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Abstract—The paper investigates the distillation problem for deep learning models. Knowledge
distillation is a metaparameter optimization problem in which information from a model of
a more complex structure, called a teacher model, is transferred to a model of a simpler structure,
called a student model. The paper proposes a generalization of the distillation problem for
the case of optimization of metaparameters by gradient methods. Metaparameters are the
parameters of the distillation optimization problem. The loss function for such a problem is the
sum of the classification term and the cross-entropy between the responses of the student model
and the teacher model. Assigning optimal metaparameters to the distillation loss function is
a computationally difficult task. The properties of the optimization problem are investigated
so as to predict the metaparameter update trajectory. An analysis of the trajectory of the
gradient optimization of metaparameters is carried out, and their value is predicted using linear
functions. The proposed approach is illustrated using a computational experiment on CIFAR-10
and Fashion-MNIST samples as well as on synthetic data.
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1. INTRODUCTION

The paper considers the problem of distillation of deep learning models. Optimizing a deep
learning model is computationally challenging [12]. The paper investigates a particular case of an
optimization problem called knowledge distillation. It allows using both the training sample and the
information contained in pretrained models. Knowledge distillation [5] is the problem of optimizing
model parameters that takes into account not only the information contained in the original sample
but also the information contained in the teacher model. The teacher model has a high complexity.
It contains information about the sample as well as about the distributions of model parameters
that will be transferred. The model of a simpler structure, called the student model, is optimized
by transferring the knowledge of the teacher model.

The procedure of optimization of metaparameters in the knowledge distillation problem is in-
vestigated. Metaparameters are the parameters of the optimization problem. Correct assignment
of metaparameters can considerably affect the performance of the final model [11]. Unlike [9, 11],
this paper takes into account the difference between hyperparameters, probability parameters of
the prior distribution [4], and metaparameters. Despite the number of metaparameter and hyper-
parameter optimization methods used in deep learning such as random search [2] or models based
on the use of probabilistic models [3], many approaches propose sequentially generating a random
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Table 1. Complexity of various metaparameter and hyperparameter optimization methods. Here |w| is the number
of model parameters, |λ| is the number of metaparameters, r is the number of runs of stochastic optimization
methods, and s is the complexity of generation from probabilistic models

Method Type of optimization method Complexity

Random search [2] Stochastic O
(
r · |w|

)
Based on probabilistic models [3] Stochastic O

(
r ·

(
|w|+ s

))
Greedy gradient [8] Gradient O

(
|w| · |λ|

)
Greedy gradient with difference approximation [7] Gradient O

(
|w|+ |λ|

)

Fig. 1. Scheme of the proposed method: instead of directly optimizing the values of metaparameter λ, it is proposed
to approximate the optimization trajectory using linear models to achieve a minimum loss function on the validation
part of the sample Lval. Random metaparameters are not minimum points of the function Lval and deliver suboptimal
model performance.

value of metaparameters and estimating the quality of the model trained with the given values
of the hyperparameters. This approach may not be suitable in the case of training models that
require substantial training time. Table 1 lists the values of the complexity of various approaches
to optimizing metaparameters. It can be seen that if the parameter optimization takes a long time,
approaches that require several runs of optimization are inefficient.

It is proposed to treat the metaparameter optimization problem as a bilevel optimization problem.
The first level optimizes the model parameters and the second one, the metaparameters [1, 8, 9].
A greedy gradient method for solving the bilevel problem is described in [8]. Various gradient
methods and random search are analyzed in [1]. In the present paper, we analyze an approach
to optimizing and predicting metaparameters obtained after applying gradient methods. It can
be seen from Table 1 that for large problems, gradient metaparameter optimization methods are
preferable. However, even with a greedy metaparameter optimization algorithm with a difference
approximation, metaparameter optimization becomes much more computationally demanding, as
demonstrated in [7]. To reduce the optimization costs, in this paper we analyze the metaparameter
optimization trajectory and predict its value using linear models. This method is illustrated in
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Fig. 1. This method is evaluated and compared with other metaparameter optimization methods
on image samples from CIFAR-10 [6] and Fashion-MNIST [14] and a synthetic sample.

2. STATEMENT OF THE PROBLEM

We solve a classification problem of the form

D =
{
(xi,yi)

}m
i=1

, xi ∈ Rn, yi ∈ Y =
{
ek|k = 1, . . . ,K

}
,

where ek is the kth column of the identity matrix and yi is a vector with unit in place of class xi.
We divide the sample D into two subsets, D = Dtrain ⊔Dval. The subset Dtrain will be used to

optimize the model parameters, and the subset Dval will be used to optimize the metaparameters.
Consider a teacher model f(x) that was trained on the sample Dtrain. We optimize the student

model g(x,w), w ∈ Rs, by transferring the knowledge of the teacher model. Let us define this
problem formally.

Definition 1. Let a function D : Rs → R+ define the distance between models g and f . A D-
distillation of the student model is an optimization of the student model parameters that minimizes
the function D.

We define a loss function Ltrain that takes into account the transfer of knowledge from the model f
to the model g,

Ltrain(w,λ) = −λ1

∑
(x,y)∈Dtrain

K∑
k=1

yk log
eg(x,w)k

K∑
j=1

eg(x,w)j︸ ︷︷ ︸
classification term

− (1− λ1)
∑

(x,y)∈Dtrain

K∑
k=1

ef(x)k/T

K∑
j=1

ef(x)j/T
log

eg(x,w)k/T

K∑
j=1

eg(x,w)j/T︸ ︷︷ ︸
distillation term

,

where yk is the kth component of the response vector and T is the temperature parameter in the
distillation problem. The temperature T has the following properties:

1. As T → 0, we obtain the unit vector
{
eg(x,w)k/T

/∑K

j=1 e
g(x,w)j/T

}K

k=1
.

2. As T → ∞, we obtain a vector with equal probabilities.

Let us show that the optimization of Ltrain is a D-distillation for λ1 = 0.

Proposition 1. If λ1 = 0, then the optimization of the loss function (1) is a D-distillation with
D = DKL (σ (f(x)/T ) , σ (g(x,w)/T )), where σ is the function softmax = exi∑K

j=1 exj and DKL is the
Kullback–Leibler divergence.

Proof. For λ1 = 0, we have

Ltrain(w,λ) =
∑

(x,y)∈Dtrain

K∑
k=1

ef(x)k/T

K∑
j=1

ef(x)j/T
log

eg(x,w)k/T

K∑
j=1

eg(x,w)j/T

= DKL

(
σ
(
f(x)/T

)
, σ
(
g(x,w)/T

))
− C.

(1)
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We conclude that Ltrain(w,λ) is equal to DKL (σ(f(x)/T ), σ(g(x,w)/T )) up to a constant C

that does not affect optimization. The constant is the entropy of σ(f(x)/T ). The function
DKL (σ (f/T ) , σ (g/T )) defines the distance between the logits of the model f and the model g.
We conclude that the definition of D-distillation is satisfied. ■

Let us define the set λ of metaparameters as the vector whose components are the coefficient λ1

multiplying the terms in Ltrain and the temperature T ,

λ = [λ1, T ].

Define a bilevel problem
λ̂ = arg min

λ∈R2
Lval(ŵ,λ), (2)

ŵ = arg min
w∈Rs

Ltrain(w,λ), (3)

where Lval is the validation loss function

Lval(w,λ) = −
∑

(x,y)∈Dval

K∑
k=1

yk log
eg(x,w)k/Tval

K∑
j=1

eg(x,w)j/Tval

and the metaparameter Tval determines the temperature in the validation loss function. Its value
has been chosen manually and is not subject to optimization.

3. GRADIENT OPTIMIZATION OF METAPARAMETERS

One method for optimizing metaparameters is to use gradient methods. Below is a diagram of
their application and an approach to optimizing the trajectory of metaparameters.

Definition 2. Let’s define an optimization operator as an algorithm U that selects the parameter
vector w′ of the model using the parameter values w at the previous step.

Let us optimize parameters w using η optimization steps,

ŵ = U ◦ U ◦ · · · ◦ U(w0,λ) = Uη(w0,λ),

where w0 is the initial value of the parameter vector w and λ is the set of metaparameters.
Let us restate the optimization problem using the definition of the operator U ,

λ̂ = arg min
λ∈R2

Lval
(
Uη(w0,λ)

)
.

We solve the optimization problem (2), (3) using the gradient descent operator,

U(w,λ) = w − γ∇Ltrain(w,λ),

where γ is the gradient descent step length. To optimize the metaparameters, we use the greedy
gradient method that depends on the parameter values w at the previous step alone. At each
iteration, we obtain the following value of the metaparameters:

λ′ = λ− γλ∇λLval
(
U(w,λ),λ

)
= λ− γλ∇λLval

(
w − γ∇Ltrain(w,λ),λ

)
. (4)
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Fig. 2. Scheme of metaparameter optimization.

In this paper, we use a numerical difference approximation for this optimization procedure [7],

dLval(w
′,λ)

dλ
= ∇λLval(w

′,λ)− γ∇2
λ,w′Lval(w

′,λ)∇w′Lval(w
′,λ),

∇2
λ,w′Lval(w

′,λ)∇w′Lval(w
′,λ) ≈ ∇λLval(w

+,λ)−∇λLval(w
−,λ)

2ε
,

λ′ ≈ λ− γλ∇λLval(w
′,λ) + γ

∇λLval(w
+,λ)−∇λLval(w

−,λ)

2ε
,

where w′ = w − γ∇Ltrain(w,λ), w± = w′ ± ε∇w′Lval(w
′,λ), and ε is a some given constant.

To further reduce the optimization costs, it is proposed to approximate the metaparameter opti-
mization trajectory. The trajectory is predicted using linear models that are used periodically after
a given number of iterations e1. After that, the linear model is used to predict the metaparameters
over e2 iterations,

λ′ = λ+ c⊤

(
z

1

)
, (5)

where c is the parameter vector of the linear model optimized using the least squares method and
z is the number of optimization iterations.

The diagram in Fig. 2 describes the resulting optimization method. The model parameters are
optimized at the first level of a bilevel optimization problem using the subset Dtrain and the loss
function Ltrain. The metaparameters are optimized at the second level using the subset Dval and
the loss function Lval. Over e1 iterations, the metaparameters are optimized using the stochastic
gradient descent method. Over e2 iterations, they are predicted using linear models.

The following theorem proves the well-posedness of the proposed approximation for a simple
case where the parameters w of the model g have reached the optimum of problem (3), the Hes-
sian H = ∇2

wLtrain is the identity matrix, and the metaparameters are optimized in the domain
where the gradient of the metaparameters can be approximated by a constant. Note that in the
general case, these conditions are not met when optimizing deep learning models. It was shown
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Algorithm 1 (optimization of metaparameters—algorithm for the proposed method).

require the number e1 of iterations using gradient optimization
require the number e2 of iterations with prediction of λ by linear models

1: while there is no convergence do

2: Optimize λ and w over e1 iterations by solving a bilevel problem

3: traj = trajectory(∇λ) changes during optimization

4: Set z = [1, . . . , e1]
T

5: Optimize c by the LSM,

ĉ = argmin
c∈R2

∥traj − z · c1 + c2∥22

6: Optimize w and predict λ over e2 iterations using the linear model with parameters c

7: end while

in [8, 13] that the use of methods for normalizing intermediate sample representations under the
influence of nonlinear functions included in the deep learning model brings the Hessian of the loss
function closer to unity. An analysis of the performance of the gradient optimization of metapa-
rameters for the case in which the model parameters have not reached the optimum can be found
in [11].

Theorem 1. If the function Ltrain(w,λ) is smooth and convex and its Hessian H = ∇2
wLtrain is

the identity matrix, H = I, and also if the parameters w are equal to w∗ , where w∗ is a point of
local minimum for the current value of λ, then the greedy algorithm (4) finds the optimal solution
of the bilevel problem. If there exists a domain D ∈ R2 in the metaparameter space such that the
gradient of the metaparameters can be approximated by a constant, then the optimization is linear
in the metaparameters.

Proof. In the paper [11], a formula for ∇λLval = ∇λLval(U(w,λ)) was obtained for the case in
which Ltrain(w,λ) is smooth and convex and a point w∗ of local minimum was found for the current
value of λ,

∇λLval(λ) = ∇λLval − (∇2
w,λLtrain)

⊤(∇2
wLtrain)

−1∇wLval.

This formula is simplified by eliminating the first term, since the function Lval does not explicitly
depend on the metaparameters,

∇λLval(λ) = −(∇2
w,λLtrain)

⊤(∇2
wLtrain)

−1∇wLval.

If ∇2
wLtrain is equal to the identity matrix, then the greedy algorithm produces the optimal bilevel

problem if its step is given by the following formula [8]:

λt+1 = λt + η1(∇2
w,λLtrain)

⊤∇wLval.

We also replace ∇2
wLtrain by the identity matrix.

Let us return to the simplified gradient formula

∇λLval(λ) = −(∇2
w,λLtrain)

⊤∇wLval.
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Assume that there exists a domain D in which ∇λLval(λ) is equal to the constant vector

∇λLval(λ) ≈

(
a1

a2

)
.

Then the optimization step in D can be represented in the form

λt+1 = λt − γλ

(
a1

a2

)
and has a form similar to (5). ■

4. COMPUTATIONAL EXPERIMENT

The purpose of the experiment is to evaluate the performance of the proposed distillation method
and analyze the resulting models and their metaparameters. The method is evaluated on a synthetic
sample as well as CIFAR-10 and Fashion-MNIST samples. Two types of experiments were carried
out on the CIFAR-10 sample—on the entire sample, |Dtrain| = 50 000, and on the reduced training
sample, |Dtrain| = 12 800.

The following metaparameter optimization methods were analyzed:

1. Optimization with no distillation.

2. Optimization with random initialization of metaparameters. Metaparameters are generated
from the uniform distribution

λ1 ∼ U(0; 1), T ∼ U(0.1, 10).

3. Optimization with “näıve” metaparameter assignment,

λ1 = 0.5, T = 1;

4. Gradient optimization.

5. The proposed method with e1 = e2 = 10.

6. Optimization using a probabilistic model. For this type of optimization, we used the Hyperopt
library [3], which implements optimization using the Parzen window method. For this method,
five runs were performed before the final prediction of metaparameters.

The entire training set D was used for methods 1–3. For methods 4–6, the sample was divided
into training, validation, and control D = Dtrain ⊔Dval ⊔Dtest.

The “accuracy” metric was used as an external performance criterion,

accuracy =
1

m

m∑
i=1

[
g(xi,w) = yi

]
.

For all experiments, the initial values of the metaparameters were generated as follows:

λ1 ∼ U(0, 1), log10 T ∼ U(−1, 1).

Ten runs were carried out for each experiment, and then the results were averaged. The code for
the experiment is available at [15].
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Fig. 3. Model accuracy on samples: (a) synthetic, (b) reduced CIFAR-10. Here and below, the points are slightly
shifted with respect to the abscissa axis for better readability of the graphs.

Table 2. Experiment results. The numbers in parentheses are the maximum accuracy values obtained in particular
experiments

Method Synthetic sample Fashion-MNIST Reduced CIFAR-10 CIFAR-10

No distillation 0.63 (0.63) 0.87 (0.88) 0.55 (0.56) 0.65 (0.66)

Näıve metaparameters 0.63 (0.63) 0.87 (0.88) 0.55 (0.56) 0.66 (0.67)

Random metaparameters 0.64 (0.72) 0.79 (0.88) 0.54 (0.57) 0.64 (0.67)

Gradient optimization 0.77 (0.78) 0.88 (0.89) 0.57 (0.61) 0.70 (0.72)

Hyperopt 0.77 (0.78) 0.87 (0.88) 0.55 (0.58) 0.65 (0.69)

Proposed method 0.76 (0.78) 0.88 (0.89) 0.57 0.70 (0.72)

The final results are presented in Table 2. The dependence of accuracy on the iteration number
on a synthetic sample and a reduced version of CIFAR-10 is shown in Fig. 3.

4.1. Experiment on a Synthetic Sample

To evaluate the method obtained, an experiment was conducted on a synthetic sample,

D =
{
(xi, yi)

}m
i=1

, xij ∈ N (0, 1), j = 1, 2,

xi3 =
[
sgn(xi1) + sgn(xi2) > 0

]
, yi = sgn(xi1 · xi2 + δ),

where δ ∈ N (0, 0.5) is the noise. The sample size of the student model is much smaller than the
sample size of the teacher model and Dtrain. To correctly demonstrate the proposed method in
this experiment, the sample was divided into three parts: a training sample for the teacher model
consisting of 200 objects, a training sample for the student model consisting of 15 objects, and
a validation set, which is also a test set, Dval = Dtest. It also consists of 200 objects. The sample
visualization is depicted in Fig. 4. The teacher model was trained over 20 000 iterations using the
stochastic gradient descent method with step length 10−2. A modified feature space was used to
train it,

xi3 =
[
sgn(xi1) + sgn(xi2) + 0.1 > 0

]
.

This modification does not allow the teacher model to accurately predict the training sample. In
this case, to train the student model, it is preferable to use only the distillation term, λ1 = 0. The
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Fig. 4. Sample visualization for (a) teacher model, (b) student model, and (c) test sample.

Fig. 5. Model accuracy with e1 and e2 values: (a) e1 = e2, (b) a selection of e2 with e1 = 10.

student model was trained over 2000 iterations using the stochastic gradient descent method with
step length 1.0 and Tval = 0.1.

A series of experiments was carried out to determine the best values of e1 and e2. Figure 5a
shows the accuracy graph for various e1 with e2 equal to 10. Figure 5b shows the accuracy for
various values of e2. It can be seen that as e1 and e2 increase, the quality of approximation of the
metaparameter update trajectory decreases.

Figure 3a shows the accuracy of the model for various methods. The best results were obtained
for the optimized values of the metaparameters and the proposed method. It can be seen how well
the proposed method approximates the optimization of metaparameters in this experiment.

4.2. Experiments on CIFAR-10 and Fashion-MNIST Samples

Both samples were split in proportion 9:1 for training and validation. The stochastic gradient
descent method with initial step length 1.0 was used to optimize the model parameters. The step
length was multiplied by 0.5 every 10 epochs. The value of Tval was set to 1.0.

For the experiment on the CIFAR-10 sample, a pretrained ResNet model in [10] was used as
a teacher model. A CNN model with three convolutional layers and two fully connected layers was
used as a student model.

For the reduced sample experiments, the step length for metaparameter optimization was 0.25
and the model was trained for 50 epochs. For the experiment on the full sample, the step length 0.1
was used. The model was trained for 100 epochs.

For the experiment on the Fashion-MNIST sample, we used architectures of the student and
teacher models similar to the architectures in the experiment on the CIFAR-10 sample. The step
length 0.1 was used to optimize the metaparameters, and the model was trained for 50 epochs.
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It can be seen from the results in Table 2 that the proposed method and the gradient methods
give a high accuracy value. However, the disadvantage of gradient methods is that they get stuck
at local minimum points, which results in a much higher variance of results than for other methods.
This effect can be seen in Fig. 3 and in Table 2.

5. CONCLUSIONS

The problem of optimizing the parameters of a deep learning model was investigated. A general-
ization of distillation methods was proposed that consists in gradient optimization of metaparame-
ters. The model parameters are optimized at the first level, and at the second level, metaparameters
that specify the type of the optimization problem are optimized. A method has been proposed that
reduces the computational complexity of optimizing metaparameters for gradient optimization. The
properties of the optimization problem and methods for predicting the trajectory of optimizing the
model metaparameters were studied. The model metaparameters are the parameters of the opti-
mization problem of distillation. The proposed generalization has made it possible to distill the
model with better performance characteristics and in a smaller number of optimization iterations.
This approach is illustrated using a computational experiment on CIFAR-10 and Fashion-MNIST
samples and on a synthetic sample. The computational experiment has shown the efficiency of gra-
dient optimization for the problem of choosing the metaparameters of the distillation loss function.
The possibility of approximating the optimization trajectory of metaparameters by a locally linear
model is analyzed. Further, it is planned to study the optimization problem and analyze the quality
of approximation to the optimization trajectory of metaparameters by more complicated predictive
models.
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