-antigen complexes using primary se-
quences only. However, the modeling result still re-
mained at ~30% success in reproducing the geometry 
of the experimentally obtained complex [49].

Various deep learning models based on graph neu-
ral networks, language models, etc., have been used 
for modeling antibodies for specific epitopes [50-52]. 
However, these methods are limited by the training 
datasets available from PDB, so that a very limited 
number of structures for both epitopes and antigen- 
binding domains have been used for training.

Other actively developed approaches are methods 
based on deep learning. They efficiently approximate 
hidden patterns and thus can provide a high accura-
cy in model construction, surpassing homology mod-
eling methods, such as Modeller and I-TASSER [53]. 
However, high-quality training of such systems re-
quires large training datasets, which are currently dif-
ficult to obtain. The small number of experimentally 
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Fig. 3. Comparison of antibody structures and examples of antibody fragments.

determined structures limits the efficiency of such ap-
proaches [49].

The methods used for the development and opti-
mization of monoclonal antibodies are shown in Fig. 2.

In addition to the methods for designing the struc-
ture of antibodies and their complexes with antigens, 
various approaches have been developed to predict 
the antibody propensity for aggregation, immunoge-
nicity, and pharmacokinetic clearance [54-56].

Despite a significant variety of methods for mod-
eling interactions in the antibody–antigen complexes, 
most of them have a serious limitation, as they do not 
account for the role of solvent, which is crucial in the 
antibody–antigen interactions. The method most ef-
fectively addressing this issue is molecular dynamics 
simulations in explicit solvent that requires substan-
tial computational resources. Potential solution to this 
problem might involve the use of accelerated dynamics 
methods, including those based on deep learning [57].

Antibody fragments. Structure and methods of 

development. As mentioned earlier, development and 
production of antibodies are costly processes that re-
quire continuous monitoring. Since only the antibody 
variable domain is involved in target binding, truncat-
ed antibody variants retaining the ability to bind their 
targets have been developed. Using genetic engineer-
ing methods, a variety of protein-binding antibody 
fragments have been created, such as single-chain 
variable fragments (scFvs), individual antigen-binding 
fragments (Fab’s), minibodies, nanobodies, and others 
[58-60]. The comparison of antibody structures and 
their fragments is shown in Fig. 3.

The development of all above-mentioned mono-
clonal antibody derivatives has started with the ap-
plication of hybridoma or phage display technologies. 
These technologies enable production of high-affinity 
and specific agents and allow further increase in their 
affinity during selection [61, 62]. Gene regions encod-

ing constant domains responsible for maintaining the 
antibody structure and binding to Fc receptors of the 
immune system are removed by genetic engineering 
methods, while the light and heavy chains of the im-
munoglobulin variable fragments are connected by 
the designed linker sequences.

Nanobodies are based on immunoglobulins with 
only heavy chain in the variable domain and, there-
fore, structurally simpler antigen-binding region. Such 
antibodies have been found in representatives of the 
Camelidae family. Reducing the size of a molecule de-
creases the cost and complexity of its production and 
increases the tissue permeability for this molecule, 
which is especially important in therapeutic applica-
tions. At the same time, this significantly reduces the 
stability of the antigen-binding region, thus worsening 
its binding parameters [58].

Methods for maturation on phage or yeast display 
are employed to solve the problem of reduced affinity 
and specificity of antibody fragments. In these meth-
ods, single substitutions are introduced into the se-
quences encoding antigen-binding regions, resulting in 
the creation of a diverse library from which the most 
affine and specific structures are then selected. Due to 
lower costs and effort associated with working with 
antibody fragments, this approach proves to be quite 
efficient [63].

Molecular modeling methods in the development 

and research of antibody fragments. Due a smaller size 
of antibody fragments, the use of molecular modeling 
methods in the development and optimization of anti-
bodies has proven to be more efficient [64, 65].

Utilization of small antibody fragments makes 
it possible to design bispecific binding systems com-
posed of fragments from two different antibodies con-
nected by a linker. Molecular modeling methods have 
been successfully used to create bispecific scFvs that 
inhibit formation of the T-cell receptor (TCR) complex 
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Fig. 4. Examples of backbones for proteinaceous antibody 
mimetics (PDB codes are given in parenthesis).

with the major histocompatibility complex (MHC-II) 
in the presence of staphylococcal enterotoxin  B (SEB) 
[66]. The most important modeling tool in this study 
was the microsecond molecular dynamics simulation 
which helped to decipher the mechanism of allosteric 
inhibition of the SEB-TCR complex formation.

In [66], a bispecific system was created from the 
variable domains of known antibodies. However, pre-
dicting the structure of new protein-binding antibody 
fragments requires specialized methods. Tools used 
for modeling complete antibodies are ineffective for 
this task, as the absence of stable domains increases 
the antibody fragment mobility [67]. For these tasks, 
special programs, like NanoNet, have been developed. 
This deep learning model can accurately and efficient-
ly (about 1 million structures in four hours on a stan-
dard CPU) predict the structures of nanobodies using 
only their amino acid sequences as an input. These 
models, combined with flexible protein–protein dock-
ing, can serve as virtual screening tools to find new 
high-affinity and specific protein-binding agents [68].

Thus, despite a smaller size of antibody fragments 
compared to full monoclonal antibodies, their model-
ing poses similar challenges and requires significant 
computational resources.

Antibody mimetics. Structure and methods of 

de velopment. Antibodies and their fragments are the 
most commonly used protein-based high-affinity and 
specific binding agents. However, they have several 
disadvantages that limit their application. High costs 
of production, low stability (which leads to problems 
with aggregation), immunogenicity, and high costs of 
storage and logistics are the main limiting factors that 
hinder wider use of antibodies. Most of these prob-
lems are related to the native structure of antibodies, 
which are not meant to exist outside their native envi-
ronment. Despite the small size of antibody fragments, 
their structure still remains suboptimal and includes 
relatively large regions whose function is limited to 
maintaining the structure of the binding site [69].

Therefore, it was proposed to develop protein- 
binding agents non-homologous to antibodies; they are 
known as antibody mimetics (or non-immunoglobulin 
epitope binders). Designing simpler protein structures 
with an enhanced affinity and specificity makes it pos-
sible to overcome the limitations of antibodies while 
retaining their useful features.

Protein antibody mimetics have a simple rigid 
backbone composed of alpha-helices or beta-sheets, 
while their protein-binding sites are usually free loops 
[70]. Examples of protein scaffolds for antibody mi-
metics are shown in Fig. 4. Their development typi-
cally employs site-directed or random mutagenesis. 
Protein antibody mimetics are produced using simple 
bacterial reactors that provide a higher yield of these 
molecules compared to antibodies [63].

The most common method for developing anti-
body mimetics involves a cycle of directed evolution 
followed by candidate selection. Initially, a DNA li-
brary encoding homologous protein structures is am-
plified by error-prone PCR (achieved by adding man-
ganese ions to the reaction mixture) to significantly 
increase the diversity of amino acid sequences relative 
to the original library. The most promising sequences 
with an increased affinity and specificity are selected 
using the phage display method, and the procedure is 
repeated [71]. After a limited number of cycles, a high-
ly affine and specific protein-binding agent with high 
stability can be obtained.

However, this method has limitations that hinder 
a large-scale entry of antibody mimetics to the mar-
ket. One of the main challenges in the design of pro-
tein-based antibody mimetics is finding an appropriate 
protein scaffold. Despite a large variety of known scaf-
folds, such as affibodies (B-domain of staphylococcal 
protein A), adnectins (extracellular domain of human 
fibronectin III), and affitins (variants of DNA-binding 
protein Sac7d), each protein backbone has its draw-
backs, and discovering new ones is constrained by 
the ability to solve protein tertiary structures. Since 
most of these proteins have structures foreign for an 
organism, they tend to be immunogenic, which limits 
their application in vivo. Also, due to the absence of 
Fc fragments, they lack effector functions [63]. Conse-
quently, although protein-based antibody mimetics are 
free from many drawbacks typical for antibodies, their 
quantity and areas of application are currently limited.

Molecular modeling methods in research and de-

velopment of protein antibody mimetics. Molecular 
modeling methods address several serious challenges 
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in the development of protein antibody mimetics. The 
antibody mimetic structure typically includes stable, 
water-soluble fragments of known proteins that can 
adopt a correct conformation in bacterial cells. This 
simplifies their identification, since the amino acid 
sequences of these fragments predominantly consist 
of hydrophilic residues, have a low cysteine content, 
etc. [72]. Analysis of statistic distribution of amino acid 
residues allows to select a limited set of residues that 
can be used to form structures with the desired prop-
erties, such as solubility and pH sensitivity, without 
compromising the binding parameters, resulting in 
the production of proteins retaining stable structures 
over a wide range of temperatures and pH values.

The tertiary structure of such proteins can be pre-
dicted with programs like AlphaFold2 and RosettaFold. 
However, the accuracy of these predictions remains 
uncertain as these programs are trained mostly on na-
tive structures [73]. A potential solution to this issue 
may be the application of diffusion-based deep learn-
ing models, such as AlphaFold3 and Chroma, which 
are capable of predicting protein structures based on 
the desired parameters [74, 75]. Due to the ability of 
diffusion models to make small iterative steps during 
generation, the imposed constraints can cumulatively 
direct the modeling towards the desired properties. 
Thus, the structures predicted by Chroma showed 
minimal differences with the experimentally deter-
mined structures (RMSD, ~1 Å). Since Chroma has a 
subquadratic computational complexity from O(N) to 
O(Nlog[N]), this tool could be very useful for develop-
ing the backbones for protein-based antibody mimet-
ics [75]. A significant limitation of diffusion models is 
generation of the so-called “hallucinations,” i.e., unre-
alistic structures and connections that contradict the 
physical properties [76]. Therefore, expert evaluation 
of modeling results is crucial.

However, the methods used for modeling protein 
structures do not address the issue of potential immu-
nogenicity of designed proteins. Based on proteomics 
data, databases such as SEDB, Epitome, IEDB, AntiJen, 
and Bcipep have been created, that store information 
about epitopes recognized by T-cell and B-cell recep-
tors and antibodies, as well as those incorporated into 
MHC molecules [77-81]. This information can help to 
identify potential epitopes and replace them when de-
signing protein scaffolds, thereby reducing their po-
tential immunogenicity.

Despite a smaller size and lower structural com-
plexity of antibody mimetics compared to antibodies, 
there are currently few examples of application of 
molecular modeling methods for their development. 
The primary approach in the de novo design of protein 
antibody mimetics is the hot spot method, which com-
bines the docking of potentially binding peptides and 
subsequent selection of the scaffolds [82]. Using  this 

method, several mimetics have been developed that 
bind with a high affinity to the conserved regions of 
the influenza virus hemagglutinin (HA). As a result of 
modeling, two high-affinity proteins were designed, 
and the structure of the HA complex with the antibody 
mimetic showing the highest affinity was analyzed by 
X-ray crystallography. The structure of the predicted 
complex closely matched the experimentally deter-
mined one [83].

A combination of several approaches, including 
high-molecular flexible docking, molecular dynamics 
simulation, deep learning methods for the tertiary 
structure prediction, and immunogenicity prediction 
algorithms, can significantly improve existing ap-
proaches and lead to the development of new protein 
antibody mimetics. These mimetics offer a number of 
advantages and lack the limitation of monoclonal anti-
bodies and their derivatives.

NON-PROTEINACEOUS AFFINE 
PROTEIN-BINDING AGENTS

Aptamers. Structure and application. The disad-
vantages of protein affinity agents are related to the 
cost of production, problems with storage and logistics, 
immunogenicity, etc., have stimulated the search for 
non-proteinaceous protein-binding agents. The  most 
promising of them are aptamers.

Aptamers are short single-stranded molecules of 
DNA, RNA, or synthetic nucleic acids, usually 20 to 
60 nucleotides long, with a high affinity and specific-
ity for various high- and low-molecular-weight targets 
[84]. Aptamers were independently discovered by two 
groups in 1990 as a result of the SELEX (systematic 
evolution of ligand by exponential enrichment) pro-
cess [84, 85]. Later, aptamers have been found in na-
ture as components of bacterial riboswitches [86].

The idea of using nucleic acids for the recognition 
of protein targets has emerged in the studies of human 
immunodeficiency virus (HIV). It was shown that the 
transactivation regulatory element (TAR) containing 
RNA sequences can inhibit HIV replication by binding 
to the viral protein Tat with a high affinity and spec-
ificity [87]. Despite that aptamers are completely dif-
ferent from antibodies; it is believed that they can 
compete with antibodies in both diagnostic and thera-
peutic applications [88]. Although aptamers recognize 
and bind targets in the same way as antibodies, they 
have a number of advantages, such as shorter produc-
tion time and lower cost, easier modifications, better 
thermal and chemical stability, smaller size, and low 
immunogenicity [89].

Due to their advantages over antibodies, aptamers 
have found applications in various fields of molecu-
lar biology, biotechnology, diagnostics, and therapy. 
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One of the promising areas of research using aptam-
ers is development of optical sensors. Numerous stud-
ies have shown that fluorescent dyes attached to the 
conformationally flexible regions of the aptamers can 
produce an optical signal in response to ligand binding 
[90]. However, the number of aptamers on the market 
is limited compared to antibodies, primarily due to the 
lack of an urgent need for infrastructure restructuring, 
which is economically costly and currently impractical 
for most applications [91].

Many aptamers designed for therapeutic purposes 
are currently tested in clinical trials or have already 
been released to the market, including drugs for the 
treatment of age-related macular degeneration, blood 
clotting disorders, cancer, inflammatory processes, etc. 
[89, 92].

Besides being used as therapeutic agents, aptam-
ers can be employed for targeted drug delivery into 
human cells to enhance drug efficacy and reduce side 
effects [93]. Human prostate-specific membrane anti-
gen (PSMA, a transmembrane protein associated with 
prostate cancer) that is overexpressed on the surface 
of tumor cells, has become the first model system for 
the aptamer-based drug delivery [94]. Bispecific ap-
tamers against gp120 and CD4 receptor deliver a small 
interfering RNA-based active agent that inhibits HIV 
activity in vitro [95].

Methods for designing and producing aptamers. 
A standard method of aptamer selection is SELEX, 
which is an analogue of directed evolution followed by 
screening of protein-binding candidates, but instead 
of phage display and expression in bacterial cells, it 
involves in vitro incubation and PCR. During SELEX, 
the target is first incubated with a set (~ 109-1011) of 
single-stranded random oligonucleotides known as the 
primary library. The oligonucleotides in the SELEX li-
brary typically consist of 40-100 nucleotides due to lim-
itations of chemical synthesis, with a random region 
in the middle and common sequences at both ends for 
primer annealing. After incubation of the primary li-
brary with the target, unbound oligonucleotides are 
removed, and the aptamer-protein complexes are sep-
arated. The released DNA sequences are amplified by 
the error-prone PCR. Standard SELEX usually includes 
several rounds of this procedure [85]; the selected ap-
tamers are sequenced and parameters of their binding 
to the target are assessed by various methods, such as 
surface plasmon resonance or isothermal calorimetry. 
Up to twenty selection rounds are typically carried 
out to enrich aptamers with a high affinity to the tar-
get [96].

Although traditional SELEX is the main approach 
for generating aptamers, it is not exempt from lim-
itations. The primary library should include as many 
diverse structures as possible, while at the same time, 
it should not contain double-stranded nucleic acids, as 

well as single-stranded linear structures incapable of 
providing reliable folding. The problem of finding the 
optimal primary library remains unsolved [97]. Typi-
cally, to increase the library diversity, a large number 
of structures with a high proportion of GC pairs are 
used. It has been shown that increasing the GC content 
of the primary library leads to a greater complexity of 
tertiary structures, resulting in a greater diversity of 
potential aptamers and higher average affinity [98].

Another approach to increasing the diversity 
of the primary library is an approach developed by 
SomaLogic (a subsidiary of Standard BioTools). The com-
pany’s primary library for the production of special 
modified aptamers, the so-called SOMAmers, contains 
a large number of structures in which thymidines are 
replaced by C5′-ethynyl-2′-deoxyuridines. During SELEX, 
these residues are modified by side chains of amino 
acids or other groups to expand the properties of the 
obtained aptamers [99]. However, the evident limita-
tions of this method are its high cost and possibility 
to insert only a single chemical modification into a 
SOMAmer structure.

The PCR process used for enrichment in SELEX is 
not ideal. Due to the presence of a large variety of sec-
ondary structures in the primary library and a higher 
rate of synthesis of short sequences, there is a bias that 
can lead to excessive enrichment with the structures 
possessing the structure most advantageous for polym-
erization reaction, rather than with structures with the 
optimal required parameters. To solve this problem, 
emulsion PCR is used, in which each individual struc-
ture is amplified in a microsome, thus not competing 
for the polymerase active site [100].

Despite numerous approaches to the SELEX optimi-
zation, its efficiency currently remains at a 30% proba-
bility of detecting the desired aptamer [101].

One of the serious limitations of aptamers com-
pared to antibodies is the related to the absence of hy-
drophobic properties in natural nucleic acids. Among 
the solutions are the above-mentioned SOMAmers that 
can be modified, in particular, by side radicals of hy-
drophobic amino acids (e.g., benzyl radical) (Fig. 5a). 
However, this modification is labor-intensive and not 
universal, since the obtained aptamers cannot be not 
amplified directly by PCR, and additional steps are re-
quired. More promising is addition of a synthetic base, 
such as dNaM-d5SICS (Fig. 5a). Due to the presence of 
polyaromatic hydrocarbon group, this base is hydro-
phobic, but still maintains its ability for complementa-
ry replication in PCR using modified DNA polymerases 
[102]. However, adding a new base pair to the primary 
library for SELEX requires an increased diversity and 
significantly raises the costs of production.

Another limitation of aptamers as therapeutic 
agents is the lack of effector functions. Sequentially 
cross-linking of free ends of two aptamers, one of 
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which bound to the target protein and the second in-
teracted to FcRγIII, resulted in the effector aptamer ca-
pable of inducing immune response via binding to the 
target protein [103].

Since aptamers are short oligonucleotides, they 
are susceptible to degradation. RNA-based aptamers 
are highly unstable due to self-degradation caused by 
formation of transient bonds between the 2′-hydroxyl 
group and phosphate, as well as due to the high lev-
el of environment contamination with ribonucleases 
that catalyze RNA cleavage [104, 105]. DNA aptamers 
prove to be more practical in terms of stability; how-
ever, they can also be degraded by deoxyribonucleases 
in vivo. Numerous modifications of aptamers have been 
developed to prevent both autodegradation and the ac-
tion of various nucleases (Fig.  5b). Substitution of the 
2′-hydroxyl group with amino group (I), fluorine (II), 
or O-methyl group (III) prevented both autodegrada-
tion and cleavage by nucleases. However, this modi-
fication significantly enhanced the flexibility of nu-
cleic acid, making it similar to the flexibility of RNA, 
which may affect the structure of the resulting mole-
cules. 2′-Deoxy-2′-fluoro-D-arabinonucleic acid (IV) and 
locked nucleic acids (LNAs) (V) are used to signifi-
cantly increase the resistance of aptamers to nucleas-
es, while maintaining the flexibility of DNA molecule 
[106]. More effective in this case is replacement of the 
phosphate group oxygen with sulfur or methyl group, 
which does not affect the structure of deoxyribose. 
In  this case, the aptamer acquires resistance to nucle-
ases, but alteration of the molecule charge increases 
its ability for non-specific binding to the target [106, 
107]. Also, modifications increasing the resistance to 
nucleases or increasing their affinity can prevent po-
lymerization in PCR, which complicates the SELEX pro-
cess [108].

Molecular modeling methods in design and 

studies of aptamers. Method for aptamer selection 

from a primary sequence library. To optimize the devel-
opment of aptamers, numerous methods based on mo-
lecular modeling have been proposed. Commonly used 
computational approaches include docking and molec-
ular dynamics, which allow to simulate interactions 
between the aptamer and its target. These methods 
are sometimes supplemented by quantum mechan-
ics or hybrid energy calculation methods to provide a 
more precise estimation of the binding energy [109]. 
Methods for predicting the secondary and tertiary 
structure of RNA and DNA play an important role in 
the design of aptamers, since the tertiary structure 
is required to model the protein-aptamer complexes 
[110]. Modern in silico tools make it possible to model 
aptamers for both small molecules and complex bio-
polymers. The only limitation of these methods is that 
they cannot use cells as targets (unlike SELEX). A typi-
cal cycle of aptamer modeling in silico starts with the 

secondary structure prediction, followed by the ter-
tiary structure prediction and its optimization. Next, 
rigid or flexible docking of the target and aptamer is 
performed, leading to the selection of complexes with 
the highest binding scores. The next important, but 
not mandatory step is molecular dynamics simulation 
to assess the complex stability and to determine the 
binding energy with a higher accuracy [111]. Analysis 
of the aptamer interaction with the target allows to 
perform nucleotide substitutions or chemical modifi-
cations, after which the previous steps can be repeated 
with new candidates [112]. In addition to the structure 
and interaction modeling methods, quantitative struc-
ture–activity relationship (QSAR) models have been 
utilized in aptamer design for rapid prediction of the 
desired feature and scanning of the sequence space 
[113-115].

All the above computational methods can be used 
in combination with the experimental ones, comple-
menting each other and increasing the efficiency of ap-
tamer design. For example, the diversity of the primary 
SELEX library can be increased by using the methods 
for prediction of secondary structures that allow esti-
mating the structure complexity and selecting sequenc-
es with the greatest potential. Such methods can also 
be applied to select a correct ratio of structures in the 
primary library to prevent an uneven PCR amplifica-
tion [116]. However, the methods for the secondary 
structure prediction are generally low-performance 
and unable to quickly predict a large number of differ-
ent structures. Also, they are mostly applicable to RNA, 
while aptamers are predominantly based on DNA due 
to its greater structural stability and cost-effective-
ness. Furthermore, most secondary structure predic-
tion methods ignore the common pseudoknot struc-
ture due to the high computational cost of its predic-
tion [116, 117]. Therefore, deep learning methods have 
been proposed to develop models capable of predicting 
nucleic acid structures with a high speed and accura-
cy [118]. However, currently, experimental data on sin-
gle-stranded DNA structures are still insufficient for a 
high-quality model training.

A primary sequence library in SELEX contains a 
large number of diverse sequences; however, an ap-
tamer selected for a specific target may still be subopti-
mal, i.e., have low tertiary structure stability or affinity. 
A multistep approach involving introduction of point 
substitutions into the aptamer followed by the molec-
ular dynamics simulation was applied in the devel-
opment of an aptamer for binding with the antibiotic 
sulfadimethoxine [119]. The authors used an aptamer 
generated through SELEX as a starting component. Its 
interaction with the target was modeled using molec-
ular dynamics, and the affinity of interaction was esti-
mated as a change in the Gibbs free energy during in-
teraction between the aptamer and the target molecule. 



METHODS FOR MODELING AFFINE AND SPECIFIC AGENTS 1461

BIOCHEMISTRY (Moscow) Vol. 89 No. 8 2024

Fig. 5. Modifications of nucleic acids to increase the affinity of aptamers and their resistance to nucleases: a) modification 
adding molecule hydrophobicity; b)  modifications increasing resistance to autodegradation and hydrolysis by nucleases: 
2′-amino- (I), 2′-fluoro- (II), 2′-O-methyl-deoxyribose (III), 2′-deoxy-2′-fluoro-D-arabinonucleic acid (IV), LNA (V), and phosphate 
modifications (VI, VII). B, any base.

Point substitutions were introduced into the aptam-
er, after which molecular dynamics simulation and 
assessment of binding energy were performed again. 
The best sequences were selected at each step, which 
allowed to increase the aptamer affinity without re-
sorting to additional SELEX experiments.

Another example of this approach is development 
of an aptamer against prostate-specific antigen (PSA) 
[120]. The researchers utilized five sequences obtained 
by SELEX as a basis for modeling and adopted the 
functions of reproduction and crossover in the genet-
ic algorithm to produce next-generation sequences, 
whose interaction with the target was assessed using 

protein-protein docking. The best candidates were 
synthesized and their interaction with PSA was evalu-
ated using a quartz crystal microbalance to select the 
most promising candidates. Hence, in this study, the 
sequences were iteratively optimized for the target by 
utilizing both real experiments, as well as simpler and 
more high-performance computer models. The result-
ing aptamer showed a three-fold higher affinity for the 
target than the original aptamers obtained by SELEX.

Method for aptamer modeling based on the target 

structure. In the studies described above, computer 
modeling has been used mainly to improve already 
existing experimentally obtained aptamers. However, 
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approaches to de novo modeling of aptamers based on 
the information about the target structure have been 
proposed. To design an aptamer for cytochrome P450, 
Shcherbinin et al. [121] used the hot spot method and 
defined two distinct regions in the nucleotide chain. 
The first one was involved in the formation of bonds 
with the protein through nucleotides, making the prin-
cipal contribution to the molecule affinity and specific-
ity. The second region was responsible for preserving 
the aptamer’s tertiary structure. After determining the 
protein surface regions with positively charged amino 
acids, the structures of trinucleotides binding to the 
protein were obtained using small molecule docking 
and molecular dynamics simulation. The fragments 
exhibiting the highest affinity were fused with heli-
cal complementary regions to form a loop structure. 
The synthesized aptamers showed a high specificity 
by exclusively binding to proteins within the same 
family; the experimentally determined binding ener-
gies showed a strong correlation with the calculated 
ones [121].

The modeling of molecules usually starts with a 
creation of a set of candidate molecules and assess-
ment of their efficiency for further selection. The most 
accurate, but at the same time, the most expensive ap-
proach for such assessment is experimental estimation 
of the binding energy for the candidate interaction 
with the target. Hence, molecular docking and dynam-
ics methods are used instead, although, simulations 
for a large number of candidates can be time-consum-
ing. An alternative approach involves utilizing ma-
chine learning methods to predict a required param-
eter. This approach was used to develop an aptamer 
against aminopeptidase CD13. The aptamer sequences 
were generated iteratively using a genetic algorithm. 
Next-generation sequences were selected by employing 
an evaluation function based on the machine learning 
model pretrained on the characteristics of the prima-
ry and secondary structures [114]. In another study, a 
neural network model trained on experimental data 
was used to explore a set of sequences to develop ap-
tamers against neutrophil gelatinase-associated lipo-
calin. The authors developed and synthesized aptam-
ers with a high affinity, but also found shorter nucleic 
acid sequences with a comparable affinity and great-
er stability [115]. However, such neural networks can 
identify dependencies and improve already known 
structures, but when searching for new compounds, 
they can exclude promising structures from consider-
ation. For this reason, the results of these studies re-
quire thorough validation and good interpretation.

Molecular modeling is most promising in the de-
velopment of modified aptamers more suitable for 
therapeutic applications. Thus, using in silico approach-
es to the aptamer development allows to select an opti-
mal combination of modifications that can enhance the 

binding affinity, resistance to nuclease degradation, 
while maintaining the binding specificity. In [122], se-
quential application of different computer programs 
allowed to model modified aptamers and their inter-
actions with target proteins. The authors used the clas-
sical prediction of the aptamer tertiary structure, fol-
lowed by the nucleotide modification, high-molecular 
docking, and analysis of interacting bases. In particu-
lar, Mfold and 3dRNA were used to predict the tertia-
ry structures of nucleic acids. However, Mfold cannot 
predict pseudoknots and also demonstrates low per-
formance [123]; 3dRNA also has low performance and 
shows a significant discrepancy between the exper-
imental and predicted structures (RMSD, ~4 Å) [124]. 
Thus, due to the low prediction accuracy and low per-
formance, the suggested approach is limited to model-
ing new aptamers for a given target.

Another obvious limitation of this method is the 
absence of molecular dynamics stage for optimization 
of the complex structure. Even a single modification 
can profoundly affect the tertiary structure of nucle-
ic acid [125]. For this reason, after modifications, the 
structure should be investigated by molecular dy-
namics methods to identify conformational changes. 
However, conventional force fields for modeling nucle-
ic acids cannot be used to simulate modified nucleic 
acids. Galindo-Murillo et al. [126] conducted param-
eterization of modified nucleotides, enabling molec-
ular dynamics simulation of atypical bases, which 
yielded a good similarity between the modeling and 
experimental results. However, the range of param-
eterized modifications was limited. Existing univer-
sal force fields are capable of simulating molecules 
with many different modifications, but for biopoly-
mers, these force fields are in poor agreement with 
experiments [127].

Therefore, there are two promising directions in 
the development of methods for molecular modeling of 
aptamers based on the target structure. One group of 
methods imitates the SELEX selection process using the 
tertiary structure prediction, docking, and molecular 
dynamics, while the other group of methods provide 
a  targeted development of the nucleic acid structure 
capable of binding to the epitope on the protein sur-
face (Fig. 6). Both approaches require high-quality pre-
diction of the secondary and tertiary structure, as well 
as the use of molecular dynamics simulation. The de-
velopment of these methods is crucial for the success-
ful prediction of new aptamers.

Molecularly imprinted polymers. Structure and 

methods of production. Molecularly imprinted poly-
mers (MIPs) were proposed in 1973 to facilitate pro-
duction of antibody analogs [128]. MIPs are porous 
materials capable of selective recognition of a template 
(molecules intended to be recognized by MIP). They 
are obtained by self-assembly of functional monomers 
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Fig. 6. Application of molecular modeling methods in the development and optimization of aptamers.

around the template molecule in a porogen (solvent 
for pore formation), after which polymerization is ini-
tiated in the presence of a cross-linking reagent [129]. 
MIPs have found many applications in diagnostics 
(e.g., in analogs of immunoassay), affinity separation, 
drug delivery, etc. [130-135]. MIPs were originally de-
signed for low-molecular-weight compounds, but now-
adays they start to find their application for interac-
tion with protein molecules.

The basic approach to obtaining MIPs is a directed 
creation of a surface with the geometric and physico-
chemical correspondence to a template. The first step 
is addition of functional monomers, which interact 
with the template and form an unstable pre-polymer-
ization complex. At the second stage, polymerization 
of the resulting complex is carried out in the presence 
of an excess of cross-linking monomers and a porogen. 
At the last stage, the template is washed out from MIP, 
thus creating a cavity for specific binding of the target 
protein [136, 137].

There are two main approaches to obtaining MIPs. 
The first one includes the use of covalent interactions 
between the monomers and the template; after poly-

merization, the covalent bonds are cleaved. Due to the 
complexity of this procedure and the need for addi-
tional cleavage steps, this approach is rarely used for 
proteins.

The second approach is based on the formation 
of relatively weak noncovalent interactions between 
the template and functional monomers, such as hy-
drogen bonds, ionic interactions, van der Waals forc-
es, dipole–dipole and hydrophobic interactions. Due 
to its simplicity, it is the most commonly used method. 
However, noncovalent binding requires a more careful 
selection of the composition and number of functional 
monomers [138].

Depending on the template structure and select-
ed polymer, the synthesis of MIPs always needs with a 
careful selection of the reaction mixture composition 
and reaction conditions, which is one of the main dis-
advantages of this method. In addition to the unguid-
ed selection of possible components, functional and 
cross-linking monomers, porogens, and reaction con-
ditions, this process is also poorly reproducible. Also, 
each new batch of MIPs requires the use of a template, 
which hinders the scalability of production [139].
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A combinatorial chemistry method has been pro-
posed to solve the problem of component selection, 
which involved creating a large variety of possible 
compositions and running experiments on production 
of MIPs in parallel [140, 141].

Other factors complicating MIP synthesis are po-
lymerization conditions, including elevated tempera-
tures, pH values unnatural for proteins, and organic 
solvents, which can lead to changes in the template 
structure [132]. The method of epitope imprinting was 
proposed as an alternative to using the whole protein. 
Most proteins have surface regions with a large num-
ber of polar and charged amino acids that are most 
commonly involved in binding. Instead of attempting 
polymerization around the whole protein, which re-
quires selection of conditions ensuring retention of the 
protein structure, only fragments that include a giv-
en epitope are used. Due to a smaller size and often 
more stable structure of such epitopes, this approach 
increases the range of acceptable conditions for the 
polymerization reaction. However, in order to achieve 
a full correspondence between the given epitope and 
the native structure, it is necessary to carry out rather 
complicated design of smaller proteins that preserve 
the structure of the epitope [142].

Although it is possible to test a large number of 
components to obtain a required MIP structure, the 
strength of interactions between the functional mono-
mers and the template is usually low, so the monomers 
are added in excess. This often results in a wide range 
of equilibrium states of the monomer–template com-
plex, leading to the variety in the affinity and specific-
ity of the resulting MIPs [143].

Polymerization around the template must allow 
subsequent unimpeded removal of the template pro-
tein from the binding site, leaving access for a new 
protein. Therefore, tightly polymerizing cross-linking 
monomers used to develop MIPs for small molecules 
are not suitable for proteins. For this reason, meth-
ods allowing to change reaction conditions in order 

to regulate the pore size and, therefore, to control the 
binding and release of proteins have been proposed. 
In particular, it was suggested to carry out polymer-
ization with the addition of pH-sensitive cross-linking 
elements of peptide nature, so that the increase in pH 
would lead to the increase in the pore size and binding 
site increase and provide the protein release [144].

A more popular approach is the surface imprint 
method, when the template is coated with a thin layer 
of polymer that does not completely cover the protein 
globule and does not interfere with the protein mol-
ecule release and binding. Further development of 
this method is nanoparticle pre-polymerization, when 
functional monomers are bound to the pre-prepared 
nanoparticles composed of a cross-linking polymer, 
and full polymerization occurs after interaction with 
the target protein. However, even with this modifica-
tion, the surface imprint method significantly reduc-
es the binding specificity compared to bulk polymer-
ization [145]. The types of protein-binding MIPs are 
shown in Fig. 7.

Molecular modeling in the development and re-

search of MIPs. MIP development is a long and costly 
process. It requires selection of optimal monomers, the 
ratio of components in the reaction mixture, and opti-
mal reaction conditions. This complicates and length-
ens process of develop MIP development, which limits 
their application. Computer modeling can significantly 
optimize this process.

To date, most studies on molecular modeling of 
MIPs have been performed for low-molecular-weight 
compounds [146-149]. The main efforts have been fo-
cused on the pre-polymerization stage. Both quantum 
mechanics and molecular dynamics methods have 
been used for this purpose in order to find the most 
suitable functional monomers, evaluate the binding 
process, and select the optimal ratio of the reaction 
mixture components [150-157].

Several computational approaches have been pro-
posed to design MIPs that bind to proteins [158-160]. 

Fig. 7. Protein-binding MIPs.
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In this case, the most commonly used methods are mo-
lecular docking and molecular dynamics simulation.

One of the difficulties in creating MIPs is their 
possible influence on the structure of the template 
protein. Thus, molecular dynamics modeling of com-
plex formation between ribonuclease A and functional 
monomers based on styrene and cross-linking polymer 
polyethylene glycol dimethylacrylate 400, showed pos-
sible conformational changes in the protein that led 
to its inactivation [161]. At the same time, no possible 
influence of functional monomers on the PSA struc-
ture has been revealed by molecular dynamics simula-
tions in [162].

Kryscio et  al. [158] studied the mechanisms un-
derlying the effect of MIP synthesis conditions on the 
conformation of albumin by docking various function-
al and cross-linking monomers onto the protein sur-
face. It was found that the monomers preferentially 
bound to a particular position at the protein surface, 
where they significantly affected the protein tertiary 
structure. Moreover, different functional monomers 
competed for the same amino acid residues.

Molecular modeling techniques are also used to 
select monomers and to find the optimal reagent ratios 
for the design of protein-specific MIPs [158, 163, 164]. 
Rajpal et al. [165] used docking to analyze the compo-
sition of a mixture of functional monomers in order to 
select the optimal reaction mixture for the synthesis 
of MIPs for several peptides prior to laboratory exper-
iments. Docking followed by molecular dynamics sim-
ulation has been used to select the concentrations of 
functional and cross-linking monomers for the optimal 
binding to myoglobin [159].

Another important task is prediction of the MIP af-
finity to its target [166]. Lowdon et al. [166] evaluated 
several deep learning-based methods for the ability to 
estimate the affinity of MIPs to small molecules. Thus, 
the use of different deep learning models allowed to 
predict well the binding parameters of molecular im-
prints to 2-methoxphenidine. A similar approach can 
be applied to the analysis of MIP binding to proteins, 
which can greatly simplify selection of components 
and polymerization conditions in the preparation of 
molecular imprints.

CONCLUSION

The development of high-affinity and specific 
agents clearly evolves towards simpler, cheaper, and 
more technologically advanced solutions. Initially, 
these agents were monoclonal antibodies and their 
derivatives (chimeric, humanized, and human mono-
clonal antibodies). The need to simplify and cheapen 
the production and further development of antibody 
technologies have led to the use of antibody fragments, 

such as scFvs, single antigen binding fragment (Fab’s), 
minibodies, nanobodies, and others. Antibody mimet-
ics became the next step in the development of pro-
teinaceous high-affinity agents. Because of difficulties 
with the storage and application of protein systems, 
the next stage was the development of non-protein-
aceous systems, the main ones being aptamers and 
MIPs. All developed high-affinity agents have their 
advantages and disadvantages. It can be expected that 
in the future, these technologies will be developed in 
parallel, providing researchers with a wide range of 
solutions to choose in each particular case depending 
on the tasks at hand.

In recent years, molecular modeling methods have 
been actively used in the development of high-affini-
ty agents. Their application has allowed to abandon 
the traditional trial-and-error approach. Modeling the 
interaction of a high-affinity agent with its target pro-
vides a more detailed understanding of the molecular 
mechanisms underlying the binding and facilitates 
selection of the optimal structure of the system and 
conditions for its preparation. Molecular modeling 
has become an integral part of such developments.

The main methods are:
1. Homology modeling to construct the structures 

of antibodies, their fragments, and known antibody 
mimetics, as well as the structure of the target;

2. Ab initio methods for predicting variable bind-
ing regions of the antibodies, their fragments, and an-
tibody mimetics;

3. Macromolecular docking for the pose selection 
for interacting bases in the design of protein-binding 
agents and aptamers (e.g., hot spot method) and in 
selection of components for MIP design;

4. Macromolecular docking for predicting the 
structures of protein–protein and protein–nucleic acid 
complexes;

5. Molecular mechanics, quantum chemistry, and 
statistical methods to estimate the interaction ener-
gies as a basis for selecting the binding agents with a 
higher affinity;

6. Molecular dynamics to simulate the in vivo be-
havior of molecular systems and to assess the stability 
of simulated structures and their complexes.

The classical modeling methods continue to im-
prove; however, in recent years, there has been a dra-
matic increase in the interest in prediction systems 
based on deep learning. The ability of neural networks 
to recognize hidden patterns allows to create the pro-
grams with a high predictive power. Systems based 
on deep learning are used in modeling and de novo 
design of proteins, protein–protein complexes (in-
cluding antibodies and antigen–antibody complexes), 
and nucleic acids, as they allow approximation of 
physicochemical characteristics, accelerate computa-
tionally expensive simulation processes, and more. 
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However, a serious limitation of deep learning-based 
methods is insufficient training datasets, often leading 
to a decreased accuracy or “hallucinations”, which pre-
vents these methods from fully supplanting the classi-
cal approaches.

Modern software packages, including freeware 
and web-based ones, can perform the whole cycle 
of computations in the development of all types of 
high-affinity agents. Nevertheless, more data, algo-
rithm improvement, and comparative studies of the ap-
plicability of different methods are required to further 
increase their accuracy, performance, and efficiency.
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