
Transcription factor Nrf2 belongs to “leucine zip�

per”�containing factors of the CNC family that form

homo� or heterodimers for DNA binding. The mam�

malian CNC family comprises six members: four NFE

factors (p45 NF�E2, Nrf1, Nrf2, and Nrf3) and two BTB

factors (Bach1 and Bach2). Nrf2 binds to DNA at the

antioxidant response element (ARE), which contains the

sequence 5′�A/GTGAC/TnnnGCA/G�3′. All the factors of

the CNC family can form regulatory�active dimers.

However, depending on their ability to bind transcription

cofactors, they either promote or inhibit transcription of

ARE�dependent genes. Therefore, repression or induc�

tion of each leads to different effects on the cellular or

organismal level [1�3]. In most cases, transcription factors

Bach1 and Bach2 act as antagonists of Nrf2, competing

for binding to ARE. Normally, Bach1 is localized mainly

in the nucleus, which allows keeping some genes repressed

[4]. Involvement of multiple components allows forming

tissue� and organ�specific systems of regulation of gene

expression that changes during ontogenesis [2, 5].

Transcription factor Nrf2 contains seven conserved

domains Neh1�Neh7. Each of these domains performs a
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ubiquitination and degradation in the 26S proteasome, as well as through various modifications of amino acid residues of
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sible due to autophagy and epigenetic regulation that may underlie the increased resistance of tumor cells to radiotherapy

and chemotherapy. This review deals with the mechanisms of regulation of Nrf2 transcriptional activity and its main ele�

ments, and pharmacological approaches to activation of the Keap1/Nrf2/ARE system.
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specific function (Fig. 1) [6�8]. The bZip�like domain

Neh1 is responsible for Nrf2 dimerization with other pro�

teins and DNA binding. In “leucine zippers”, a leucine

residue is located in every seventh position. These

residues form a hydrophobic region allowing dimeriza�

tion. At the same time, due to a specific structure of the

bZip�domain, Nrf2 does not form homodimers. Instead,

it interacts with bZip regions of auxiliary regulatory pro�

teins that belong to the Maf and Jun families [9, 10]. The

Neh2 domain is responsible for Nrf2 binding to the regu�

latory protein Keap1 (Kelch�like ECH�associated pro�

tein 1). For this purpose, this domain contains two motifs:

ETGE and DLGex, which possess high (Ka = 20·107 M–1)

and low (Ka = 0.1·107 M–1) affinities, respectively (Fig. 1).

There are lysine residues between the ETGE and DLGex

motifs that are subject to ubiquitination. Domain Neh3,

situated at the C�terminal part of the protein, and tandem

Neh4 and Neh5 provide transactivation activity of Nrf2.

They bind to the transcription coactivators CBP/p300

and BRG1 in a synergetic manner. This leads to acetyla�

tion of histone proteins and chromatin decondensation

allowing interaction of RNA polymerase complex with

promoter regions of DNA, thus triggering synthesis of

target gene mRNAs. The presence of domains Neh7 and

Neh6 allows additional posttranslational negative regula�

tion of Nrf2, which is redox�independent, in contrast to

the one mediated by Neh2 and Keap1. Neh7 interacts

with transcription factor RXRα (retinoid X receptor α)

[11], and a poly�serine region of Neh6 contains DSGIS

and DSAPGS motifs that are responsible for binding

of substrate adaptor of E3�ubiquitin ligase complex

SCFβ�TrCP [12, 13].

Human Nrf2 contains six cysteines (seven in mice

and rats), which are subject to oxidative modification

[14], and numerous amino acid residues that can be phos�

phorylated [15]. Besides, Nrf2 protein has several nuclear

localization signals (NLS) and nuclear export signals

(NES) that are required for transport of the transcription

factor into nucleus or cytoplasm, respectively. Due to its

unique structure, the activity of Nrf2 as a transcription

factor that determines expression of genes that it controls

may be altered at the levels of transcription, translation,

posttranslational modifications, nuclear translocation,

and binding to promoters of regulated genes.

The importance of Nrf2 for life support processes

becomes evident in experiments on animals with disrupt�

ed genes (knockouts). Though homozygous mice

(Nrf2–/–) do not show substantial deviations during birth

and maturation compared to wild�type animals

(Nrf2+/+), different diseases develop by the age of two

months in these mice. Starting from 20 weeks, high mor�

tality caused mainly by autoimmune glomerulonephritis

is observed [16]. Besides, in numerous studies it was

shown that mice with Nrf2 –/– genotype demonstrate

increased severity of inflammatory response to different

factors [17], probability of development of provoked

tumors [18] and neurodegenerative diseases [19],

ischemia and reperfusion damage [20], and lack of thera�

peutic effect of Nrf2 inducers under these conditions.

REGULATION OF Nrf2 ACTIVITY

Ubiquitination. A major mechanism for regulation of

Nrf2 activity is changing stability of the protein at the

posttranslational level. Nrf2 is a short�lived protein: its

half�life (t1/2) in murine hepatoma Hepa cells is 13 min, in

rat hepatocytes – 22 min, in human HepG2 cells –

15 min, in murine peritoneal macrophages – 18.5 min

[21, 22]. In the absence of activators, stability of Nrf2 in

cells is determined by the enzymatic ubiquitination of its

lysine residues and subsequent degradation by the 26S

proteasome [7]. It was demonstrated in cell cultures that

Nrf2 concentration in cells and nuclei grows upon inhibi�

Fig. 1. Structural organization of transcription factor Nrf2 and its Neh2 domain interacting with Keap1 dimers.
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tion of proteasome activity. Formation of complexes of

Nrf2 with ubiquitin ligases requires adaptor proteins.

Keap1�dependent Nrf2 ubiquitination is the classical

(canonic) Nrf2 ubiquitination pathway. Here, adaptor pro�

tein Keap1 promotes interaction of Nrf2 with Cullin�3�

containing ubiquitin ligase complex E3 (further, Cul3�E3�

ligase) [23]. Normal ubiquitination also requires protein

Rbx1 (RING�box protein 1), which along with Cul3 forms

a catalytic component of the enzymatic complex and inter�

acts with E2 ubiquitin ligase for transfer of ubiquitin to

Nrf2 (Fig. 2a). Keap1 contains five conserved domains: an

N�terminal region (NTR), domains BTB, IVR, Kelch

(consists of six repeats of Kelch motifs), and C�terminal

region (CTR) (Fig. 3). The BTB domain participates in

formation of Cul3�Rbx1�ligase complex [25]. The cys�

teine�rich domain IVR is a sensor for a broad spectrum of

electrophilic compounds and regulates Nrf2 ubiquitina�

tion. The C�terminal Kelch domain interacts with ETGE

and DLGex motifs of the Neh2 domain, thus providing

regulation of Nrf2. It also interacts with cytoskeleton pro�

teins actin and/or myosin VIIa, which causes mainly cyto�

plasmic localization of the Keap1/Nrf2 complex.

Oxidative/electrophilic modification of thiol groups

of cysteine residues in Keap1 plays a key role in reducing

Fig. 2. Nrf2 ubiquitination with participation of adaptor proteins Keap1 (a) and β�TrCP (b) (according to Harder et al. [24]).

Fig. 3. Structural organization of Keap1 and location of its cysteine residues.
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the ubiquitination�related repression of Nrf2 transcrip�

tion factor. For instance, murine Keap1 contains 25 cys�

teines (in humans – 27; 4.3% of all amino acid residues),

which are sensors for a broad spectrum of compounds

that affect complex formation of Keap1 and Nrf2 or

interaction with Cul3�E3�ligase. All cysteine residues in

Keap1 are somewhat subject to oxidative modification.

Cysteines Cys273 and Cys288 are crucial for

Nrf2–Keap1 complex formation. These residues can

form an intermolecular disulfide bond in the Keap1

homodimer [9]. Another residue required for proper

functioning of the Nrf2/Keap1/ARE signal system is

Cys151 in the BTB domain of the repressor protein.

Under oxidative stress and the action of electrophiles,

numerous low molecular weight components are cova�

lently attached to this residue, generating modifications

of Keap1 that are resistant to the action of reducing

agents, hence disrupting the interaction with Cul3�E3�

ligase [26]. Thus, Cys151, Cys273, and Cys288 may be

considered as redox balance sensors responsible for

induction of Nrf2/ARE�dependent genes. Sequences of

6�9 a.a. containing Cys151, Cys273, and Cys288 are

identical in mice, rats, and humans, which indicates their

physiological relevance (Fig. 3). Another physiologically

relevant site for oxidative modification of Keap1 is cys�

teine residue Cys23 that forms an intramolecular disul�

fide bond with Cys38 upon interaction with oxidized glu�

tathione [9], which reduces Keap1�mediated repression

of Nrf2 [27].

A possibility was demonstrated of alternative (redox�

independent) ubiquitination of Nrf2 after its phosphory�

lation by GSK�3β kinase (glycogen synthase kinase 3β).

In this case, β�TrCP (β�transducin repeat�containing

protein) plays a role of an adaptor protein, which forms

E3�ubiquitin ligase complex β�TrCP–Skp1–Cul1–Rbx1

(Fig. 2b).

Existence of such an alternative process suggests a

two�level ubiquitination system with the participation of

Keap1 and β�TrCP [15]. In the first case, the main regu�

lators of ubiquitination and degradation of Nrf2 are reac�

tive oxygen species (ROS) and electrophiles modifying

cysteine residues of Keap1. In the second case, the

process is regulated by external signals (cytokines, growth

factors, neuromediators, etc.) that induce phosphoryla�

tion and inhibition of GSK�3β. Recently, the possibility

of Nrf2 ubiquitination by an endoplasmic reticulum E3�

ligase was found. In this case, Hrd1 (synoviolin) acts as an

adaptor protein [28]. However, this pathway is very spe�

cific and it is only activated in response to endoplasmic

reticulum stress. It is worth mentioning that under nor�

mal conditions the main ubiquitination pathways are

active. Therefore, the major part of Nrf2 is degraded by

the proteasome. At the same time, determination of

Keap1 and β�TrCP levels in animals having different

lifespans revealed a reliable inverse correlation between

their levels and maximum lifespan [29].

It should be mentioned also that adaptor proteins

can be ubiquitinated by E3 ligases themselves. In particu�

lar, such autoubiquitination was demonstrated for Keap1.

However, decrease in its levels did not depend on protea�

somes [30].

Autophagy. After ubiquitination, Nrf2 proteins are

digested by proteasomes, whereas Keap1 complexes may

be eliminated by means of autophagy [31]. Autophagy is

an important catabolic process for maintenance of cell

homeostasis and protection against the invasion of a

pathogen.

The multifunctional protein p62 (SQSTM1) plays a

pivotal role in Nrf2 regulation via autophagy. This protein

contains regions for binding to numerous proteins: ubiq�

uitin, Keap1, LC3 (microtubule�associated protein

1A/1B�light chain 3), etc. It was shown that p62 actively

interacts with ubiquitinated proteins; that is why it is

named sequestosome�1. It was established that p62 is an

autophagy receptor, as it binds (through its LIR domain)

to the microtubule autophagy marker LC3 [32]. Now p62

has been shown to participate as a receptor in many kinds

of selective autophagy [33].

Protein p62 contains six conserved domains (Fig. 4)

allowing interaction with various proteins and thus real�

ization of interconnection between various signaling sys�

tems. The N�terminal PB1 domain of p62 allows forming

dimers and oligomers with other proteins: aPKC (atypical

protein kinase C) and ERK (extracellular signal�regulat�

ed protein kinase). The ZZ domain is a “zinc finger”

motif, which allows p62 to act as a transcription factor

and to bind to DNA. Protein p62 binds to TRAF6 (TNF�

α receptor�associated factor 6) through the TB domain

and activates NF�κB. The C�terminal domains LIR,

KIR, and UBA are required for binding Keap1 and ubiq�

uitinated proteins and their degradation via autophagy.

The KIR domain is structurally similar to the ETGE

motif of Nrf2. This allows interaction of p62 with Keap1,

thus interfering with binding to Nrf2 and its ubiquitina�

tion. At the same time, interaction of p62 with Keap1

leads to degradation of the latter via autophagy [34].

Regulation of p62 is realized at both the transcrip�

tional and posttranscriptional levels. Synthesis of gene

SQSTM1 mRNA is regulated by transcription factors

Nrf2, NF�κB, AP�1, and FXR. A strong relationship

between p62 and the Keap1/Nrf2/ARE redox�sensitive

signaling system, whose activation causes increase in p62

synthesis, was revealed [31]. The affinity of Keap1 to p62�

KIR is slightly lower than to the DLGex domain and sig�

nificantly lower than to the ETGE domain of Nrf2. For

this reason, such a structural and functional similarity

between the domains of p62 and Nrf2 does not play a role

in the classic model of activation of the Nrf2/Keap1/ARE

system by electrophilic reagents. To trigger p62�mediated

induction of Nrf2, an increase in p62 concentration is

required. This enhances the probability of competitive

displacement of Nrf2�DLGex from the complex with
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Keap1. Such mechanism is probably realized upon pro�

longed activation of Nrf2, because Nrf2 raises its expres�

sion by binding to the promoter of the gene encoding p62.

Thus, Keap1 is sequestered by increased p62 that in turn

stabilizes Nrf2 and maintains its activity [35].

Phosphorylation of p62 at Ser349 in humans or

Ser351 in mice significantly increases its affinity to

Keap1, which exceeds that of Nrf2�ETGE (and even

more that of Nrf2�DLGex) to Keap1 [36]. Such modifi�

cation is only possible after preliminary phosphorylation

of p62 at Ser403 by TBK1 kinase and subsequent forma�

tion of aggregates of p62 as such or with ubiquitinated

targets [37]. On one hand, these aggregates are targets for

autophagy. On the other hand, they are sites for Keap1

sequestering leading to induction of Nrf2/ARE [37].

Ubiquitination of Keap1 also strengthens its binding

to p62. However, this interaction may be predominantly

mediated by sestrins [38]. High antioxidant activity and

ability to induce Nrf2 was discovered for Sesn2, which

can form complexes with p62 and Keap1 and inhibit

mTORC1 (mammalian target of rapamycin complex

1/2), thus activating autophagy. Presence of an ARE

sequence in the promoter of the Sesn2 gene enhances its

activation effect on the Keap1/Nrf2/ARE system [38].

Phosphatases and kinases. In view of the large num�

ber of serine, threonine, and tyrosine residues (17% in

human Nrf2) that can be phosphorylated, protein kinases

belonging to various families (PKC, JNK, PI3K, ERK,

p38 MAPK, PERK, and GSK�3β) participate in regula�

tion of Nrf2 stability, transport in/out of the nucleus, and

binding to ARE [15, 39]. Serine/threonine PKC phos�

phorylates Ser40 in Nrf2, which weakens its interaction

with Keap1 and increases stability and nuclear import.

Besides, Cys151 modification is possible in Keap1 [40,

41]. Phosphorylation of Nrf2 significantly affects its

nuclear import and export. For this reason, mitogen�acti�

vated protein kinases (ERK1/2, JNK2, p38 MAPK, and

MEKK3/4) may (depending on the experimental condi�

tions) induce rather different effects ranging from com�

plete abolishment of Nrf2 activation to its high�level

enhancement. In particular, JNK1 and ERK2 activate the

Nrf2�dependent signal pathway, whereas p38 MAPK

inhibits this pathway [40]; kinases PERK and PI3K

enhance Nrf2 nuclear import, whereas Fyn�kinases phos�

phorylate Tyr568 and enhance Nrf2 export and degrada�

tion [42]. The adaptor protein Keap1 is also subject to

posttranslational modification: phosphorylation of

Tyr141 in the BTB fragment stabilizes the Keap1 dimer,

whereas dephosphorylation stimulates degradation of the

protein [43].

The serine/threonine kinase AMPK (adenosine

monophosphate�activated protein kinase) is a main sen�

sor for changes in cellular energetic balance [44].

Classical AMPK activators are AMP and ADP; it is also

activated by Ca2+ and H2O2 [44]. AMPK phosphorylates

Ser550, which is situated in the nuclear export domain of

Nrf2; this facilitates accumulation of the transcription

factor in the nucleus [45]. Besides, AMPK phosphory�

lates and inhibits the GSK�3β kinase, which enhances

degradation of Nrf2 [45]. AMPK activation inhibits

mTORC1 by phosphorylation of the Raptor protein,

which is a part of mTORC1 complex. Thus, autophagy is

induced [46]. Hence, in response to energy starvation,

prolonged induction of Nrf2 may occur due to AMPK

activation. In addition to phosphorylation, Nrf2 activity

may be affected by other modifications (acetylation,

methylation, sumoylation) [47�50].

Epigenetic regulation. Tight interconnection between

the Keap1/Nrf2/ARE signaling system and epigenetic

regulation mechanisms has been demonstrated [51�53].

Decrease in Nrf2 expression is related to hypermethyla�

tion of specific CpG sites in the Nrf2 promoter [54]. At

Fig. 4. Structural organization of p62 and its KIR domain interacting with Keap1.
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the same time, repression of Keap1 function is observed

in many cancers. This causes significant elevation of Nrf2

activity. Methylation and demethylation of histones may

also affect activity of Nrf2 and enhance its synthesis in

tumor cells [56].

Acting directly on mRNAs of transcription factors

Nrf2, Keap1, and Bach, microRNAs can enhance or

inhibit expression of genes regulated by Nrf2 and affect

cell resistance against stresses [51, 57]. Besides,

microRNAs can bind to specific regulatory elements of

genes and stimulate their transcription.

APPROACHES TO PHARMACOLOGICAL

ACTIVATION OF THE Keap1/Nrf2/ARE SYSTEM

The Keap1/Nrf2/ARE system is activated by toxic

compounds, especially by pro�oxidants and electrophiles

[58] that cause oxidative stress. Therefore, unsurprisingly,

the most known inducers of the Keap1/Nrf2/ARE system

contain electrophilic groups (direct activators) or become

electrophiles after metabolic conversions (metabolic acti�

vators). It is believed that they form covalent bonds with

thiol groups of cysteine residues of Keap1, thus being

indirect inhibitors of interaction between Keap1 and

Nrf2. Direct activators include such compounds as

Michael acceptors, isothiocyanates, vicinal dithiols,

organosulfur and selenium�based compounds, elec�

trophiles bearing a leaving group, trivalent arsenicals,

heavy metal species, hydroperoxides, and nitrosative

agents [21, 59].

Dissociation of Keap1–Cul3 complex [59] is an

additional possible mechanism for Nrf2 activation by

electrophiles. Such dissociation was shown for sul�

foraphane and tert�butylhydroquinone [60], but it did not

occur in another study upon cell incubation with four dif�

ferent types of inducers [61].

Compounds that modify thiol groups of Keap1 do

not have sufficient selectivity and may affect other targets

(PPARγ, IKK, JAK/STAT, HER2/ErbB2/neu, PTEN,

PI3K/Akt, mTOR), and the whole thiol proteome [62,

63]. Lack of selectivity for Keap1 and pro�oxidant activi�

ty of these compounds explain a “U”�like dose depend�

ence typical of inducers of this type, which indicates

appearance of unwanted negative effects on increase in

their concentration.

Direct inhibition of interaction between Keap1 and

Nrf2 may have many advantages compared to using elec�

trophilic activators of Nrf2; it has become of increased

interest recently. Potential inhibitors of such protein–

protein interaction have been designed [64�66], for

instance, quinazoline�based nitrogen�containing het�

eroaryls whose biological activity is mainly associated

with antioxidant activity [67], or short peptides [68].

Compounds of this kind interact with the Kelch domain

of Keap1, which impedes its binding to Nrf2. Some cellu�

lar proteins including DJ�1 [69], p62 [36], and p65 [70]

can also modulate protein–protein interaction between

Keap1 and Nrf2.

On the other hand, such blockers of the protein–

protein interaction do not selectively affect Nrf2, as

Keap1 contributes to ubiquitination of many other sub�

strates including IKKβ [71] and PGAM5 [72].

It is known that Nrf2 degradation may be facilitated

by other proteins (β�TrCP, Hrd1, CRIF1). Particularly,

CRIF1 participates in Nrf2 ubiquitination with subse�

quent proteasomal degradation. It interacts with the

Neh2 domain and the C�terminal bZip domain of the

transcription factor and can bind a mutant Nrf2 with

changed ETGE motif [73].

A great body of data has accumualted concerning the

participation of the Keap1/Nrf2/ARE system in patho�

genesis of various diseases and experimental works that

reveal therapeutic perspective of compounds (the vast

majority of them are electrophiles acting on Keap1) that

activate this system in neurodegenerative diseases, athero�

sclerosis, inflammation and inflammation�related tumors,

diabetes and its complications, and malignant tumors [59].

At the same time, there are only a few completed clinical

studies demonstrating efficiency and safety of these com�

pounds. As an example, one may mention dimethyl

fumarate (brand name Tecfidera) approved for application

during relapsing�remitting multiple sclerosis. Although

currently there are no data suggesting a relation between

formation of stable “drug–protein” complexes and toxici�

ty, one should not ignore the potential risk of such events,

whereas biological effects of inhibitors of protein–protein

interactions still should be determined in vitro and in vivo.

ROS are now considered as regulators of key cellular

events such as proliferation, differentiation, and apopto�

sis [74�76]. For this reason, it is not surprising that ROS

play the pivotal role in numerous pathological processes

and conditions: inflammation [77], neurodegeneration

[78], tumor growth [79, 80], and infectious and immune

diseases. Thus, a multilevel system was developed in

mammals for regulation of Nrf2, which is a key element

of intracellular redox balance maintenance. One can

claim that Nrf2 has acquired its versatility as a result of

adaptation of living organisms to aggressive oxidative

conditions [81] and the necessity of developing new

mechanisms for regulation of cell differentiation [76] and

their behavior within multicellular organisms [77].

It is worth mentioning that the search for com�

pounds able to selectively activate the Keap1/Nrf2/ARE

system via affecting the known mechanisms of its regula�

tion is only begun to accelerate. Development of methods

and approaches for designing chemicals in silico, includ�

ing virtual screening procedures (search for quantitative

relation between structure and properties, molecular

docking, etc.), allow selecting a wide spectrum of com�

pounds having desired properties that interact with cer�

tain molecular targets.
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Effects on other regulatory regions, in particular

Neh6 (a domain of redox�independent regulation) or

Neh1 (contains DNA�binding motif and affects nuclear

export and import), are also of great interest. Besides, the

Neh2 domain still contains poorly studied sites for activa�

tors search. It is known that phosphorylation of Nrf2 by

protein kinases (for instance, PKC) at Ser40 in the Neh2

domain (situated between DLGex and ETGE) impedes

the interaction of Nrf2 with Keap1 (particularly, with

Cul3�E3�ligase) and ubiquitination of Nrf2. Finding and

designing inhibitors of a protein–protein interaction

selective for these sites will allow obtaining several activa�

tors of the Keap1/Nrf2/ARE system that would lack dis�

advantages of electrophiles and inhibitors of the Kelch

domain of Keap1. However, studies in this direction are

limited due to lack of data regarding the three�dimen�

sional structures for the regions of interest (particularly,

crystallographic results).
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