
Multidrug resistance (MDR) refers to the mecha�

nisms by which body cells develop resistance to a broad

range of structurally diverse chemical agents with differ�

ent modes of action in the cells [1, 2]. MDR is a serious

obstacle on route towards successful cancer chemothera�

py. However, MDR is not limited only to the resistance

against chemotherapy agents but can be viewed as a

defense reaction against the damage of cells, normal tis�

sues, and entire organism. Exposure of host cells to one of

the MDR agents might induce resistance to other drugs,

even if the cells have not been previously exposed to

them. The ability to develop MDR can be found at all

organization levels and, apparently, is essential for sur�

vival of living organisms on Earth.

When speaking about drug resistance, it should be

emphasized that MDR might precede therapeutic inter�

vention (the so�called intrinsic or pre�existing MDR) or

emerge in a course of drug therapy (induced MDR).

MDR emergence and development are complex process�

es triggered by one or several specific molecular factors

[1, 2] that, in their turn, might be influenced by altered

activity of genes, especially those involved in the control

of malignant transformation [2]. Anticancer drugs can

elicit drug resistance (DR) and also serve as a factor for

selecting the cells with developed DR including chemore�

sistant cells that have already existed (have preformed) in

the heterogenous population of cancer cells [1]. At pres�

ent, it has become apparent that intrinsic heterogeneity of

tumor cells is a key to their high adaptability to environ�

mental factors [3].

MDR has been most extensively examined in cancer

cells and normal cells cultured in vitro; however, results

from the in vivo studies of MDR at the organism level

obtained in clinical trials have recently become available

[4, 5]. In this review, we discuss new data on the molecu�

lar mechanisms responsible for the regulation of DR and

MDR in vitro and in vivo.

Gottesman et al. identified two major components in

the DR evolution: specific biological changes resulting in

DR and factors that facilitate biological processes pro�

moting DR emergence and evolution [2].
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SPECIFIC MOLECULAR CHANGES

UNDERLYING DR AND MDR

Mutations in the drug targets. Imatinib, which is

currently used to treat chronic myeloid leukemia (CML),

is a selective inhibitor of the BCR�ABL fusion tyrosine

kinase that drives this disease. However, it is not uncom�

mon that resistance to imatinib develops due to mutations

(point mutations, deletions, and insertions) in the

BCR/ABL gene [6].

Changes in the pathways of drug transport, metabo�
lism, or sequestration in the cell. Activation of ABC

(ATP�binding cassette) transporters that pump the drugs

out of the cells is among the most common causes

involved in this type of DR [7]. It was shown that DR

development might be also related to the altered metabo�

lism of cancer cells [8].

Cancer�specific changes in cellular mechanisms.
Such changes include altered signaling pathways control�

ling cell differentiation, the presence of cancer stem cells

(CSCs) in the population, changes in the homeostatic

response to unfavorable factors, etc. DR of this type is

often epigenetically regulated. Similar to tissue differenti�

ation, epigenetic regulation of DR involves DNA and his�

tone modification, stable modifications of regulatory pro�

teins, and microRNAs. The importance of changes in cell

signaling in the MDR development could be illustrated by

the role of YB�1 protein in the regulation of the MDR1

gene activity [9]. YB�1 was found in pro� and eukaryotic

cells, where it performs multiple functions including reg�

ulation of gene transcription and translation.

Changes in the tumor substratum and local cell physi�
ology, which can result from hypoxia, changes in the local

blood supply, interactions between cancer cells and extra�

cellular matrix or neighbor cells (e.g., stromal fibroblasts

and immune cells) [2].

Recently obtained data show that in some body tis�

sues, normal cells in the tumor microenvironment can

contribute to tumor malignancy and chemoresistance of

cancer cells [10, 11].

DRUG RESISTANCE�PROMOTING FACTORS 

Cancer cell heterogeneity. It is well known that can�

cer cells represent a highly heterogeneous population.

Such high heterogeneity increases the probability for

emerging new subsets of cancer cells, including those

resistant to drugs [12].

Elevated genetic and epigenetic variability of cancer
cells is one of the essential features of tumorigenicity [13,

14] and also increases a risk for emerging new cell sub�

types including drug�resistant cells.

Activation of cell survival signaling pathways results in

the emergence of single cells able to adapt to the effects of

cytostatic agents. With further treatment, such cell sub�

types might acquire selective advantage that will allow

them to proliferate.

Effect of tumor microenvironment. It was established

that cancer cells are greatly influenced by their microen�

vironment. For instance, glioblastoma growth may be

affected by the blood vessel cells, such as pericytes (vas�

cular smooth muscle cells), and immune cells including T

cells, macrophages, microglia, neutrophils, NK cells, and

dendritic cells [15]. Stromal cells might release growth

factors that would stimulate tumor cells replication via

paracrine regulation [16]. Cancer�associated fibroblasts

(CAFs) were demonstrated to affect tumor invasion [17].

CANCER STEM CELLS (CSCs) AND MDR

In the early studies, DR and MDR had been investi�

gated in bacteria. The well�known Luria–Delbruck

experiment (fluctuation test) showed that only a small

portion of cells develop genetic changes and survive drug

treatment (if the drug is administered at a proper dose)

[18]. Cells that survive the drug exposure acquire a selec�

tive advantage that allows them to proliferate further. This

observation has been later confirmed by numerous

research groups. However, studies of the last decade have

introduced the term cancer stem cells (CSCs) that dra�

matically transformed our understanding of the evolution

of cancer cell types [19]. CSCs are highly tumorigenic,

with a self�renewal potential. They are responsible for

tumor cell heterogeneity and, therefore, MDR develop�

ment (see above). CSCs are often drug�resistant, which

explains their proliferation in the presence of chemother�

apy agents. Therefore, the use of antitumor agents might

facilitate CSC selection, hence, increase tumorigenicity

[20].

EFFECT OF CELL–CELL INTERACTIONS

ON MDR EMERGENCE AND EVOLUTION

Recently, principally new data on the effect of

cell–cell interactions on MDR emergence and evolution

have been obtained.

Cancer cell can interact with (i) neighboring cancer

cell, (ii) normal cells of the tumor stroma, and (iii) extra�

cellular matrix components.

Homotypic interactions between neighboring epithe�
lial cells. Such type of interactions is mediated by E�cad�

herin (E�cad); anti�E�cad antibodies can disrupt inter�

cellular contacts and elevate cell sensitivity to a number

of antitumor drugs [21, 22]. Upregulated E�cad expres�

sion in breast and prostate cancer cells increases

chemoresistance of these cells [23]. E�cad�linked DR is

associated with the activation of canonical signaling path�

ways of cell proliferation control (e.g., ERK and AKT sig�

naling cascades) [24]. On the other hand, downregulation
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of E�cad expression increases the number of CSCs,

thereby enhancing tumor DR [25]. Therefore, cell–cell

interactions mediated by E�cad can have the opposite

effects on MDR.

Contacts between neighboring cells mediated by

proteins other than E�cad can also influence drug sensi�

tivity of cancer cells, as it was demonstrated using anti�

bodies against intercellular adhesion molecule 1 (ICAM�

1, also known as CD54) [26]. ICAM�1 is a glycoprotein

expressed mostly on endothelial and immune cells that

binds to integrins CD11a/CD18 or CD11b/CD18. It was

demonstrated that anti�ICAM�1 antibodies significantly

enhance the cytostatic effects of tested drugs [26].

Interaction of cancer cells with normal cells of the
tumor stroma. Tumor is a complex formation consisting

of both malignant cells and genetically stable normal

stromal cells, including endothelial cells, fibroblasts, and

immune cells [27]. In last decade, it has become evident

that stromal cells influence the key features of cancer

cells and that it is a combined action of cancer and nor�

mal stromal cells that determines cancer development.

One of the features of malignant cells that is affected by

normal cells is tumor resistance to chemotherapy [27,

28]. Stromal cells influence the chemoresistance of can�

cer cells by (i) serving as a barrier that restricts drug

influx, (ii) secreting factors promoting cell proliferation

or release of anti�apoptotic factors, (iii) building up nich�

es for CSCs, and (iv) modulating immunosuppression

[27].

According to D. Hanahan, there are three major

types of stromal cells: (1) cancer�associated fibroblasts

(CAFs); (2) angiogenic vascular cells (AVCs); (3) tumor�

infiltrating immune cells (TIICs) [29], that are distin�

guished based on the ability of these cells to influence the

hallmarks of cancer described by Hanahan and Weinberg

in [14]. Depending on the tumor type, CAFs, AVCs, and

TIICs could be present in different proportions [29].

Stromal cells do not always enhance malignancy

(although, they do in most cases). Sometimes stromal

cells ameliorate the signs of malignancy [30, 31]. Thus,

when co�cultured with cancer cells, normal connective

tissue fibroblasts were found to inhibit cancer cell prolif�

eration [29, 30]. Apparently, this effect was determined by

the subtypes of cells in the studied cell populations.

Interactions between cancer cells and extracellular
matrix components. A link between attachment of cancer

cells to the extracellular matrix (ECM) and MDR has

been recognized long ago [32]. A significant contribution

to the understanding this association has been done by

W. C. Dalton and colleagues who have demonstrated that

cancer cell microenvironment, and particularly ECM

components, contribute to the MDR emergence and evo�

lution. This problem has received a significant develop�

ment in the last decade. ECM is a network of fibrils that

serves as a structural cell support, participates in the

transduction of local signals, and regulates cell motility,

proliferation, and differentiation [28]. ECM produced by

cancer cells differs from that of normal cells; in particu�

lar, it is much stiffer [33]. ECM stiffness increases the

cytoskeletal tension, which, in turn, affects focal contact

formation and activates cell proliferation via activating

signaling pathways including the ERK1/2–RUNX2 axis

[34]. It was found that mechanical tension in a 3D cell

culture mimics activation of the ERK1/2–RUNX2 path�

way resulting in the DR development [34]. ECM

mechanical properties influence cancer cell response to

drugs [35, 36]. In recent years, 3D cell cultures or 3D

models have been extensively used in experimental oncol�

ogy and pharmacology [37, 38] to mimic tumor�stromal

interactions. 3D cell cultures are often used to study the

role of mechanotransduction in carcinogenesis and

tumor progression.

Mechanotransduction – a mechanism of signal trans�
duction between contacting cells. Mechanotransduction is

any of various mechanisms by which cells convert

mechanical stimuli into biochemical signals in order to

adapt to a changing environment. Activation of signaling

pathways involved in mechanotransduction modulates

the set and the activity of transcription factors, thereby

controlling expression of multiple genes [39]. For

instance, in breast cancer cells, increased ECM stiffness

induces translocation of the transcription factor TWIST1

to the nucleus followed by epithelial�mesenchymal tran�

sition and increases metastatic potential of these cells

[38]. Mechanotransduction can be also linked to the

changes in the chemosensitivity of cancer cells.

Marturano�Kruik et al. demonstrated that mechano�

transduction significantly influences the sensitivity of

Ewing sarcoma (ES) cells [34]. Below, we’ll discuss this

work in more detail because (i) it has a crucial importance

in this context of our review and (ii) it outlines a method�

ology level required for performing this type of studies.

In this elegant yet the only study available so far, the

authors used a 3D matrix and custom�designed cell cul�

ture bioreactor for mechanical stimulation of cancer

cells. ES cells were seeded into porous 3D scaffolds for

48 h and then placed into the bioreactor, where the cells

were subjected to mechanical stimulation for 2 h. After

that, the cells were plated into 96�well plates to evaluate

their drug sensitivity to sorafenib and other antitumor

agents using a general protocol. Sorafenib is a low�

molecular�weight multi�kinase inhibitor that inhibits

both intracellular kinases (c�CRAF, BRAF, and mutant

BRAF serine/threonine kinase) and cell surface receptor

tyrosine kinases, such as receptors for vascular endothe�

lial growth factor (VEGFR�1, VEGFR�2, and VEGFR�

3), stem cell factor (KIT), Fms�like tyrosine kinase 3

(FLT3), platelet�derived growth factor (PDGFR�β), and

glial cell line�derived neurotrophic factor. It was found

that mechanical stimuli enhanced ES cell resistance to

sorafenib but did not affect cell sensitivity to doxoru�

bicin.
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NEW STUDIES OF THE ABC

TRANSPORTER FAMILY 

As mentioned above, one of the most common rea�

sons for MDR is the elevated activity of ABC transporters

that pump drugs out of the cells. Among ABC trans�

porters, P�glycoprotein (Pgp; ABCB1 according to the

current classification) has been most extensively studied

because of its principal role in MDR [1, 2]. Nevertheless,

new original scientific papers are published continuously

that attract attention of the scientific community due to

the high significance of presented results.

ABC transporters are transferred between the cells
with microvesicles. In the last decade, it has demonstrat�

ed that Pgp is transferred between the cells via microvesi�

cles (MVs) [40]. The role of different types of MVs in car�

cinogenesis, tumor progression, and DR has been broad�

ly discussed before [41�44] and will be omitted from our

review. However, it should be noted that MDR�positive

cells might release elevated (compared to non�resistant

cells) amounts of MVs [45], thereby stimulating further

MDR development. It was also demonstrated that malig�

nant cells release MVs at much higher levels than non�

malignant cells [40, 46], which might also promote

MDR development. Proteomics analysis of MVs from

the breast cancer cells identified 120 proteins found only

in the drug�resistant cells [47]. Pgp is transferred to the

target cells via MVs together with CD44 antigen, ERM

family proteins (ezrin, radixin, moesin), and some

cytoskeletal proteins [47]. Apparently, this combination

of proteins is not random and, according to the authors’

opinion, represents a result of selective packaging.

CD44, a hyaluronan receptor, is a membrane protein

involved in cell proliferation, differentiation, adhesion,

motility, and metastasis [48]. CD44 intracellular domain

binds to actin filaments via ezrin, radixin, and moesin. It

was demonstrated that in MDR�positive cells, Pgp and

CD44 co�localize, co�precipitate, and are co�regulated

[49].

Cell transfection with the CD44 gene upregulates

Pgp expression, whereas CD44 knockdown substantially

decreases Pgp functional activity and MDR [50]. CD44

and radixin are necessary for the Pgp�mediated drug

efflux; all three ERM proteins play an important role in

the transport of functional Pgp with MVs to the target

cells [50].

YB�1 is a common regulatory protein for Pgp and

CD44. As mentioned above, it was noted that YB�1 is a

trans�activating factor implicated in MDR1 transcription�

al regulation [9]. The full�size YB�1 binds to the promot�

ers of the CD44 and CD49f genes and induces their expres�

sion, as well as regulates CD44 mRNA alternative splicing

by increasing inclusion of exon v4 [51, 52]. Transfection

of BT�474 cells (HER2�positive breast cancer subtype)

with stably active YB�1 (S102D) mutant phosphorylated

at Ser102 upregulated CD44 expression, whereas expo�

sure to trastuzumab led to the selection of the drug�resist�

ant cell population enriched with CD44+ cells [53].

Proteins interacting with Pgp or regulating MV�medi�
ated cell�to�cell transfer of functional Pgp. An appealing

hypothesis has been proposed that drug efflux depends

not on Pgp alone, but also on other proteins that regulate

Pgp activity or interact with Pgp (table) [54].

As seen from the table, there are several proteins that

can modulate Pgp expression and activity and, according

to the proposed hypothesis, participate in the drug trans�

port from the cells. 

In recent years, new data have emerged showing that

Pgp not only remove substances from the cells but exhib�

it other activities [55]. In particular, Pgp (i) protects cells

from apoptosis and (ii) participates in the regulation of

gene transcription and translation.

Pgp protects cells from apoptosis. It was demonstrat�

ed recently that Pgp makes cultured cells more resistant

Proteins

CD44

ERM proteins (ezrin, radixin, moesin)

CD147

Caveolin (Cav10)

Rab family proteins

Ubiquitin

Heat shock proteins

Glutathione�S�transferases

References

[48, 50]

[65, 66]

[67, 68]

[69�71]

[72]

[73]

[74, 75]

[76, 77]

Proteins interacting with Pgp in cells with MDR or regulating MV�mediated cell�to�cell Pgp transfer [54]

Protein function

hyaluronan receptor

CD44 binding to actin cytoskeleton

induces extracellular matrix metalloproteinases

structural protein of caveolae 

regulators of intracellular vesicle transport

regulation of intracellular protein degradation and protein functions 

molecular chaperones

detoxifying enzymes
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to apoptosis induced by some non�drug factors (Fas,

tumor necrosis factor (TNF), UV� and γ�irradiation,

serum starvation) [56�59]. Studies of blood and bone

marrow samples from patients with acute myeloid

leukemia showed that Pgp is capable of protecting cells

from spontaneous apoptosis [60, 61]. Interestingly, the

anti�apoptotic effect of Pgp does not depend on the pro�

tein pump activity [60].

The anti�apoptotic activity Pgp is associated with (i)

its effect on the assembly of pro�apoptotic membrane sig�

naling complex, (ii) ability to suppress caspase activation,

and (iii) capacity to modulate activity of calcium chan�

nels and, hence, control Ca2+ homeostasis [62]. Recently,

a new anti�apoptotic mechanism of Pgp was identified

[63]. It was found that Pgp regulates expression of

endogenous TNF�related apoptosis�inducing ligand

(TRAIL) protein and modulates TRAIL�associated sig�

naling pathway, whose activation results in apoptosis.

TRAIL belongs to the TNF superfamily; Apo2, a ligand

of TRAIL, binds to the surface membrane receptors,

thereby activating caspases [64].

Pgp regulates gene transcription and translation. It

was found that transcription of genes for ABC trans�

porters could be regulated by the MDR1 mRNA through

its action on miRNAs. The authors used drug�sensitive

human acute lymphoblastic leukemia cells (CEM) and

their derivatives with high MDR (E1000 and VLB100).

The MDR of E1000 and VLB100 cells was related to the

overexpression of MRP1 (coding for ABCC1 protein) and

MDR1 genes, respectively. It was shown that downregula�

tion of MRP1 expression by miR�326 is modulated by the

MDR1 transcripts. Suppression if MDR1 transcripts with

specific siRNAs prevented MRP1 knockdown with miR�

326 [40]. Therefore, it was concluded that MDR1 mRNA

regulates transcription of the other genes encoding ABC

transporters through acting on miR�326. We believe that

new data on the effects of Pgp on the activity and expres�

sion of other ABC transporters will be unveiled in the

future.

In conclusion, novel approaches to studying MDR

have been developed during the last decade that resulted

in the new data on the molecular and cellular mecha�

nisms of MDR. One of this approaches that has consider�

ably simplified analysis of such multi�layered phenome�

non as MDR includes distinguishing two components of

DR evolution: (i) specific molecular changes that pro�

mote DR and (ii) factors that facilitate DR emergence

and evolution.

New results have been obtained while studying the

trends in MDR emergence and evolution. In particular, it

has been convincingly demonstrated that CSCs can

undergo selection at the action of chemotherapy agents,

which results in elevated tumor DR and enhanced

tumorigenicity. Cell–cell interactions have been found to

have a great impact on the MDR emergence and devel�

opment. Mechanotransduction was proven to be an

important mechanism for transducing signals between the

cells. A considerable progress has been made in the

understanding of the role of the ABC transporter family

in the MDR development. It was shown that ABC trans�

porters can be transferred between the cells via MVs, thus

serving as important epigenetic regulatory agents. In par�

ticular, proteins regulating the MV�mediated transfer of

functional P�glycoprotein (MDR protein) have been

examined. It was found that P�glycoprotein might regu�

late apoptosis, as well as gene transcription and transla�

tion. Altogether, these data show again that MDR is a

complex phenomenon that requires further investigation.
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