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Abstract—Chronic kidney disease can progress to the end-stage renal disease (ESRD) characterized by a high risk of mor-
bidity and mortality. ESRD requires immediate therapy or even dialysis or kidney transplantation, therefore, its time-
ly diagnostics is critical for many patients. ESRD is associated with pathological changes, such as inflammation, fibrosis,
endocrine disorders, and epigenetic changes in various cells, which could serve as ESRD markers. The review summarizes
information on conventional and new ESRD biomarkers that can be assessed in kidney tissue, blood, and urine. Some bio-
markers are specific to a particular pathology, while others are more universal. Here, we suggest several universal inflamma-
tory, fibrotic, hormonal, and epigenetic markers indicative of severe deterioration of renal function and ESRD progression

for improvement of ESRD diagnostics.
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INTRODUCTION

Chronic kidney disecase (CKD) is characterized by
a gradual loss of kidney function and involves a series of
local and systemic pathological processes, from decrease
in glomerular filtration rate (GFR) to the development of
end-stage renal disease (ESRD) [1-3]. CKD and partic-
ularly ESRD are important factors in the deterioration of

patients’ quality of life and mortality. The mortality rate
in ESRD patients is significantly higher than in patients
with CKD only (in the absence of ESRD) and varies
from 20 to 50% over 24 months even when modern he-
modialysis techniques are used [4]. The late CKD stages
require renal replacement therapy, such as peritoneal di-
alysis, hemodialysis, or kidney transplantation. However,
allograft transplantation is available only for 10% patients

Abbreviations: AGT, angiotensinogen; a-SMA, a-smooth muscle actin; BNP, brain natriuretic peptide; BMP-7, bone mor-
phogenetic protein 7; CKD, chronic kidney disease; CNP, C-type natriuretic peptide; CTGF, connective tissue growth factor;
CXCLI16, C-X-C motif chemokine ligand 16; DcR2, decoy receptor 2; ECM, extracellular matrix; ESRD, end-stage renal disease;
GFR, glomerular filtration rate; HE4, human epididymal secretory protein E4; MCP-1, monocyte chemoattractant protein 1;
miRs, microRNAs; MTHFR, methylenetetrahydrofolate reductase; RAAS, renin-angiotensin-aldosterone system; TGF[31, trans-
forming growth factor beta 1; UUOQO, unilateral ureteral obstruction; PRO-C6, fragment reflecting collagen VI formation; C1M,
fragment of collagen I hydrolysis with MMP; C3M, fragment reflecting collagen I1I degradation; PRO-C3, fragment reflecting
collagen III formation; PINP, procollagen type I N-terminal propeptide; PIIINP, procollagen type 111 N-terminal propeptide.
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needing new organs [5]. By the end of 2018, the number
of people with ESRD exceeded 785,000 in the United
States [6] and the number of patients diagnosed with this
pathology has been steadily increasing [4].

At present, assessment of CKD stage and diag-
nostics of ESRD are based on morphological and
functional symptoms of kidney damage. The defini-
tion and classification of CKD was proposed by the
National Kidney Foundation Kidney Disease Out-
comes Quality Initiative (NKF-KDOQI) in 2002 and
approved by the Kidney Disease: Improving Global
Outcomes organization (KDIGO) in 2004 [7]. Ac-
cording to KDIGO 2012 clinical practice guide-
line [8], CKD classification is based on the estimated
GFR (eGFR) (Fig. 1): stage 1 — normal eGFR (above
90 ml/min/1.73 m?) with microalbuminuria; stage 2 —
eGFR, 60-89 ml/min/1.73 m?> with microalbumin-
uria; stage 3 — eGFR, 30-59 ml/min/1.73 m?; stage 4 —
eGFR, 15-29 ml/min/1.73 m?; stage 5/ESRD — eGFR,
below 15 ml/min/1.73 m?. Stages 3-5 are defined as CKD.

Clinical practice uses several approaches to the
GFR assessment, including those based on measuring
the clearance of endogenous creatinine and cystatin C
(eGFR) or clearance of exogenous substances, such as
radiopharmaceuticals, e.g., *"Tc-labeled diethylenetri-
amine pentaacetate (measured GFR, mGFR) [9, 10].
mGFR is a more accurate parameter for GFR assess-
ment, but its evaluation requires special equipment and
permission to work with radiopharmaceuticals, which
significantly limits the use of this method.

Recently, using eGFR as a single parameter in
the diagnostics of CKD has been criticized and found
insufficient, as it has the following limitations: (i) kid-
ney is a multifunctional organ, while GFR reflects only
one of its functions; (ii) various non-renal factors can
influence GFR measurements; (iii) GFR has intrinsic
variability and depends on food and fluid intake, car-
diovascular status, and blood pressure, especially in the
case of impaired autoregulation or use of medications;
(iv) GFR changes with age in a unique nonlinear pat-
tern; (v) eGFR may not correlate with GFR under cer-
tain conditions and in certain diseases. Therefore, eGFR
can be used as an initial screening tool, but should not
be applied to the diagnostics of CKD without careful
assessment of the entire clinical profile [11]. Therefore,
there is still a need for biomarkers that can be employed
for the diagnostics of CKD and, especially, ESRD.

Renal fibrosis is a typical outcome of inflammation
that occurs in almost all nephropathies [12, 13]. Fibrosis
can affect all kidney compartments, ultimately causing
destruction of the renal parenchyma and ESRD develop-
ment. Therefore, markers of kidney fibrosis can also be
used as universal markers in the diagnostics of CKD and
ESRD. Renal failure is also accompanied by endocrine
disorders and epigenetic changes in various cells, which
can serve as ESRD biomarkers as well. In this review,
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Fig. 1. Classification of CKD based on eGFR (numbers outside the
semicircle indicate eGFR; numbers inside the semicircle correspond
to the stages of renal failure. ESRD is highlighted in red).

we summarize information on currently known biomark-
ers of inflammation, kidney fibrosis, hormonal changes,
and epigenetic changes and discusses their application in
the diagnostics of CKD-to-ESRD progression.

ESRD PROGRESSION

The most common cause of CKD and ESRD is
diabetes mellitus [14]. Other causes [4, 15] are hyper-
tension, renal vascular disease, primary or secondary
glomerulonephritis, cystic kidney disease, tubulointer-
stitial nephritis, obstruction or dysfunction of the urinary
tract, recurrent kidney stone disease, congenital kidney
or bladder defects, acute kidney injury, autoimmune dis-
eases, nephrotoxins, obesity, and certain medications,
including nonsteroidal anti-inflammatory drugs, calci-
neurin inhibitors, and antiretroviral drugs.

All these diseases are characterized by changes in
renal function, reflecting the contribution of individu-
al nephrons to the total GFR [4]. A decline in the renal
function can be initially asymptomatic and cause hyper-
filtration in nephrons. Together with the compensatory
nephron hypertrophy, hyperfiltration allows kidneys to
maintain the GFR. As a result, a patient with mild renal
dysfunction can have normal creatinine levels, so that
the disease can remain undetected for some time [16].
Sooner or later, this adaptive mechanism exhausts itself,
which eventually results in the damage of glomeruli of
remaining nephrons [4]. An increased glomerular cap-
illary pressure damages the capillaries, leading to focal
and segmental glomerulosclerosis and then to glob-
al glomerulosclerosis. Pathomorphological alterations
characteristic of ESRD are shown in Fig. 2.

One of the most important factors in the develop-
ment of renal pathology is inflammation [15, 17, 18].
ESRD can also accompany glomerulosclerosis, tub-
ulointerstitial fibrosis, and atrophy [15, 19]. Finally,
ESRD is associated with endocrine disorders and epi-
genetic changes.
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Fig. 2. Pathological mechanisms of CKD-to-ESRD progression.

INFLAMMATORY MARKERS

Chronic inflammation plays an important role in
the development of renal diseases and can be used as
a prognostic factor in the all-cause and cardiovascular
mortality in hemodialysis patients [20]. Inflammatory
response involves multiple molecules, including pro-
inflammatory cytokines, chemokines, cell adhesion
molecules, and various growth and nuclear factors [21].

There have been a number of studies on the effica-
cy of inflammatory markers in the detection of deteri-
orating kidney function. It was found that when used in
combination with the evaluation of creatinine content,
inflammatory and prothrombotic markers can serve as
predictors of changes in the renal function in elderly pa-
tients without direct measurements of GFR [22]. At the
same time, no associations between nine inflammatory
and procoagulant markers [C-reactive protein, interleu-
kin-6 (IL-6), intercellular adhesion molecule 1, white
blood cell count, fibrinogen, factor VII, factor VIII,
D-dimer, plasmin—antiplasmin complex) and rapid
decline in the renal function has been revealed [23].
The only parameter consistently associated with e GFR
(estimated with cystatin C) was a decrease in the base-
line level of serum albumin [23].

It was shown that CKD (in particular, CKD
stage 5) is accompanied by the elevation of plasma IL-6,
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which could be used for the prediction of the all-cause
and cardiovascular mortality in pre-dialysis patients
with CKD stages 2-5 [20]. Moreover, 1L-6 plasma levels
as predictors of mortality ensured more precise results
than the other three major inflammatory biomarkers,
namely, C-reactive protein, TNF-a, and serum al-
bumin [20]. The data on the association of C-reactive
protein (common inflammatory biomarker) with eGFR
and its use for the prediction of eGFR decline are con-
tradictory [24-26]. It was also found that the concentra-
tion of IL-18 negatively correlates with the creatinine
clearance, which was masked by continuous ambulatory
peritoneal dialysis [27].

Analysis of potential inflammatory biomarkers
and kidney injury biomarkers in diabetic kidney disease
highlighted the controversial results in cohort studies of
the predictive ability of tumor necrosis factor receptors
(TNFRs) for ESRD in diabetes [28]. In IgA nephrop-
athy, circulating TNFRs reflected histological changes
and clinical severity of the disease and negatively cor-
related with eGFR. Moreover, elevated serum con-
centrations of TNFRs during the disease onset served
as early biomarkers of subsequent renal progression in
IgA nephropathy patients [29]. Seventeen circulating
inflammatory proteins, many of the belonging to the
TNFR superfamily, were proposed as predictors of a
10-year risk of ESRD in type 1 and type 2 diabetes [30].
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The following biomarkers of systemic inflammato-
ry response identified in blood were found to be closely
associated with CKD progression [18]:

 proinflammatory cytokines: TNF-a, IL-6, and IL-18;
+ chemokines: IL-8 (CXCLS), IL-34, stromal cell-de-
rived factor la (SDF1a/CXCL12), monocyte che-
moattractant protein-1 (MCP-1/CCL2), and mac-
rophage inflammatory protein 13 (MIP-13/CCL4);
+ growth factors: GM-CSF (granulocyte-macrophage
colony-stimulating factor), fibroblast growth factor

(FGF) 23, and HGF (hepatocyte growth factor);

» soluble forms of receptors: STNFR1 and STNFR2,
soluble CD40 ligand (sCD40L), and sCD163 (SR-13);
» cyclophilin A.

Unfortunately, there is a limited information on the
relationship between inflammatory markers, GFR lev-
els, and ESRD development at different CKD stages,
including patients on dialysis. Recently, it was shown
that the circulating adhesion molecule VCAM-1 is in-
versely associated with eGFR and can predict eGFR
decline in a general population [26]. Another inflamma-
tory marker measured in CKD was activity of serum ad-
enosine deaminase [31] which negatively correlated with
eGFR [31], although the authors noted that using only
one parameter of renal function would be insufficient
for ESRD evaluation.

Soluble molecules are not the only inflammatory
biomarkers. Thus, in situ inflammatory status and lym-
phocyte immune phenotype [32, 33] can be used for
distinguishing ESRD patients from the control group.
Reduction in the number of regulatory T cells (Tregs)
can contribute to the ESRD development in systemic
lupus erythematosus. Also, ESRD patients with a low
Treg count have shown a shift in the cytokine profile
from the anti-inflammatory toward proinflammato-
ry cytokines, as well as higher concentration of anti-
bodies against human leukocyte antigen in peripheral
blood [32]. Confocal microscopy of biopsies from pa-
tients with lupus nephritis showed that the high count of
B cells correlated with the resistance to ESRD develop-
ment, while high amounts of CD8*, vd, and other CD4-
CDS8~ T cells were associated with acute renal failure
and ESRD progression [33]. The differences in the phe-
notypic patterns of the T- and B-cell populations were
observed between ESRD patients and healthy controls.
ESRD patients demonstrated reduction in the number
of naive CD4 subpopulations, CD19*IgD*CD27* cells,
and CD8*PDI1* cells, along with the increase in the
content of senescent cell subpopulations [34].

Neutrophil-to-lymphocyte ratio (NLR) and plate-
let-to-lymphocyte ratio (PLR) can also have a diagnos-
tic significance in the assessment of inflammation in
ESRD patients. NLR was found to be associated with
inflammation in ESRD patients, including both hemo-
dialysis and peritoneal dialysis patients [35-37], and with
the estimated survival of hemodialysis patients [38, 39].
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It was demonstrated that PLR is also associated with
inflammation and can be used to predict mortality in
hemodialysis patients [37, 38]. A 7-year cohort study
of non-dialysis ESRD patients revealed that both NLR
and PLR were related to inflammation, as demonstrated
by their association with C-reactive protein [40].

Since ESRD development is a unique process ob-
served in different pathologies, the use of inflammatory
markers in renal failure seems contradictory and has to
be combined with other diagnostic approaches.

FIBROSIS MARKERS

Healthy tissues are characterized by a balance be-
tween the synthesis and proteolysis of extracellular ma-
trix (ECM) proteins (collagen, fibronectin, laminin,
etc.). Disturbances of this balance can induce uncon-
trolled deposition of ECM components, ultimately im-
pairing organ morphology and/or function and leading
to fibrosis development [12]. This process can occur in
all organs and causes almost 45% deaths in developed
countries [41]. Since 1990s, the prevalence of CKD,
which is accompanied by renal fibrosis, has increased
and reached 1.2 million deaths worldwide in 2017 [42].

Excessive deposition of ECM in renal fibrosis re-
sults in the damage and replacement of functional paren-
chyma, leading to kidney failure [13]. This pathological
process can affect three different renal compartments:
glomeruli (causing glomerulosclerosis), tubulointersti-
tium (interstitial fibrosis), and vasculature (arterioscle-
rosis and perivascular fibrosis) [43]. Regardless of the
cause and origin of fibrosis, its histological pattern in
different kidney diseases is essentially the same. Hence,
kidney fibrosis markers can be considered as universal
molecules for the diagnostics of CKD and ESRD.

Collagens. Collagens are the most common mark-
ers of fibrosis. Renal interstitium contains collagens I,
II, III, IV, VI, VII, and XV [44]. Type I collagen is the
main component of fibrous tissues in all organs [44, 45].
Collagens II and III are believed to accumulate at the
early stages of kidney fibrosis development [46]. An in-
crease in the content of collagens IV and VI in kidney
fibrous tissue has also been demonstrated [47, 48].
Type 1V collagen is a component of the basement mem-
brane and is used as a marker of glomerulosclerosis and
interstitial fibrosis [49, 50].

The most common method for fibrosis identifi-
cation in clinical and experimental studies is staining
the biopsies with Masson’s trichrome or Picrosirius
Red. However, despite the widespread use of Masson’s
staining, it has poor specificity to collagen itself and re-
flects interstitial volume rather than fibrosis per se [51].
Picrosirius Red is more suitable for fibrillar collagen
staining, but it also has its limitations, in particular, the
lack of specificity to collagen IV, which prevents the use
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of this stain in the analysis of tubular basement mem-
brane thickening or diagnostics of glomerulosclerosis
[51]. Immunohistochemical assays lack the above-men-
tioned limitations and can directly reveal the content
and tissue location of collagens, allowing evaluation of
the degree of kidney fibrosis by morphometric measure-
ments [52, 53].

Beside histological and immunohistochemical meth-
ods, the content of collagen can be evaluated by the bio-
chemical analysis of hydroxyproline [51], because col-
lagen is one of the few proteins containing this amino
acid. The percentage of hydroxyproline in the amino
acid composition of collagen is constant in most mam-
malian organs [54, 55].

The most available biological samples in clinical
and experimental studies are serum and urine, which
can be assayed for the presence of collagen fragments
(Table 1). Hence, collagen or its fragments can be as-
sessed in the urine or blood samples as biomarkers of re-
nal failure and, in particular, ESRD, using noninvasive
methods. This approach can be employed to investigate
the dynamics of renal failure development. For instance,
the study on the relation between the GFR and levels
of collagen III fragments reflecting its active forma-
tion (PRO-C3) and degradation (C3M) has shown
that the C3M/creatinine ratio in urine increased with
CKD development [56]. The PRO-C3/creatinine ratio in
urine and serum increases only at stages 4 and 5 [56].
And vice versa, low C3M/creatinine ratio in the urine
and increased serum content of PRO-C3 were asso-
ciated with an increased risk of developing ESRD and
death [56]. However, no association between the urine
and serum levels of C3M and mortality in the diabetic
kidney disease was found [57].

Comparison of healthy people and patients with
CKD based on the data of the Human Urinary Pro-
teome Database has shown that collagen Ial fragments
can be used for the diagnostics of kidney failure. Sixty-
three out of 707 urinary collagen Ial fragments positive-
ly associated with the GFR; 6 fragments negatively asso-
ciated with the GFR [58].

Analysis of collagens and collagen fragments by im-
munoassay methods is even more useful for the clinical
diagnostics of renal failure. Thus, the content of colla-
gen IV in the urine of young patients with type 1 diabetes
correlated with a decreased GFR, although no associa-
tion with ESRD has been found [59]. The same results
were obtained for patients with type 2 diabetes [60].
An increase in the serum level of PRO-C6 (fragment
reflecting collagen VI active formation) showed associ-
ation with the GFR decline, ESRD development, and
mortality in patients with type 1 diabetes, while higher
urinary levels of PRO-C6, on the contrary, correlated
with a reduced risk of GFR reduction [61]. Serum and
urine levels of endotrophin (collagen VI fragment) can
be used for prediction of ESRD development in CKD

YAKUPOVA et al.

patients [62, 63] and were chosen as indicators (instead
of eGFR) in the multivariable model of CKD-relat-
ed mortality due to their higher predictive power [62].
Urinary endotrophin/creatinine ratio was found to
be associated with one-year CKD progression, inde-
pendently of traditional risk factors, such as eGFR,
age, sex, and urinary albumin/creatinine excretion
ratio [63].

It has been shown that using a combination of
biomarkers (sSLG1M, sPRO-C3, sPRO-C6, uPRO-C3/
creatinine ratio, uPRO-C6/creatinine ratio, uC3M/cre-
atinine ratio) can improve prediction of renal outcome
(sensitivity 50.0%; specificity 77.8%; Area under the curve
(AUC) 0.806) compared to the clinical parameters, such
as eGFR and proteinuria (sensitivity 45.2%; specificity
87.3%; AUC 0.751) [64]. Therefore, a combination of
GFR and ECM components as fibrosis biomarkers may
improve prediction of CKD progression and renal out-
come.

ECM and intermediate filament as biomarkers. Be-
side collagen, ECM contains fibronectin and thrombo-
spondin 1 (TSP-1). Intermediate filament proteins (vimen-
tin, nestin) are associated with kidney fibrosis (Table 2).
Some of them can be used for the diagnostics of renal
failure, as their levels correlate with the GFR. Thus,
the content of fibronectin in the urine of patients with
the Bardet—Biedl syndrome correlates with eGFR [74].
Detection of vimentin mRNA in urine can also be useful
in the diagnostics of renal failure because of its negative
correlation with GFR in patients with CKD [75].

Other Kkidney fibrosis markers. Non-ECM proteins
can also be used in the diagnostics of kidney fibrosis
(Table 3), as some of them are associated with the GFR
and can be helpful in ESRD prognosis in renal diseases
and after kidney transplantation.

High TGF-B1/BMP7 ratio can indicate ESRD de-
velopment in patients with type 2 diabetes [89]. Another
potential biomarker of kidney failure is galectin 3 due
to its correlation with the GFR in patients with diabetic
kidney disease [117]. In the same patients, identifica-
tion of C-X-C motif chemokine ligand 16 (CXCL16)
in urine indicates fibrosis development [72], while the
plasma levels of this cytokine reflect GFR and CKD
transition to ESRD [118, 119]. The content of CXCL16
in CKD patients with type 2 diabetes mellitus is higher
than in CKD patients with no diabetes [118]; therefore,
the serum and/or urine levels of CXCL16 can serve as
prognostic/diagnostic markers for the severity of CKD
and its progression to ESRD. Similarly, the content of
endostatin in the plasma is negatively associated with
the GFR [120, 121] and reflects CKD development; it
can also predict mortality in patients with type 2 diabe-
tes [122, 123] or kidney transplant damage [122].

The plasma content of monocyte chemoattrac-
tant protein 1 (MCP-1) can reflect the development of
fibrosis, GFR decline, and mortality, in CKD [124].
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Table 1. Collagen and its fragments assessed in patients’ urine and serum in the diagnostics of renal damage and

kidney fibrosis
Urine/ Detection . .

Collagen type/fragment serum method Diagnostic value References
PIIINP (procollagen I11 urine, ELISA strong positive correlation between circulating [65]
N-terminal propeptide); serum | (collagen IV); | and urinary PIIINP and severity of kidney interstitial
collagen IV radioimmun- | fibrosis in samples from patients with nephropathy;

odetection no correlation for collagen IV
(PIIINP)
PIIINP urine, | radioimmun- | increased urinary levels of PIIINP and urinary PIIINP/ [66]
serum odetection creatinine ratio correlate with severity of kidney fibrosis;
however, no association between serum PIIINP
and PIIINP excretion in urine or interstitium fibrosis stage
PIIINP urine | radioimmun- | possible diagnostic significance of urinary PIIINP/creati- [67]
odetection nine ratio in kidney fibrosis
PIIINP urine ELISA correlation between the levels of urinary PITINP [68]
and severity of renal fibrosis in patients with cystic
fibrosis after lung transplantation
PIIINP; PINP urine | radioimmun- | PIIINP and PINP as markers of kidney fibrosis [69]
(procollagen | odetection
N-terminal propeptide)
PIIINP; CIM urine, ELISA serum levels of CIM and C3M increase 2-3 times in rats [70]
(fragment of collagen | serum with 5/6 nephrectomy and adenine-induced nephropathy,
hydrolysis with MMP); but not with chronic anti-Thyl.1 nephritis. At the same
C3M time, urinary levels of C1M and C3M increase 9 to 100
times in all three pathologies, whereas PIIINP is highly
increased only in the urine of rats with 5/6 nephrectomy
PRO-C3; PRO-C6; C3M | urine, ELISA serum PRO-C6 and urinary C3M correlate with [71]
serum histological markers of interstitial fibrosis in patients
with lupus nephritis
Endostatin (20-kDa urine, ELISA increase (5 to 6-fold) in endostatin renal expression and [72, 73]
C-terminal fragment serum its serum levels accompanies progressive tubulointerstitial
of collagen XVIII) fibrosis in two mouse strains; the content of endostatin
in urine during interstitial fibrosis and kidney tubular
atrophy increases in patients with diabetic kidney disease
Endotrophin (C-terminal | urine, ELISA urinary endotrophin/creatinine ratio is associated with [62, 63]
fragment of collagen VI) serum CKD progression to ESRD within 1 year; endotrophin

serum level is independently associated with mortality
in CKD patients and can predict ESRD development

Table 2. ECM proteins as kidney fibrosis markers

Biomarker Location Association with kidney fibrosis

Fibronectin kidney fibronectin accumulation in kidneys is one of the earliest symptoms of fibrosis [76]

Nestin kidney nestin is detected in tubular epithelial and interstitial cells in unilateral ureteral obstruction
(UUO) [77]; the level of nestin expression in tubular interstitial cells positively correlates
with tubulointerstitial fibrosis in patients with glomerulonephritis [77]

TSP-1 kidney increase in the expression and content of TSP-1 in glomerulonephritis is associated
with interstitial fibrosis and accompanies fibrosis development [78]

Vimentin kidney increase in vimentin expression is observed in in UUO mice with kidney fibrosis [79]

BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
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Table 3. Kidney fibrosis markers

YAKUPOVA et al.

Marker Source Association with kidney fibrosis
a-Smooth muscle actin kidney a-SMA is a marker of fibrogenic activity of myofibroblasts [80-84];
(a-SMA) it is widely used in different models of kidney injury [85-87];
however, only few collagen-producing renal cells have been shown
to express a-SMA [83]
Bone morphogenetic serum low levels of BMP7 indicate an increased risk of developing ESRD
protein 7 (BMP7) and correlate with the increased TGFf content [88];
increased total TGF1/BMP7 ratio can be used in the diagnostics of ESRD [89]
Connective tissue growth kidney, increased number of cells expressing CTGF mRNA is detected
factor (CTGF/CCN2) serum in chronic tubulointerstitial damage [90, 91];
serum levels of CTGF in patients with 1 type of diabetes correlate
with ESRD development and all-cause mortality [92]
C-X-C motif chemokine urine urine content of CXCL16 increases during development of interstitial
ligand 16 (CXCL16) fibrosis and kidney tubular atrophy in patients with diabetic kidney disease [72]
Decoy receptor 2 (DcR2) urine urine levels of DcR2 and uDcR2/creatinine ratio correlate
and urinary with the development of tubulointerstitial fibrosis in patients
DcR2/creatinine ratio with IgA nephropathy [93]
Epidermal growth urine decreased amount of EGF mRNA in kidneys and urine content
factor (EGF) of EGF correlates with the development of interstitial fibrosis [94, 95];
and uEGF/creatinine ratio uEGF/creatinine ratio is associated with CKD stage [94, 96]
Galectin 1 kidney galectin 1 is involved in the late stages of CKD associated with fibrosis [97]
Galectin 3 urine, increased plasma or serum levels of galectin 3 levels are associated
serum with an increased risk of developing CKD and rapid decline of kidney
functions [98-100];
increased galectin 3 plasma levels are associated with more severe
renal fibrosis [101];
a combination of galectin 3 measurements in urine and plasma
has a higher predictive power [102]
Human epididymal kidney increased HE4 expression in kidneys is observed during fibrosis
secretory protein E4 development in the UUO model [103];
(HE4/Wfdc2) the amount of HE4 increases in kidneys in CKD [104],
which can be associated with its elevated expression by myofibroblasts [103]
Monocyte urine MCP-1 expression leads to interstitial and mesangial fibrosis [105-107];
chemoattractant the content of MCP-1 in urine can be measured for CKD diagnostics
protein 1 (MCP-1) in clinical practice [108]
Matrix urine, MMP-7 in content correlates with the development of kidney fibrosis
metalloproteinase-7 serum in patients with 2 type diabetes [109];
(MMP-7) the level of MMP-7 in urine is associated with development
of kidney fibrosis in CKD patients [110]
Retinol-binding proteins urine urinary levels of RBP and RBP/creatinine ratio are positively
(RBP) associated with development of kidney fibrosis in CKD patients [111]
TGFp1 urine, analysis of biopsies from 127 patients showed a correlation between
serum the development of fibrosis and increase in the urinary TGF@1 content [112-114];
detection of TGF in the serum of patients after kidney transplantation
can have a prognostic value in the diagnostics of allograft nephropathy [115];
TGFp1 in the blood can predict persistent development of nephropathy
in type 2 diabetes patients [89]
Uromodulin serum evaluation of uromodulin in serum can be used for detection of early stages

of fibrosis after transplantation [116]
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Other fibrosis markers associated with the develop-
ment of renal failure and GFR in CKD include reti-
nol-binding proteins (RBP) in urine [125], connective
tissue growth factor (CTGF) in plasma [126], and human
epididymal secretory protein 4 (HE4) in serum [127].
The content of RBP and the DcR2/creatinine ratio in
urine can be used for the diagnostics of IgA nephropa-
thy [93, 128]. The plasma level of CTGF and upregulat-
ed expression of its mRNA in kidneys reflect the stages
of CKD in patients with lupus nephritis [129]. Serum
FGF-2 negatively correlates with the GFR and protein-
uria in patients with glomerulonephritis.

The risk of ESRD development in elderly patients
can be predicted by measuring the serum level of uro-
modulin [130], whereas blood levels of uromodulin re-
flect the development of renal failure after kidney trans-
plantation [116]. The EGF/creatinine ratio in the urine
of patients after transplantation correlates with a GFR
decline [116]. Identification of interstitial fibrosis with
Masson’s trichrome staining together with the levels of
a-smooth muscle actin (a-SMA) in biopsies, can accu-
rately predict the development of renal allograft chronic
dysfunction [131].

Some of the above-described fibrosis biomarkers
have more predictive power in the case of CKD progres-
sion and loss of renal function than the GFR. For ex-
ample, urinary MCP-1/creatinine levels have been used
to diagnose inflammatory activity in kidneys in male
patients, even when the eGFR values were normal.
MCP-1 measurements can reveal renal inflammation
early in the development of the Alport syndrome [132].
In IgA nephropathy, urinary MMP-7 levels can serve as
an independent and powerful predictor of disease pro-
gression, even in the early-stage patients with eGFR
of >60 ml/min/1.73 m? [133]. Thus, the use of urinary
MMP-7 content together with other parameters, such
as eGFR, mean arterial blood pressure, proteinuria, and
histological score, has significantly improved prediction
of a 3-year risk of IgA nephropathy progression [133].
Hence, kidney fibrosis biomarkers can reflect the se-
verity of CKD and its progression to ESRD, as well as
to predict kidney transplant rejection and even mortality.

EPIGENETIC MARKERS

Involvement of epigenetic processes in the develop-
ment of renal fibrosis has been repeatedly demonstrated
in cell cultures, animal models, and patients with dia-
betic nephropathy, ischemia, lupus nephritis, and other
pathologies [134-137]. Epigenetic changes can direct-
ly mediate transition from acute injury to chronic kid-
ney disease [138-141]. It was suggested that epigenectic
markers could predict the severity of CKD, distinguish
between different CKD stages, and evaluate the risk of
ESRD. The most promising epigenetic markers of re-
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nal fibrosis are microRNAs (miRs) and DNA methyla-
tion; they are commonly analyzed in blood cells or urine
and used as prognostic factors of CKD and ESRD devel-
opment.

miRs. miRs are small non-coding RNAs encoded in
gene introns or transcribed independently. The primary
transcripts are processed into mature miRs that suppress
the activity of various genes through RNA interference.
At the same time, the effect of individual miRs can be
very broad, as almost every miR has more than 100 tar-
gets, and depends on the type and state of affected cells.
miRs have been widely studied in various models of re-
nal pathologies, and many miRs involved in the develop-
ment of renal fibrosis have been identified [142]. For in-
stance, miR-21, miR-92, and miR-122 can be used for
evaluating the stages of CKD and risks of ESRD devel-
opment. The main effects of miR-21 involve the shift of
cellular metabolism to glycolysis. miR-21 increases cell
viability during acute stress by downregulating many
genes, such as its direct targets peroxisome proliferator-
activated receptor a (PPARa), acyl-coenzyme A oxi-
dase 1 (ACOX1), coenzyme A synthase, pyruvate dehydro-
genase, and pyruvate carboxylase. miR-21 also represses
the genes of Mpvl7-like proteins that regulate redox
metabolic pathways [143-150]. There are other miRs
associated with renal pathologies, but their diagnostic
value in the case of ESRD still has to be established.
The data of miRs potentially involved in CKD and ESRD
are presented in Table 4.

DNA methylation. Due to the revealed correlation
between the DNA methylation level and kidney pathol-
ogies, DNA methylation can serve as a biomarker for
CKD or ESRD severity and risk of their development.
One of the markers of DNA methylation is 5-methyl-
2'-deoxycytidine (5-Me-dC), whose content is increased
in the urine of patients with late-stage CKD. When ac-
companied by macroalbuminuria or appearance of
al-microglobulin (alm) in urine, this marker predicts
the end-stage CKD [161].

Methylation of the p66Shc promoter in blood is
another ESRD biomarker. p66Shc is a stress response
protein involved in the oxidative stress and atherosclero-
sis development. Decreased methylation of the p66Shc
promoter in peripheral blood mononuclear cells in pa-
tients with ESRD was found to correlate with an in-
creased risk of cardiovascular death [162]. It is assumed
that the decrease in the p66Shc promoter methylation
can be a result of hyperhomocysteinemia, which often
accompanies kidney diseases.

Multiple genomic sites have has been discovered
whose methylation levels are associated with ESRD [163-
166]. However, there were almost no overlaps between
the results of these studies, although three of them used
the same technology (Infinium HumanMethylation450
Beadchip) to assess DNA methylation, suggesting the
need for comprehensive investigation of these sites
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Table 4. miRs associated with CKD and ESRD

miR CKD Application References
regulation | in CKD diagnostics
miR-21 0 + [143-150]
miR-92 1 + [151, 152]
miR-93-5p I + [153]
correlates with GFR;
expression before
and after transplan-
tation differs
miR-95-3p i + [154]
low level can serve
as a marker of ESRD
development
miR-122 1 + [155]
miR-125b 1 — [156]
miR-126 I + [157]
miR-145 I — [156]
miR-155 I + [156, 157]
miR-192 1 + [158]
miR-223-3p I + [153]
correlates with GFR;
expression before
and after transplan-
tation differs
miR-342 1 — [159]
miR-499 - + [158, 160]
miR-631 0 + [154]
high level can serve
as a marker of ESRD
development

in order to identify individual features of their regulation
under different conditions.

Some of these regions have been studied in more
detail, e.g., the methylenetetrahydrofolate reductase
(MTHFR) gene. MTHFR regulates metabolism of meth-
yl groups and homocysteine. Methylation of the MTHFR
gene is significantly upregulated in patients with ESRD,
which correlates with lower GFR, glycated hemoglobin
(HbAIC) content, glycemia, and total and low-densi-
ty-lipoprotein cholesterol content [165, 167]. Methyla-
tion of the MTHFR gene is also associated with hyper-
homocysteinemia, which can lead to further glomerular
damage and GFR reduction [168].

YAKUPOVA et al.

CKD can cause premature aging of renal tissue, so
the use of epigenetic clocks in the assessment of kidney
health may be of some scientific interest. The correla-
tion between epigenctic age and biomarkers of renal
failure has been shown by several methods [169, 170].
It was found that GFR is associated with the Horvath,
Hannum, and Pheno accelerated age scores, MS (mor-
tality risk score based on 10 prominent mortality-relat-
ed CpG sites), and extrinsic epigenetic age acceleration
age/lifespan predictors that can be evaluated by analysis
of DNA methylation.

CHANGES IN THE ENDOCRINE SYSTEM
AS CKD AND ESRD BIOMARKERS

Hormones play an important role at the endocrine
and paracrine levels in the functioning of kidneys as
osmoregulatory and detoxifying organs. Normally, kid-
neys are involved in the excretion of hormones, such as
cortisol, aldosterone, sex steroids, thyroid hormones,
and catecholamines, and in biodegradation of peptide
hormones (e.g., parathyroid hormone, calcitonin, and
insulin) [171]. In the course of CKD progression (stag-
es 3-5) [172-174], production, metabolism, and clear-
ance of hormones are disrupted, which causes their
accumulation in the blood and more active excretion in
the urine. Almost all endocrine axes (from hypothala-
mus to specific endocrine glands) undergo significant
changes during CKD [171, 175].

Changes in the hormone levels in physiological
fluids and renal tissue can suggest kidney fibrosis and
serve as an indication for changes in the therapeutic
strategy in the CKD treatment. Below, we discuss if the
hormones controlling the water-salt balance and blood
pressure can be used as markers of CKD and ESRD
(Table 5).

Renin—angiotensin—aldosterone system. Angioten-
sin II (Angll) is the principal components of renin—an-
giotensin—aldosterone system (RAAS) involved in the
regulation of vascular tone, blood pressure, and sodium
homeostasis [176, 177]. This hormone is a powerful ag-
gravating factor of kidney fibrosis. Angll directly and
indirectly stimulates transforming growth factor beta 1
(TGFp1)-mediated signaling and ECM accumulation
upon activation of the profibrotic signaling pathway
initiated by activation of AT1 receptors [176, 178, 179].
RAAS includes both circulatory and local components,
with intrarenal RAAS being the most developed one,
since the kidney has all necessary substrates and en-
zymes for its functioning.

Intrarenal RAAS plays a special role in the CKD-
to-ESRD transition, and its activation is critically im-
portant in the renal pathophysiology in CKD patients.
Increased renal expression of angiotensinogen (AGT),
chymase, and AT1 receptors promotes intrarenal RAAS

BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
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Marker Detection Association with CKD and ESRD
source
AGT urine high urinary AGT levels are associated with more than 50% decrease in eGFR
(intrarenal RAAS) and with ESRD occurrence in non-dialysis CKD patients [187];
urinary AGT level can serve as an early biomarker of renal function deterioration
in patients with CKD (stages 3-4) [226]
AGT kidney increased renal expression of AGT, chymase, and AT1 receptors promotes intrarenal
(intrarenal RAAS) RAAS activation and is associated with kidney damage even after the start of dialysis [182]
ANP, BNP serum plasma levels of ANP and BNP or their N-terminal fragments are increased
in CKD patients [189-192]
CNP urine urinary CNP is significantly decreased in the rat UUO model
(decrease occurring before albuminuria development);
creatinine and blood urea nitrogen levels are upregulated [199]
Erythropoietin serum, significant decrease in the blood concentration and biosynthesis of erythropoietin
kidney in the kidneys in CKD and ESRD [209, 210]
Guanylin serum increased guanylin plasma level in patients with CKD [203], glomerulonephritis,
and nephrotic syndrome [204]
Kinin/kallikrein serum positive correlation between the urinary kallikrein/creatinine ratio and decreased eGFR
system in patients with CKD [223]
Prolactin serum significantly elevated (up to 70%) serum prolactin in CKD patients on hemodialysis
is associated with the impaired clearance of this hormone [218, 219]
Uroguanylin serum plasma concentration of uroguanylin is increased in patients with CKD
and glomerulonephritis [205]

activation and is associated with kidney damage even
after the start of dialysis [180]. Activation of the intra-
renal RAAS also occurs in kidney donors without pre-
existing kidney damage, which increases the risk of
developing ESRD by the donor; however, it does not
correlate with changes in the blood pressure, eGFR,
plasma AngllI levels, and albuminuria [181].

Urinary AGT is used as a biomarker of intrare-
nal RAAS activation in patients with CKD [182, 183],
although some researchers believe that the urinary AGT/
creatinine ratio is a more informative parameter than
the AGT content alone [184, 185]. High urinary AGT
levels are associated with a more than 50% decrease in
the eGFR in non-dialysis CKD patients, as shown by
the Korean Cohort Study for Outcomes in Patients with
Chronic Kidney Disease (KNOW-CKD) [185]. Similar
results on the association of urinary AGT with an ad-
verse renal outcome have been obtained in the studies
of patients with autosomal dominant polycystic kidney
disease [184] and type 2 diabetes mellitus [184, 186].

Natriuretic peptides. Natriuretic peptides act as
RAAS antagonists in the regulation of vascular tone
and blood pressure. They protect against hypertension
and related pathologies, including kidney damage [187].
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Natriuretic peptide family includes atrial natriuretic pep-
tide (ANP), brain natriuretic peptide (BNP), C-type
natriuretic peptide (CNP), guanylin, and uroguanylin.

Measurements of the plasma concentrations of ANP
and BNP can be useful for the risk stratification of pa-
tients with ESRD [188, 189]. The plasma levels of ANP
and BNP and their N-terminal fragments are increased
in patients with CKD, and therefore, have been suggest-
ed as prognostic markers of the CKD-to-ESRD tran-
sition and fibrosis [189-192]. The main causes for the
increased serum concentration of these hormones are
hypervolemia, arterial hypertension, and concomitant
heart disease, as well as a sharp decrease in or complete
absence of renal clearance [188, 193]. High mortality in
patients with ESRD is due to a significant risk of devel-
oping heart failure associated with a high incidence of
left ventricular hypertrophy, various cardiomyopathies,
and coronary heart disease [194].

CNP plays an important role in preventing Kidney
tissue remodeling [195, 196]. Hypoxia and increased
release of cytokines and profibrotic growth factors ac-
companying remodeling stimulate CNP production and
secretion [197]. Among all natriuretic peptides, CNP is
the first to be degraded by neutral endopeptidase [198],
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which hinders its detection in physiological fluids. Since
the serum content of CNP is very low, it is believed that
CNP and products of its degradation should be analyzed
in urine rather than in blood [197]. A number of authors
consider urinary CNP as an early marker of tubuloint-
erstitial fibrosis. A significant decrease in the urinary
CNP was found in the rat UUO model; moreover, this
decrease was detected before the emergence of albumin-
uria and proteinuria and increase in the blood content
of creatinine and urea nitrogen [199].

Guanylin is a low-molecular-weight natriuretic
peptide produced mainly by intestinal mucosal cells and
kidneys [200-202]. Guanylin is associated with various
kidney diseases; for example, increased guanylin plasma
levels have been observed in patients with CKD [203],
glomerulonephritis, and nephrotic syndrome [204].
Uroguanylin, which is similar in structure to guanylin,
has been poorly studied in the context of renal patholo-
gies, but its plasma concentration is known to increase in
patients with CKD and glomerulonephritis [205]. There
are data on the elevated plasma levels of uroguanylin in
hemodialysis patients. An increase in the serum concen-
tration of uroguanylin is strongly contributed by the re-
duced GFR in such patients [206] and amount of table
salt consumed by the patients with food [207].

Erythropoietin. Erythropoietin is a glycoprotein syn-
thesized in the kidney. One of its main functions is stim-
ulation of erythropoiesis [208]. Since CKD and ESRD
lead to significant disturbances in the erythropoietin
synthesis, patients with varying degrees of kidney dam-
age develop anemia [209, 210]. According to the World
Health Organization, anemia is defined as a decrease
in hemoglobin level to less than 13 g/dl in males and
12 g/dl in females before the menopause. The major-
ity of patients (90%) with the GFR of 25 ml/min are
diagnosed with anemia since their hemoglobin level is
less than 10 g/dl [211]. Administration of exogenous
erythropoietin slows down CKD development, reduces
cardiovascular mortality, and increases exercise toler-
ance [212, 213].

Prolactin. Prolactin is involved in regulation of lac-
tation, reproduction, immunomodulation, and natri-
uresis [207, 214-217]. A significant elevation of the pro-
lactin blood content is observed in CKD patients and in
up to 70% patients on hemodialysis due to the reduced
clearance of this hormone [218, 219]. Increasing the
frequency of dialysis procedure does not reduce the se-
rum concentration of prolactin [220], unlike with other
hormones (for example, dialysis resolves the problem of
hyperinsulinemia in patients with CKD-associated in-
sulin resistance [171]). In diagnostics, urine and serum
are typically assayed for the so-called macroprolactin,
which is a complex of prolactin with IgG with a mo-
lecular weight of >100 kDa [221, 222]. According to the
published data, hyperprolactinemia in ESRD is an indi-
rect indication for the kidney transplantation.

YAKUPOVA et al.

Kallikrein—kinin system. The kallikrein—kinin sys-
tem includes polyfunctional blood proteins acting at
the endo- and paracrine levels and responsible for the
regulation of blood pressure and vasodilation mediated
by the nitric oxide release. The most important proteins
of this system are kallikrein and bradykinin. A positive
correlation between the urinary Kkallikrein/creatinine
ratio and decrease in the eGFR in CKD patients, as
well as the urinary content of the inflammatory mark-
er MCP-1, has been found, which makes kallikrein a
potential biomarker for assessing the functional state of
kidneys [223]. Similar data have been obtained for pa-
tients with type 1 diabetes. In these patients, decreased
activity of plasma kallikrein was associated with the
progression of diabetic nephropathy, the lowest activi-
ty of this serine protease being found in patients on he-
modialysis. It was suggested that preventing the loss of
kallikrein in diabetic nephropathy could preserve the
functional activity of kidneys [224]. The promoter of the
kallikrein gene KLK1 is characterized by polymorphism,
which complicates the identification of gene alleles.
However, one of the alleles was found to be more com-
mon in ESRD patients than in the control group [225].

PROSPECTS
OF ESRD DIAGNOSTICS

Integration of the above biomarkers into everyday
diagnostics will allow to attain personalized approach
to patients in order to better predict the disease out-
come and to select the treatment. The clinical picture
can change during the course of CKD depending on the
disease itself and personal characteristics of a patient.
Hence, we can observe accumulation of different bio-
markers in different diseases (Fig. 3).

Some biomarkers have been identified in a partic-
ular disease only and therefore, can be used for selec-
tive diagnostics of this disease, while other have been
detected in two, three, or more major renal disorders
(e.g., C3M and MMP-7 were found in all mentioned
pathologies). It seems also helpful to use a combination
of several biomarkers n for disease diagnostics. For ex-
ample, C3M and MMP-7 (with ¢eGFR) are the major
diagnostic parameters in the assessment of ESRD de-
velopment. The use of other markers (TNFRs, BMP-7,
DcR2, PRO-C6, PRO-C3, CTGF, MCP-1, CXCLI16)
can narrow the spectrum of diagnosed diseases. Thus,
endotrophin and TGF-f are specific for IgA nephropa-
thy, whereas galectin 3 is specific for diabetic nephrop-
athy only. Hormone markers (kallikrein, AGT, guanylin,
and uroguanylin) predict ESRD only in patients with
diabetic nephropathy or glomerulonephritis.

Epigenetic markers, such as miR-21, miR-93-5p,
and miR-92, are not unique for ESRD: miR-146a is
specific for IgA nephropathy and glomerulonephritis.
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Fig. 3. Venn diagrams of biomarkers associated with major CKD-related pathologies. a) Inflammatory, fibrosis, and hormonal markers;

b) prospective epigenetic markers.

The other markers shown in the diagram are also spe-
cific for particular diseases. There are some limitations
for the application of miRs in clinical practice. For ex-
ample, there are insufficient data on the correlation be-
tween miRs and particular diseases. Inclusion of miRs
in the diagram in Fig. 3 is based on currently available
scientific data, so in the future, it may turn out that
all these miRs should be in the middle of the circles.
It might give an impression that all known miRs are only
weakly specific for the disorders leading to the CKD de-
velopment and that the use of miRs alone as biomarkers
is insufficient to determine the patient’s condition and
to omit eGFR as a diagnostic factor. However, different
miRs have their specific characteristics, and their combi-
nation could be a powerful diagnostic tool (for example,
in a form of test strips used for rapid simultaneous de-
tection of multiple miRs).

CONCLUSION

At present, there are multiple biomarkers associated
with CKD transition into ESRD that have been identi-
fied in clinical studies and animal models. Some of them
are specific to a particular pathology, while others are
more versatile. Here, we reported putative inflammato-
ry, fibrosis, hormonal, and epigenetic markers indicative
of severe deterioration of renal function and ESRD pro-
gression. Their application together with conventional
renal failure indicators, such as eGFR, can improve the
prognosis of ESRD for immediate initiation of therapy
or recommendation for transplantation.
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