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Abstract—We consider the field of three-dimensional technical vision and in particular three-
dimensional recognition. The problems of three-dimensional vision are singled out, and methods
for obtaining and presenting three-dimensional data, as well as applications of three-dimensional
vision, are reviewed. Deep learning methods in 3D recognition problems are surveyed. The main
modern trends in this field are revealed. So far, quite a few neural network architectures, con-
volutional layers, sampling, pooling, and aggregation operations, and methods for representing
and processing three-dimensional input data have been proposed. The field is under active
development, with the greatest variety of methods being presented for point clouds.
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1. INTRODUCTION

Three-dimensional technical or computer vision is becoming increasingly relevant: the technolo-
gies and equipment necessary for obtaining three-dimensional representations, their processing, and
visualization are becoming cheaper and more accessible, and simultaneously, the interest in three-
dimensional computer vision applications is growing. The emergence of virtual and augmented
reality technologies, as well as the growing popularity of mobile robots and various intelligent ser-
vice systems, further stimulate the development of technical vision.

The field of three-dimensional recognition is especially interesting, since it is aimed at solving the
problem of understanding the surrounding world, which is one of the main problems in technical
and computer vision. Despite the fact that great progress has been made in image recognition
problems, three-dimensional models give a much more complete picture of the scene, the objects
in it, and their relative position. It is intuitively clear that although the recognition of three-
dimensional representations is a more difficult problem, it should allow obtaining better and more
stable systems that act in space or analyze it and objects in it. Although it is obvious that the
problem of understanding the world around the machine will not be solved in the near future, it is
worth starting to form the foundation for future research by developing the field of three-dimensional
recognition. In addition, there are many less global problems that modern science and technology
are quite capable of solving.

2. 3D TECHNICAL VISION

Three-dimensional technical (computer) vision involves working with three-dimensional repre-
sentations of existing or synthesized objects and scenes. There are several typical problems of
three-dimensional technical vision:
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1. Getting 3D representations of existing objects and scenes—3D scanning. There are many
methods and equipment for this problem, and there are also neural network methods that
generate three-dimensional representations.

2. Processing, filtering, and analysis of three-dimensional representations can have various goals:
filtering noise and outliers, corrections (for example, interpolation or decimation), combining
several partial representations into one, or converting to another type of representation (for
example, obtaining a polygonal model from the point cloud).

3. Mapping and localization, SLAM, are popular in mobile robotics.
4. Visualization of three-dimensional representations can be both an auxiliary problem (result

monitoring when working with three-dimensional representations) and the main problem (in
augmented reality applications).

5. Pattern recognition by 3D representations and semantic analysis is a related field that involves
various computer vision, machine learning, and deep learning methods. The problems in this
group are aimed at obtaining information from three-dimensional representations of a higher
level of abstraction: for example, recognizing a scene in a point cloud in the form of a living
room with furniture and people. This is necessary to create systems that can understand the
world around us and interact with it.

2.1. Representations of 3D Data

Three-dimensional data representing scenes and objects of the real world or synthesized by any
method and constructed by a designer can be represented in various forms. Combining knowledge
from areas such as vision and computer graphics, one can make a single list that includes all the
most common forms of representation:

1. Point cloud.

2. Depth map, often considered as a 2.5-dimensional representation.

3. RGB-D image, also considered as a 2.5-dimensional representation.

4. Collection of images, strictly speaking, is not a three-dimensional representation. However,
there are many methods for obtaining a point cloud from a collection of images (with or
without a depth channel), including video storyboard.

5. 3D models:

(a) Wireframe models.

(b) Boundary (surface) models.

(c) Solid models:

(i) Constructive solid geometry, CSG.

(ii) Voxel models.

(d) Polygon mesh.

(e) Parametric models.

(f) Implicit surfaces.

The most popular representations are the point cloud, the polygon mesh, and the voxel model.
The depth map, the RGB-D image, and the multiview image collection are not strictly 3D repre-
sentations but are extremely popular (RGB-D cameras are becoming more available) and are used
in photogrammetrical methods for object or scene reconstruction.
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Fig. 1. Top left: point cloud constructed with COLMAP software [1] from 128 (RGB) images of one of the buildings
of the University of North Carolina at Chapel Hill [2]. The calculated camera positions are shown. One position
(shown in darker color) is selected. Top right: the image corresponding to the selected position and its parameters.
The points (pixels) used in the construction of the cloud are marked. Bottom: a 3D model of a croissant based on
a polygon mesh. The vertices are shown on the left, the edges are shown in the center, and the faces of the model
are shown on the right. The image has been borrowed from [3].

A point cloud is a set of points in space that represents figures, objects, and surfaces. Each
point is represented by three-dimensional coordinates; there can also be auxiliary attributes,
for example, intensity or color. Point clouds can be obtained and stored; they permit quickly
performing linear transformations in the matrix representation. Point clouds are also easy to
match with each other and to map onto a plane. Most 3D scanning methods produce exactly
a point cloud.

A depth map is a two-dimensional single-channel image containing information about the dis-
tance from the scene surfaces to the shooting point (area).

An RGB-D image is a two-dimensional four-channel image containing the depth map in one
channel and the color information (RGB scene image) in the remaining three channels.

Voxel (VOlumetric piXEL) or voxel grids are based on the following approach: the entire three-
dimensional space is represented in the form a uniform mesh or matrix whose cells contain
voxels—three-dimensional volumetric pixels. The position of a voxel is denoted by its position
in the matrix rather than the coordinates in space. A voxel may contain a set of attributes,
for example, color or material. Voxel models are fairly frequently used in medicine in analysis
problems.

Models based on polygon meshes, similar to boundary ones, consist of vertices, edges, and faces.

However, unlike boundary models, the faces of a polygon mesh are always flat, i.e., are polygons.
At the moment, models based on a triangular polygon mesh are the most popular form of 3D data
representation in the field of computer graphics and in interactive visualization problems.
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Fig. 2. Left: a scan of the east side of the Cheops Pyramid; a 2D panorama is shown above [4]. Center: a detected
anomaly; the eastern side of the pyramid with color (and brightness) coding of the deviation of the slope surface
from the plane is shown at the top, and the bottom shows the location of the anomalies in the top view [4]. Right:
the position of the 3D model of the excavated part of the bottom of a 16th-century ship with respect to the whole
ship model [5].

2.2. 3D Recognition Applications

At the moment, with the increasing availability of sensor, computer, and software tools capa-
ble of performing three-dimensional scanning and reconstruction, there is a wide field of possible
applications of three-dimensional vision and in particular recognition.

In medicine, deep learning methods are used to segment 3D images and detect and evaluate the
position, size, and shape of any elements—organs, tumors, etc. Here a voxel representation is often
used, since many scanning methods involve obtaining a set of images when the scanner moves in
one direction with a given step. Applications are possible to help assess the posture, stoop of the
patient, and the nature of their motions.

In geomatics, three-dimensional recognition can be useful in the problems of marking the ter-
rain and searching for any objects in arrays of three-dimensional data. The generation of three-
dimensional objects can be in demand in the development and design of products.

Augmented reality applications often use 2D images; this is due to the need to use such appli-
cations on mobile devices with low computing resources and memory. However, in some problems
it may be necessary to use three-dimensional representations, for example, augmented reality ap-
plications for medicine, providing high-quality visualization of the areas to be studied as well as
segmentation and detection of any elements and allowing one to interact with a three-dimensional
model. Such technologies can be used in production.

In the field of autonomous driving, deep learning methods are applied in scene analysis problems
such as object detection and scene segmentation.

In the field of mobile and service robots and service systems, there can be many various ap-
plications of three-dimensional recognition, including all kinds of problems: scene segmentation,
segmentation of parts of objects, detection and localization of objects and key points, classification,
pose estimation, etc. In this area, both the problems and the environment can be very variable,
and interaction with a person is also often assumed, so that the option of using a three-dimensional
representation of a scene or objects can be most beneficial, because it provides most complete
information about the scene.

3. PROBLEMS AND METHODS OF THREE-DIMENSIONAL RECOGNITION

The main problem of computer vision is the problem of understanding the world around the
machine. A person, even when looking at an image of a real scene rather than the scene itself,
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Fig. 3. Examples of Biederman constraint violations. Left: a fire hydrant violates position constraints. Center:
violation of the relative position (briefcase and legs). Right: triple violation—the sofa violates the constraints of
support, probability of occurrence, and size. The images have been borrowed from [7].

represents it in three-dimensional form and evaluates the position of objects relative to each other,
the space available for actions, etc. At the same time, a number of studies show that people perceive
a three-dimensional scene in terms of the relative location of surfaces rather than in the form of
an absolute depth map [6]. It is assumed that a person builds one or more three-dimensional
models of the scene and uses them for various tasks: distance estimation, object search, and route
building. Understanding the context also plays a big role. Irving Biederman, a neuroscience and
vision scientist, formulated five constraints that a well-organized scene must follow: support, relative
positioning, probability of occurrence, position, and size. Experiments have shown that people, on
average, take longer to search for an object in a scene image if it violates at least one of the
Biederman constraints [7]. Thus, people recognize objects in a familiar context faster.

Our life experience, all our existing knowledge about the world, helps in recognition. We know
that grass grows from soil and is found in cracks between tiles but cannot grow from a solid cement
floor. We understand what a reflection in mirrors or other surfaces and paintings on the walls are.
We know that usually small children do not go out without adult accompaniment.

It is not yet clear how to transfer all this experience to a machine. However, at this stage in the
development of computer vision, the idea to use the most complete, i.e., three-dimensional, visual
representation of the scene seems appropriate. In addition to solving some applied problems that
are relevant now or in the near future, the development of three-dimensional recognition methods
may be a necessary step towards solving the problem of understanding the surrounding world
by a machine.

The most popular 3D recognition problems currently include:
– Highlighting key points and assessing the position and angle; finding a correspondence between

three-dimensional objects.
– Classification of objects and forms; feature extraction.
– Generation of three-dimensional objects and shapes (including reconstruction of sites).
– Recognition and generation of faces and bodies of people and animals.
– Object detection;
– Segmentation of objects or component parts of objects.

However, when considering deep learning methods, it is difficult to make a clear division into
tasks. In most cases, the key element for solving any problem is a feature-extractor neural network,
which is the basis of the model and to which various modules and branches are added that use the
features obtained to solve target problems—classification, segmentation, etc. Therefore, it is more
expedient to consider the area of three-dimensional recognition without being tied to tasks.
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Fig. 4. In the publication [8], methods are first divided into groups according to the type of data (3D representations)
they are intended for, and then the authors distinguish between narrower groups of methods based on the approaches
they use.

3.1. Deep Learning Methods in 3D Recognition Problems

The publication [8] covers deep learning methods for point cloud recognition from 2015 to 2020.
The authors identified several approaches and provided examples of popular algorithms (Fig. 4).

The authors distinguish three properties inherent in point clouds: irregularity (uneven distribu-
tion of point densities in the volume of the cloud), being unstructured (the absence of any grid on
which the points lie), and disorder (points are stored in a list, and the order of their location in
this list is irrelevant). A few years ago, these properties did not allow using deep learning methods
and especially convolutional neural networks designed for ordered, regular, and structured data
with point clouds, and so in early research point clouds were converted to regular and structured
representations. The following approaches are popular: voxelization, a set of views from different
angles, and a higher-dimensional grid.

Voxelization involves converting a point cloud into a voxel grid of a fixed size. Here one can
build a neural network using 3D convolutional filters. A large number of publications [9–14] use
this approach and perform voxelization at the preprocessing stage. 3D ShapeNets [14] forms a voxel
grid of 30 × 30 × 30 voxels; a voxel has a value of 1 if it is part of the object and 0 if it is outside
the object. Thus, the object can be represented by a binary tensor. However, the problem with
voxel representations is sparseness—when an object occupies only a small part of the voxel grid,
most of the calculations are performed on empty areas, which is extremely inefficient. More recent
publications [15, 16] suggest a solution of this problem by using octrees, a tree data structure often
used to partition 3D space, in which each cube voxel can contain exactly eight smaller voxel children.
Thus, areas requiring more detailed processing can be placed in smaller voxel cells.

The use of a set of images obtained from different angles instead of a point cloud has a number of
advantages. This approach allows one to use all the techniques used to recognize two-dimensional
images, and the images themselves do not have artifacts (the voxel grid resolution is usually quite
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coarse, which leads to a distortion of the original object shape). The first publication in this di-
rection is MultiviewCNN [17], which suggested obtaining a feature description for each image of
an object using a convolutional network, then aggregating all feature descriptions with a pooling
operation, and applying another convolutional neural network to obtain the final feature vector for
classification. A number of papers continued the direction in [11, 18–23], using all the achievements
of deep learning in image processing, but at the moment the direction is losing relevance owing to the
development of methods that can work with three-dimensional representations directly. Neverthe-
less, the paper [24] was presented in 2020, proposing a segmentation algorithm for polygon meshes
based on a multiview approach for the semantic segmentation problem. It is noteworthy that the
authors propose to use not original frames obtained by photographing an object or scene from dif-
ferent angles but synthetic images with an increased field of view and renderings obtained from the
three-dimensional scene constructed. The authors claim that their algorithm, taking approximately
12 synthetic images as input, achieves segmentation accuracy higher than other existing multiview
methods when using more than a thousand images. In this case, the virtual angles used in obtaining
such images may not be possible, for example, because of the walls when hiding these walls.

The idea behind the approach with a higher-dimensional grid is to transform the point cloud to
a permutation-resistant structured representation such as a permutation polyhedron. The neural
network SPLATNet (Sparse Lattice Networks for Point Cloud Processing) [25] takes a point cloud
as input and predicts the class for each point, i.e., performs semantic segmentation. The network is
constructed on the basis of BCLs (bilateral convolutional layers). The BLC principle is to transform
the input features corresponding to points to a permutation polyhedron and then perform a con-
volution operation with a kernel that is also a permutation polyhedron. The SFCNN method [26]
adaptively projects the input point cloud onto a discretized sphere, after which it applies a series
of convolution operations to extract local and global features, which are then aggregated to obtain
the final feature representation. The network can be used for classification and segmentation.

The first neural network PointNet [27] for point cloud recognition was presented in 2017. It
works with point clouds without any preprocessing. The authors identify the following three most
important approaches implemented in the PointNet architecture:

1. A symmetric function for an unordered input that provides invariance to permutations in the
input point cloud. The function is implemented as a multilayer perceptron with a subsampling
layer by the maximum value (max pooling).

2. Aggregation of local and global information. In the segmentation branch, the authors combine
the output vector of global features with a set of feature vectors for each cloud point and obtain
an output membership vector for each point using a set of multilayer perceptrons, which is
semantic segmentation. This approach allowed the authors to successfully apply PointNet to
the tasks of segmenting objects in a scene and segmenting parts of objects.

3. An alignment network providing invariance for cloud geometric transformations by canoni-
calizing the point cloud before feature extraction. The authors used a small neural network
T-Net, which predicts the affine transformation required to bring the point cloud to the stan-
dard form. The T-Net network is built into the PointNet architecture, and so the predicted
transformation is immediately applied to the point cloud. The same approach was used to
reduce not only the point cloud but also features obtained from different point clouds to the
canonical form.
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However, the PointNet architecture did not include the ability to find local structures and take
into account local dependencies between points. Further research was aimed at solving this problem.

The PointNet++ method [28] groups local regions and applies PointNet on such groups, repeating
this procedure in a hierarchical manner. The VoxelNet neural object-detection network [29] takes
a point cloud as input and converts it into a voxel mesh; i.e., points are grouped by voxels. For
each such voxel group, a feature representation is calculated, which is then fed to the input of
the region suggestion network to obtain detections. In SO-Net [30], to reduce the dimension of
the initial point cloud, a Kohonen self-organizing map is built with a given number of nodes that
generates nodal centroid points. Then, for each such centroid, a given number of neighboring points
is selected that are fed to the input of an encoder network, the output of which is a global feature
vector for the point cloud. The publication [31] suggests pointwise convolution. For each cloud
point, neighboring points are determined that fall into a three-dimensional convolution window,
which, like the surrounding pixels, undergo a convolution operation along with the considered
point. This is how a fully convolutional neural network is constructed that has a feature vector for
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each point as output. The paper [32] presents 3DPointCapsNet—a 3D autoencoder that takes into
account the geometric relationships between parts of objects; this improves the network learning
and generalization capabilities. The latent space built using the capsule dynamic routing [33] is
parameterized by the so-called latent capsules—a set of features of a given size.

Some of the works not only group points but also investigate the correlation between points in
local groups. The intuitive assumption is that the points cannot exist in isolation and their clusters
display some shape that can be analyzed. In [34], the authors note that the convolution operation
performed directly on a group of points does not take into account the relative position of the
points and the forms of their crowding, but however, it depends on the order of the points, which
is of no importance in point clouds. As a solution of this problem, it is proposed to use the χ-
transformation over the coordinates of the points, which is implemented as a multilayer perceptron
and allows simultaneously weighing and performing a permutation of the input points. Combining
the χ-transform followed by the convolution operation results in χ-Conv, the basic building block of
the proposed PointCNN neural network. The paper [35] presents the Pointweb neural network. Here
a new learning block AFA (Adaptive Feature Adjustment) is proposed, which receives all possible
pairs of points in a local group and calculates the influence of points on each other to form feature
vectors that aggregate the properties of the entire group of points.

A large number of papers have been proposed that explore various options for convolutional oper-
ations taking into account the relative positions of points and the shapes they form. The paper [36]
proposes a version of the point cloud convolution operation—PointConv. Unlike conventional con-
volutions with discrete kernels (weights), the PointConv offers a trainable continuous function that
allows one to get the weight for a point based on its position. In addition, it is supposed to weight
points based on estimates of their reciprocal densities: the contribution of individual points that
make up dense crowding will thus not be too large. In the RS-CNN [37] and Geo-CNN [38] neural
networks, uniformly distributed points are sampled from a cloud, each of the points becoming the
centroid of a spherical neighborhood area; however, not the neighborhood points themselves are
considered, but their positions relative to the centroid (represented as vectors). A feature of the
GeoConv convolution operation, from which the Geo-CNN is constructed, is the projection of these
vectors onto the axes, i.e., formation of an orthogonal basis. The features are calculated for each
direction, after which they are aggregated taking into account the angles between the vector and
the axes into a single final feature vector of the point of a local domain. Then the features of the
points of the local domain are aggregated with weights depending on the position of the points
relative to the centroid and the radius of the domain. The radius of local domains grows along
the network. The paper [39] offers ring convolutions that have a spherical receptive domain with
a concentric spherical cavity inside (they take the form of rings when projected onto a plane). The
authors note that in modern neural network architectures, multiscale features are usually combined
for resilience to scale changes; this leads to overlapping of receptive fields and multiple occurrence
of features of some points in the calculation of the final feature vector. A ring convolution can
consist of several concentric rings; thus, it is possible to obtain features of different scales without
reusing the same points. The SpiderCNN neural network [40] for classification and segmentation is
built based on SpiderConv convolutional layers. SpiderConv uses a parameterized filter family to
perform the convolution operation. The filters are a composition of two functions—a simple step
function to capture coarse geometry and a third-order Taylor expansion to capture more complex
structures.
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The paper [41] introduces DPRNet—a neural network for the classification and segmentation
using sparse convolutions and residual joins and uses the SELU (Scaled Exponential Linear Units)
self-normalizing activation function instead of batch normalization.

The paper [43] proposes PATs (Point Attention Transformers)—a transformer neural network
designed to work with point clouds. The key PAT operations are Group Shuffle Attention (GSA)
and Gumbel Subset Sampling (GSS). GSA is a parametrically efficient self-attention operation for
training understanding of relationships between points. GSS serves as an alternative to the Far-
thest Point Sampling (FPS) operation and has several advantages such as permutation invariance,
differentiability, and better resistance to outliers. PAT implies the possibility of classification and
segmentation. In both cases, the resulting vector or set of class membership vectors is computed
using multilayer perceptrons. The paper [44] also offers sampling operations with trainable pa-
rameters. The authors note that despite the high-quality results obtained when using hierarchical
architectures, sampling and grouping of points in such methods is performed in the original Eu-
clidean space in a fixed way; this can lead to a decrease in robustness. To solve this problem, the
paper proposes a DPAM (Dynamic Points Agglomeration Module) unit. The unit is built on the
basis of a set of multilayer perceptrons and forms a trainable agglomeration matrix, which, when
multiplied by a cloud of points or a set of features, reduces their dimension; i.e., it is a combination
of grouping and subselection (pooling) operations.

The PointHop method for classifying a point cloud is proposed in [45]. It has low computational
complexity and is trained without a teacher. The method is a cascade of modules of the same
name. Features from all modules are aggregated into a single vector for support vector and random
forest classification. The PointHop module forms a local domain for each cloud point from k nearest
neighbors, then splits the domain into eight octant regions, calculates features, and concatenates
them using the Saab transformation (a variation of the principal component method) [46]. The pa-
per was continued in the PointHop++ method [47]. The authors optimized the model by reducing
the number of its parameters, bringing it to a tree form, and implementing the selection of distin-
guishing features according to the entropy criterion. Finally, in 2021, the R-PointHop model [48]
was introduced to find a rigid transformation (rotation and offset) between two point clouds that
provides an optimal fit. All methods of the PointHop group are not deep learning methods and use
unsupervised learning, which makes them suitable for mobile and low-power computing platforms.
Another method using unsupervised learning is the one presented in [49]. The proposed neural net-
work extracts key (structural) points from the cloud and allows solving the problems of matching
the shapes of point clouds and transferring segmentation markup and potentially the problems of
reconstructing and supplementing the shape.

The graph-based approach treats a point cloud as a graph whose nodes are points. The edges of
the graph represent the correlation between points. The 2017 paper [50] describes a Kd-network,
i.e., a neural network representing a point cloud in the form of a k-d-tree (k-dimensional tree). The
leaves of the tree are the points of the cloud (their coordinates), and the vector representation of
each nonleaf node is calculated as a nonlinear function of an affine transformation with trainable
parameters applied to two neighboring nodes of the considered nonleaf node. After processing
the root node, a feature vector of the entire point cloud is obtained. The paper [51] presents
a module EdgeConv that generates a feature vector for a point given its neighborhood and is
a directed graph. The module computes pairwise edges, called edge features, between the centroid
point and its neighbors using a fully connected layer. The output of the EdgeConv module is
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obtained by applying the pooling operation to the edge features. A peculiarity of this approach is
that the edge features depend not only on the relative position of the points but also on the edge
features obtained from the previous EdgeConv layer. Thus, the graphs used are dynamic. The
paper [52] proposes spectral convolutions, its own subsampling (pooling) operation, and a neural
network architecture for classification and segmentation based on them. In the spectral convolution
module, the neighborhood points are the nodes of the graph, and the lengths of the edges are
calculated as the distances between the points in the feature space and form an adjacency matrix
based on which the spectrum of the graph is calculated. Next, the Fourier transform for the
graph, spectral filtering, and finally, the inverse Fourier transform are performed. The recursive
cluster pooling module iteratively performs spectral clustering and pooling in such a way that
each cluster participates in the formation of the final set of feature vectors. The authors suggest
that, unlike the popular maximum pooling, this method will better preserve useful information.
The paper [53] proposes the semantic segmentation model Point2Node. The key feature of this
model is the ability to use the correlation not only of neighboring points but also of any model
points. The graph is constructed from multidimensional nodes obtained from the input points
of the cloud using the χ-Conv convolutions proposed in [34]. Further, the DNC (Dynamic Node
Correlation) module represents each node in three versions—taking into account autocorrelation
(between the channels of the node’s feature vector), local correlation (between the nodes of a local
group), and nonlocal correlation (between mutually distant nodes). An adaptive learning module
for aggregation of multilevel features is used. The paper [54] proposes to divide a point cloud into
so-called superpoints. Superpoints are simple semantically homogeneous geometric shapes. For each
superpoint, a feature vector is generated using the PointNet model [27], and the resulting vectors
form a Superpoint Graph (SPG). This approach permits significantly reducing the size of the input
point cloud while preserving important features and can be used on very large point clouds. In
the subsequent work [55], the case is considered in which a geometrically homogeneous domain is
not semantically homogeneous, and it is proposed to additionally segment superpoints into smaller
regions. The paper [56] proposes a new Graph Attention Convolution (GAC) operation, which
dynamically determines the weight of each point in a local group. This permits focusing on more
important elements of the local group and excluding elements that belong to a different semantic
class. The 3D Graph Convolution Network (3D-GCN) proposed in [57] uses convolutional modules
in which the kernel, which is a graph and represents a set of local group points, has not only weights
that can be adjusted during training but also a shape, i.e., the position of the points themselves.
The cosine distance used to determine the similarity of the input data and the convolutional kernel
is independent of the length of the vectors and provides scale invariance.

In 2021, the paper [58] was presented, in which it was proposed to group points not into local
groups but along curves, i.e., chains of points that form a broken line. When using local groups,
a similar distribution of points in any group leads to similar features, disallowing separation into
regions. Curves, on the other hand, reflect the geometric shape well and permit constructing more
distinguishable features. A curve construction (curvilinear aggregation) module is trainable—each
subsequent point is selected as the point from the local group that has the highest numerical score
obtained using multilayer perceptrons. The CurveNet neural network using this approach permits
one to classify and segment a point cloud.

In 2019, the first neural network algorithm was presented that works with triangular polygon
meshes—MeshNet [59]. The input polygonal mesh was considered as a set of face elements. Each
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face was described by the following set of parameters: face center coordinates, face vertex vectors
drawn from the face center, unit length normal vector, and mating face indices. The parameters are
processed in structural descriptor and spatial descriptor blocks, which receive primary structural
and spatial features, respectively. The features are then passed through polygon mesh convolution
blocks. Finally, by aggregating and subsampling the features, the final global feature vector is
obtained, which can be used for various tasks, including classification.

In [60], it is proposed to transform the mesh into a three-dimensional grid containing curvature
vectors in the cells and feed this mesh as input to the CurveNet convolutional neural network pre-
sented there (not to be confused with CurveNet in [58]). LaplacianNet [61] (Laplacian Encoding and
Pooling Network) takes as input the vertices and normals of a polygon mesh as well as eigenvectors
and clusters obtained by spectral clustering. The neural network consists of two MPB (Mesh Pool-
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ing Block) units for analyzing data at different resolutions and generating features for each vertex,
after which these features are used in a segmentation or classification network, depending on the
problem in hand. The initial formation of clusters (similar to superpixels for images) as local groups
and varying the size of clusters from small (detailed) to large (coarse) permits processing polygon
meshes hierarchically. The MeshWalker neural network [62] accepts as input a chain-path composed
randomly from the vertices of a polygon mesh with a volume of 40% of their total number. The
network contains recurrent layers for aggregating information along the entire path. The advantage
of the MeshWalker is its ability to produce high-quality results even with a small amount of train-
ing data. The paper [63] proposes a LRFConv (Local Reference Frame Convolution) convolutional
layer with a pass-through connection. In the LRFConv, a group of neighboring points is determined
by geodetic distances for each point, represented by its coordinates and normal vector, processed
in a three-dimensional model. The coordinates of the neighbors relative to the centroid point are
recalculated; together with the distances, they are fed to the input of multilayer perceptrons to
bring them to the required dimension and are concatenated with the features of the previous layer
and fed to the input of continuous convolution.

The authors of [64] note that modern approaches to the segmentation of three-dimensional
shapes (objects) depend on the quality and volume of labeled training data sets and present the
ROSS algorithm, which requires only one labeled example for training. The ROSS learns to transfer
markup from an example to similar input data.

There is also development in the direction of generative methods. The TM-Net [65] is a network
for generating textured polygon meshes and consists of three main parts: TextureVAE, PixelSNAIL,
and PartVAE. Each of these parts is based on two variational autoencoders. The PartVAE generates
the geometry of the object, the TextureVAE generates the texture, and the PixelSNAIL ensures that
the resulting texture matches the geometry generated.

CONCLUSIONS

Despite the significant development of deep learning methods, including those for two-dimen-
sional images, their application in the field of three-dimensional recognition has been difficult until
recently. Point clouds, which are quite easily obtained from various sensors or a set of images of an
object or scene, are used in many vision systems; however, their irregularity and unstructured and
disordered nature make it difficult to develop neural network solutions. Early methods involved
converting point clouds into regular and structured representations such as voxel grids, higher-
dimensional meshes, and a set of images from various angles.

In 2017, PointNet was introduced—the first neural network that works directly with point clouds
and solves the problems of classifying and segmenting a point cloud. However, the neural network
did not take into account local dependencies between points, and further research in the area
was aimed at solving this problem. At the moment, there are a large number of approaches and
techniques that have been successfully applied in the field of three-dimensional recognition of point
clouds: considering a point cloud as a graph, superpoints, convolutional kernels with customizable
weights and shape, using a local orthogonal basis, trainable continuous functions as convolutional
cores, etc.

With the development of deep learning methods for point clouds, methods using voxel rep-
resentations have become less popular. The reason for this is high requirements for computing
resources—due to the sparseness of the voxel grid, most of the operations occur in empty areas, as
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a result of which the resolution of the voxel grid is very limited and does not allow high-quality
representation of large scenes or objects with many small details. However, voxel representations
remain popular in the field of medical problems related to the recognition of radiological images
owing to the nature of scanning.

Methods that use sets of images taken at different angles for three-dimensional recognition (usu-
ally segmentation) are also losing popularity and, as a rule, lose in accuracy to methods that use
other types of representations. Nevertheless, the recent paper [24] showed that this direction has
prospects; however, the algorithm proposed assumed the use of renders made according to the
three-dimensional model constructed rather than original images.

Neural network algorithms working with polygonal meshes were first introduced in 2019. The ad-
vantage of meshes is the presence of information about the surface and the connectivity of elements.
This direction allows one both to use advances in point cloud recognition, considering the mesh as
a set of mesh vertices with additional information (normal vectors, mating vertices, etc.) and to
apply new approaches (to form a mesh of curvature vectors or a chain-path along the mesh as input
data, use geodetic distances, etc.) At the moment, it was not possible to notice any established
practices in this direction.

Thus, the state of the art in the field of three-dimensional recognition allows one to work with
any popular three-dimensional representations—point cloud, voxel grid, and polygon mesh—as well
as with a set of multiview images; however, the greatest progress and activity can be traced in
studies related to point clouds.
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