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Abstract—A simple, universal approach to solving the sparse filtering problem—problem using
a reduced number of outputs—with arbitrary bounded exogenous disturbances by employing
an observer is presented. The approach is based on the invariant ellipsoid method and the
technique of linear matrix inequalities. An application of this concept has made it possible
to reduce the original problem to a semidefinite programming problem that is easy to solve
numerically. The approach is distinguished by its simplicity and ease of implementation and
covers both continuous- and discrete-time statements of the problem. The efficiency of the
procedure proposed is demonstrated by a test example.
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1. INTRODUCTION

In the modern literature, the term sparse filtering has mainly stuck to areas such as machine
learning, pattern recognition, and signal and image processing; see, e.g., [1–3]. At the same time, we
recall that the classical statement of the filtering problem (i.e., estimating the state of a dynamical
system from measurements) under random disturbances admits an almost exhaustive solution using
the Kalman filter. However, in many situations the assumption that the noises are random is not
justified; often it is only known that all disturbances are bounded and otherwise arbitrary. In
this case, one can construct guaranteed (rather than probabilistic) state estimates. This approach
was proposed in the late 1960s and early 1970s by American scientists Witzenhausen, Bertsekas
and Rhodes, Schweppe [4]. Approximately at the same time, such problems were developed at
N.N. Krasovskii’s seminar by researchers such as A.B. Kurzhanskii [5] and others. A significant
contribution to this area of research was made by F.I. Chernous’ko [6]. In particular, the ellipsoidal
filtering technique was developed in [4–6]; a survey of results in this area can be found in [7, 8].

The filtering problem with bounded nonrandom disturbances was considered in [9–11], but only
for time-invariant problems, when all model parameters are time-independent. Moreover, a state
estimate was sought such that its error is guaranteed to be enclosed in a single (invariant) ellipsoid
at all times; i.e., the estimate is uniform. The filter itself was also sought in the class of linear
time-invariant filters. In this narrowed class of problems and estimates, the problem turned out
to be completely solvable, and hence it was possible to construct an optimal filter and a state
estimate. This statement of the problem differs from those mentioned above; more general models
were considered there, but the resulting solution was only suboptimal, and the estimates were not
uniform. From a technical point of view, the papers [9–11] use the apparatus of linear matrix
inequalities [12] that has proven itself well in analyzing and synthesizing control systems but has
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not been widely used in filtering problems. A systematic exposition of this technique can be found
in the monograph [13].

On the other hand, sparsity ideas are widely used in signal and image processing, pattern
recognition, and many other areas. One of the first areas of application of the sparsity concept
is ℓ1-optimization, further successfully developed in various directions such as compressed sens-
ing, ℓ1-filtering, etc. (see, for example, [14, 15]). At the same time, the ideas of sparsity have
not found wide application in control; among the few publications on the construction of sparse
feedback, one can mention [16, 17], in which the sparse structure is stipulated in advance; the focus
of these publications is on optimization algorithms.

A new approach to constructing sparse feedback was proposed in [18]. It is related to minimizing
the number of nonzero rows or columns of a matrix rather than of nonzero vector components.
Such matrices are called row- and column-sparse, respectively. The concept of sparsity is used
to synthesize linear state or output feedback in control systems under nonstandard integer-valued
performance criteria such as the number of nonzero components in the control vector. Such problems
are difficult, and their straightforward solution leads to combinatorial enumeration. Instead, it was
proposed to use the convexification of the problem based on the use of special matrix norms and
explicitly obtain a suboptimal solution.

This approach is distinguished by simplicity (the original problems are reduced to low-dimension-
al convex programming problems, and standard tools such as the Matlab environment can be used
for their numerical solution), versatility (problems in continuous and discrete time are considered in
a consistent manner, and the approach can be extended to various robust statements of the problem
and to constructing both state and output linear feedback), and extendibility to various optimal
control problems such as linear-quadratic control, H∞-optimization, etc.

The present paper is a natural continuation of both [9–11] and [18]. It considers an approach to
solving the sparse filtering problem using a reduced number of outputs for systems subjected to ar-
bitrary bounded exogenous disturbances. This approach leads to column-sparse filter matrices with
relatively low performance loss and avoids combinatorial enumeration of all possible combinations
of zero columns in the filter matrix. In this case, both continuous- and discrete-time versions of the
problem are considered equally.

Throughout the following, ∥ · ∥ is the Euclidean norm of a vector and the spectral norm of
a matrix, I is the identity matrix of appropriate size, and all matrix inequalities are understood in
the sense of the sign definiteness of the matrices.

2. SPARSE CONTROL

Let us recall the main ideas of the above-mentioned approach to constructing a sparse control.
Let X ∈ Rn×p; let us introduce the matrix norms

∥X∥r1 =
n∑

i=1

max
1⩽j⩽p

|xij|, ∥X∥c1 =
p∑

j=1

max
1⩽i⩽n

|xij|.

These norms are well known: the first of them is sometimes called the rx-norm or ℓ1,∞-norm; its
main application is to reconstruct row-sparse solutions of matrix equations [19]; likewise, the r1-norm
reconstructs column-sparse solutions.

The following result was established in [18].
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Theorem 1. If the problem

min ∥X∥r1 under constraint AX = B,

where A ∈ Rm×n , m < n, B ∈ Rm×p , and X ∈ Rn×p , is solvable, then there exists a solution with
at most m nonzero rows.

A similar result can be stated for the c1-norm and zero columns.
The approach developed in [18] allows constructing sparse controllers in various situations in

a regular manner. In particular, consider the continuous-time linear system

ẋ = Ax+Bu (1)

with the state x ∈ Rn and the control u ∈ Rm; thus, A ∈ Rn×n and B ∈ Rn×m; we assume that
the pair (A,B) is controllable. The problem is to synthesize a sparse stabilizing control u = Kx;
sparseness means the presence of zero components in the control vector. This problem is equivalent
to finding a row-sparse stabilizing controller matrix K ∈ Rm×n, i.e., a matrix containing some zero
rows.

In the subsequent exposition, we need some technical tricks used to produce a relevant result. It
is well known that the matrix A+BK of the closed-loop system is stable if and only if there exists
a positive definite matrix Q ≻ 0 such that

(A+BK)
⊤
Q+Q(A+BK) ≺ 0.

By pre- and post-multiplying this matrix inequality by P = Q−1 and by introducing the new
variable Y = KP , we arrive at the linear matrix inequality

AP + PA⊤ +BY + Y ⊤B⊤ ≺ 0, P ≻ 0 (2)

for the matrix variables P = P⊤ and Y . Then any stabilizing controller for system (1) is given by
the expression K̂ = Ŷ P̂−1, where the matrices P̂ and Ŷ satisfy (2).

It is clear that if a matrix containing zero rows is postmultiplied by a matrix of appropriate
size, then the same zero rows will appear in the resulting matrix; in other words, postmultiplication
preserves the row-sparse structure of the matrix. Therefore, if the solution Ŷ of the linear matrix
inequality (2) is row-sparse, then so is the corresponding controller K̂. In turn, the row sparsity of
the matrix Y can be achieved by minimizing its r1-norm. Thus, the following assertion holds true.

Assertion [18]. The solution (P̂ , Ŷ ) of the convex programming problem

min ∥Y ∥r1 under constraints AP + PA⊤ +BY + Y ⊤B⊤ ≺ 0, P ≻ 0

for the matrix variables P = P⊤ ∈ Rn×n and Y ∈ Rm×n defines a row-sparse stabilizing con-
troller Ksp = Ŷ P̂−1 for system (1).

This result allows one to determine a control that stabilizes the system; this control is determined
by the numbers of nonzero rows in the matrix Ksp. Here, generally speaking, one cannot guarantee
that the resulting solution is necessarily sparse; however, the presence of sparsity can be expected
because of Theorem 1.

We will apply these ideas to solving the sparse filtering problem stated in the next section.
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3. CONTINUOUS-TIME CASE

3.1. Filtering Problem

Consider a continuous-time system

ẋ = Ax+D1w, x(0) = x0,

y = Cx+D2w,
(3)

where A ∈ Rn×n, D1 ∈ Rn×m, D2 ∈ Rl×m, and C ∈ Rl×n, with a phase state x(t) ∈ Rn, an observable
output y(t) ∈ Rl, and an exogenous disturbance (noise) w(t) ∈ Rm satisfying the constraint∥∥w(t)∥∥ ⩽ 1 at all t ⩾ 0; (4)

the pair (A,D1) is controllable, and the pair (A,C) is observable.
Let the state x of the system be inaccessible for measurement, and let information on the system

be given by the system output y. Let us construct a filter described by a linear differential equation
for the state estimate x̂ that including the mismatch between the output y and its prediction Cx̂,

˙̂x = Ax̂+ L(y − Cx̂), x̂(0) = 0, (5)

where L ∈ Rn×l. Note that the filter structure is preset (the filter is linear time-invariant) and only
the constant matrix L is to be selected. This structure is the same as in the well-known Luenberger
observer.

We introduce the mismatch
e(t) = x(t)− x̂(t),

which characterizes the filtering accuracy.
The problem is to find the minimum (in some sense) invariant ellipsoid containing the mismatch e.

The ideology of invariant ellipsoids for problems of analyzing and synthesizing control systems is
described in detail in [12, 13]. Recall that the ellipsoid

Ex =
{
x ∈ Rn : x⊤P−1x ⩽ 1

}
, P ≻ 0,

is said to be invariant for a dynamical system if it follows from the condition x(0) ∈ Ex that x(t) ∈ Ex

at all times t ⩾ 0. In other words, any system trajectory issuing from a point lying in the ellipsoid Ex

will be located at any time in this ellipsoid under all admissible exogenous disturbances affecting the
system. Note that, owing to the attraction property of an invariant ellipsoid, it is the asymptotic
accuracy of filtering that we estimate for large deviations, and for small deviations we also estimate
the t-uniform filtering accuracy.

Note that the observability condition implies the existence of at least one invariant ellipsoid (and
controllability guarantees its full dimension). There are many invariant ellipsoids; the goal is to find
the minimal of them for a fixed stabilizing L, and then to achieve the minimum of this ellipsoid
with respect to L. It is convenient to consider the ellipsoid with the minimum trace of its matrix
to be minimal.

The following theorem was established in [9].

Theorem 2. Let Q̂, Ŷ be a solution of the problem

min trH
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under the constraintsA⊤Q+QA− Y C − C⊤Y ⊤ + αQ QD1 − Y D2

D⊤
1 Q−D⊤

2 Y
⊤ −αI

 ≼ 0,

H I

I Q

 ≽ 0, Q ≻ 0,

for the matrix variables Q = Q⊤ ∈ Rn×n , Y ∈ Rn×l , and H = H⊤ ∈ Rn×n and a scalar parame-
ter α > 0.

Then the optimal filter matrix is given by the expression

L̂ = Q̂−1Ŷ ,

and the minimum invariant ellipsoid containing the mismatch of systems (3) and (5) with x0 = 0
is determined by the matrix

P̂ = Q̂−1.

Note that for a fixed α the problem stated in Theorem 2 is reduced to minimizing a linear
function under constraints that are linear matrix inequalities, i.e., to a Semi-Definite Programming
(SDP) problem, which belongs to the class of convex optimization problems.

3.2. Sparse Filtering

Next, let us look for a sparse solution of the filtering problem for system (3), (4). Note that
the filter matrix L is found as L = Q−1Y , and so if Y turns out to be column-sparse, then the
corresponding filter matrix L will be column-sparse as well. In turn, the column sparsity of the
matrix Y can be achieved by minimizing its c1-norm.

Thus, we obtain the following algorithm, which involves the execution of three successive steps.

Algorithm 1 .

Step 1. By solving the convex programming problem

min trH (6)

under the constraints(
A⊤Q+QA− Y C − C⊤Y ⊤ + αQ QD1 − Y D2

D⊤
1 Q−D⊤

2 Y
⊤ −αI

)
≼ 0, (7)

(
H I

I Q

)
≽ 0, Q ≻ 0, (8)

for the matrix variables Q = Q⊤ ∈ Rn×n, Y ∈ Rn×l, and H = H⊤ ∈ Rn×n and a scalar
parameter α > 0, obtain the values of Q∗, Y ∗, and H∗ determining the optimal filter matrix

L∗ = (Q∗)−1Y ∗,

the matrix
P ∗ = (Q∗)−1

of the minimum invariant ellipsoid for the mismatch, and the corresponding optimal value of
the functional

J∗ = trH∗.
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Step 2. With the optimal value of the functional J∗, introduce a scalar relaxation coefficient γ > 1

and solve the convex c1-optimization problem

min ∥Y ∥c1 under constraints (7), (8), and trH ≼ γJ∗ (9)

for the matrix variables Q = Q⊤ ∈ Rn×n, Y ∈ Rn×l, and H = H⊤ ∈ Rn×n and a scalar
parameter α. By virtue of the properties of the c1-norm, one can expect the occurrence of
zero columns in the solution Ŷ0 of problem (9).

Step 3. Solve the original problem (6)–(8), where the same arrangement of zero columns is fixed
in the matrix variable Y as in the column-sparse matrix Ŷ0. Its solution Q̂, Ŷ delivers the
column-sparse filter matrix

L̂ = Q̂−1Ŷ

and the matrix
P̂ = Q̂−1

of the corresponding invariant ellipsoid for the mismatch.

The question of the choice of the relaxation coefficient γ is very complicated; here it is difficult
to give any quantitative estimates in advance. The dependence of solutions of a problem of the
form (9) on the value of γ is discussed and some heuristic approaches to the choice of the relaxation
coefficient are given in [20].

Note that in order to obtain a sparse solution of this problem using the “brute force” method, it
would be necessary to solve the problem for all possible column-sparse structures of the matrix Y

and choose the best one according to the performance criterion; in other words, combinatorial
enumeration could not be avoided. It will be shown in Sec. 5 that the procedure proposed leads to
highly sparse filter matrices with small losses in terms of the performance criterion.

Remark 1 . In some cases there is a priori information on the initial state of the system x(0) ∈ E0,
where

E0 = {x : x⊤P−1
0 x ⩽ 1}.

Then, choosing x̂(0) = 0, it can be guaranteed that e(0) ∈ E0. If it is required that E0 ⊂ E , then
one can guarantee that e(t) ∈ E at all t. Thus, if the system of constraints (7)–(8) in Algorithm 1
is supplemented with the condition

Q ≼ P−1
0 ,

then we obtain not only asymptotic but also a true estimate of the sparse filtering accuracy at all
times.

Remark 2 . It is often necessary to evaluate the filtering performance not for all coordinates of
the state x but only for some of them. Assume that we have an output y1 = C1x (for example, one
of the state coordinates) and we wish to make the error estimate

e1 = y1 − ŷ1 = C1(x− x̂)

as small as possible. This problem can be solved by replacing the first condition in (8) with(
H C1

C⊤
1 Q

)
≽ 0.
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4. DISCRETE-TIME CASE

Similar results can be obtained for the linear discrete-time system

xk+1 = Axk +D1wk,

yk = Cxk +D2wk

(10)

with some initial condition x0, where A ∈ Rn×n, D1 ∈ Rn×m, D2 ∈ Rl×m, and C ∈ Rl×n, with a
state xk ∈ Rn, an observable output yk ∈ Rl, and an exogenous disturbance wk ∈ Rm satisfying the
constraint

∥wk∥ ⩽ 1 for all k = 0, 1, 2, . . . ; (11)

here the pair (A,D1) is controllable and the pair (A,C) is observable.
Namely, let us construct a filter described by a linear difference equation with a constant matrix L

for estimating the state x̂k,

x̂k+1 = Ax̂k + L(yk − Cx̂k), x̂0 = 0, (12)

where L ∈ Rn×l.
We introduce the mismatch

ek = xk − x̂k.

By analogy with the continuous-time case, the problem is to find a matrix L minimizing the invariant
ellipsoid E containing the mismatch ek.

The following Theorem is a discrete-time analog of Theorem 2.

Theorem 3 [13]. Let Q̂ and Ŷ be a solution of the problem

min trH

under the constraints  −αQ (QA− Y C)
⊤

0

QA− Y C −Q QD1 − Y D2

0 (QD1 − Y D2)
⊤ −(1− α)I

 ≼ 0,

H I

I Q

 ≽ 0, Q ≻ 0,

for the matrix variables Q = Q⊤ ∈ Rn×n , Y ∈ Rn×l , and H = H⊤ ∈ Rn×n and a scalar parame-
ter 0 < α < 1.

Then the optimal filter matrix is given by the expression

L̂ = Q̂−1Ŷ ,

and the minimum invariant ellipsoid containing the mismatch ek of system (10), (12) with x0 = 0
is determined by the matrix

P̂ = Q̂−1.

The procedure of searching for a sparse solution of the filtering problem for system (10), (11)
involves three successive steps as well.
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Algorithm 2 .

Step 1. By solving the convex programming problem

min trH (13)

under the constraints −αQ (QA− Y C)
⊤

0

QA− Y C −Q QD1 − Y D2

0 (QD1 − Y D2)
⊤ −(1− α)I

 ≼ 0, (14)

(
H I

I Q

)
≽ 0, Q ≻ 0, (15)

for the matrix variables Q = Q⊤ ∈ Rn×n, Y ∈ Rn×l, and H = H⊤ ∈ Rn×n and a scalar
parameter α > 0, obtain the values of Q∗, Y ∗, and H∗ that determine the optimal filter
matrix

L∗ = (Q∗)−1Y ∗,

the matrix
P ∗ = (Q∗)−1

of the minimum invariant ellipsoid for the mismatch, and the corresponding optimal value of
the functional

J∗ = trH∗.

Step 2. With the optimal value of the functional J∗, introduce a scalar relaxation coefficient γ>1

and solve the convex programming problem

min ∥Y ∥c1 under constraints (14), (15), and trH ≼ γJ∗

for the matrix variables Q = Q⊤ ∈ Rn×n, Y ∈ Rn×l, and H = H⊤ ∈ Rn×n and a scalar
parameter α. By virtue of the properties of the c1-norm, one can expect the occurrence of
zero columns in the solution Ŷ0 of this problem.

Step 3. Solve the original problem (13)–(15), where the same arrangement of zero columns is fixed
in the matrix variable Y as in the column-sparse matrix Ŷ0. Its solution Q̂, Ŷ gives the
column-sparse filter matrix

L̂ = Q̂−1Ŷ

and the matrix
P̂ = Q̂−1

of the corresponding invariant ellipsoid for the mismatch.

Remarks 1 and 2 hold true in the discrete-time case.
As the results of numerical modeling show, the “price” for using a small number of controls/out-

puts (a loss in the performance criterion) is, as a rule, relatively low.
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5. EXAMPLE

Let us demonstrate the proposed approach to solving the sparse filtering problem using
the HE3 problem from the COMPleib [21] library as an example. It contains test problems
that have a transparent engineering origin and are often used to test the efficiency of control
algorithms. The system considered below describes a linearized Bell201A-1 helicopter dynamics
model with eight states; the corresponding matrices of system (3) have the form

A =



−0.0046 0.038 0.3259 −0.0045 −0.402 −0.073 −9.81 0

−0.1978 −0.5667 0.357 −0.0378 −0.2149 0.5683 0 0

0.0039 −0.0029 −0.2947 0.007 0.2266 0.0148 0 0

0.0133 −0.0014 −0.4076 −0.0654 −0.4093 0.2674 0 9.81

0.0127 −0.01 −0.8152 −0.0397 −0.821 0.1442 0 0

−0.0285 −0.0232 0.1064 0.0709 −0.2786 −0.7396 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0


,

D1 =



0.0676

−1.1151

0.0062

−0.017

−0.0129

0.139

0

0


, C =



0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0


, D2 =



0

0.1

0

0

0.05

0


.

Setting P0 = 0.1I and using Theorem 2, at the first step of Algorithm 1 we obtain the optimal
filter matrix

L∗ =



−3.3888 −0.4284 0.0451 0.7626 1.3802 −0.6771

1.2477 −10.8108 −0.0285 −0.2999 −0.4385 0.2334

0.5366 −0.1163 0.0020 0.0763 −0.0001 −0.1173

−0.0430 0.0292 9.8101 0.3401 −0.3954 −0.4499

−0.3659 0.0901 1.0006 −0.1135 −0.4449 −0.5456

0.2883 1.3576 0.0020 −0.4210 0.0414 −0.0226

6.9893 −0.7343 −0.0084 −1.0649 0.7739 0.0687

0.0073 0.0021 0.2791 0.0000 −0.0043 −0.0000


and the corresponding invariant ellipsoid for the mismatch with the trace trP ∗ = 1.1381.
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At the second step, solving the c1-optimization problem (9) with γ = 10, we find the matrix Ŷ0

with the last two zero columns of order 10−10,

Ŷ0 =



−0.4093 −2.0441 0.1151 −0.1159 0.0000 −0.0000

0.4093 −2.0441 −0.2968 −0.2514 −0.0000 −0.0000

0.4093 2.0441 −1.0477 −0.0129 0.0000 −0.0000

0.0724 −0.3055 1.9967 0.2514 0.0000 −0.0000

−0.4093 −0.3780 1.9967 −0.2514 −0.0000 0.0000

−0.4093 2.0441 1.1985 0.2514 0.0000 −0.0000

−0.2441 2.0441 1.9967 0.2514 0.0000 −0.0000

−0.0143 −0.4028 1.9967 0.0245 −0.0000 0.0000


.

Fixing these rows as zero ones and solving the original problem again, at the third step we obtain
the column-sparse filter matrix

L̂ =



−1.4878 0.6754 0.0519 0.5895 0 0

0.7782 −11.1508 −0.3270 −0.2482 0 0

0.7283 0.0624 −0.0159 0.0733 0 0

−0.8973 −0.1698 9.9423 0.4216 0 0

−0.8263 −0.1289 1.0840 −0.0998 0 0

0.3308 1.3900 0.0164 −0.4074 0 0

8.0516 −0.0006 −0.5781 −0.9786 0 0

0.1116 0.0000 0.3123 −0.0170 0 0


and the matrix

P̂ =



0.4183 −0.1314 0.0026 −0.0146 −0.0251 0.0179 −0.0083 −0.0147

−0.1314 0.1571 0.0013 0.0007 0.0069 −0.0076 0.0104 0.0050

0.0026 0.0013 0.1019 −0.0044 −0.0030 −0.0000 0.0055 −0.0010

−0.0146 0.0007 −0.0044 0.1105 0.0076 −0.0004 −0.0125 0.0026

−0.0251 0.0069 −0.0030 0.0076 0.1062 −0.0011 −0.0077 0.0024

0.0179 −0.0076 −0.0000 −0.0004 −0.0011 0.1010 −0.0010 −0.0007

−0.0083 0.0104 0.0055 −0.0125 −0.0077 −0.0010 0.1170 −0.0022

−0.0147 0.0050 −0.0010 0.0026 0.0024 −0.0007 −0.0022 0.1011


of the invariant ellipsoid for the mismatch with the trace

tr P̂ = 1.2131.

Thus, a sparse filter not using the outputs y5 and y6 has been constructed; here the loss in the
performance criterion is only 6.5%.

The solid line in Fig. 1 shows the trajectory x1(t) under the initial condition x1(0) = · · · =
x8(0) = 0.01 and an admissible (in this case, step-like) exogenous disturbance; the dashed line
shows the optimal estimate of the trajectory x̂1(t), and the dotted line is the result x̃1(t) of the
sparse filtering.
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Fig. 1. Filtering of the coordinate x1.
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Fig. 2. Filtering of the coordinate x4.

The accuracy of sparse filtering is even higher for the coordinate x4; see Fig. 2.

The solid line in Fig. 3 shows the projection of the system trajectory onto the plane (x1, x4),
while the dashed and dotted lines show the projections of the trajectory’s optimal estimate and the
result of using sparse filtering, respectively. By virtue of the instability of the original system, the
domain containing its trajectories is unbounded.

6. CONCLUSIONS

A simple, universal approach to solving the sparse filtering problem (problem using a reduced
number of outputs) with arbitrary bounded exogenous disturbances using an observer is proposed.
The approach is based on the invariant ellipsoid method and the technique of linear matrix in-
equalities. The application of this concept has made it possible to reduce the original problem to
a semidefinite programming problem easy to solve numerically.
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Fig. 3. Projection of a system trajectory and its estimates onto the plane (x1, x4).

The approach is characterized by simplicity and ease of implementation and equally covers both
continuous- and discrete-time statements of the problem. The efficiency of the procedure proposed
is demonstrated by a test example.

In the future, the author plans to extend the results to robust statements of the problem, in
particular, to systems of the form

ẋ = (A+ F∆H)x+Dw

with a matrix uncertainty ∆ ∈ Rp×q bounded in the spectral norm ∥∆∥ ⩽ 1 and given matrices F

and H of appropriate sizes.
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