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Abstract—We consider a guaranteed deterministic statement of the problem of discrete-time
superreplication: the aim of hedging a contingent claim is to ensure the coverage of possible
payout under the option contract for all feasible scenarios. These scenarios are given by
a priori given compact sets that depend on the price history: the price increments at each
time must lie in the corresponding compact sets. The lack of transaction costs is assumed; the
market with trading constraints is considered. The game-theoretic interpretation implies that
the corresponding Bellman–Isaacs equations hold. In the present paper, we propose several
conditions for the solutions of these equations to be semicontinuous or continuous.
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1. INTRODUCTION

This paper continues a series of publications by the present author [3, 4]. These papers develop
a model of the financial market and an uncertain deterministic evolution of prices with discrete time:
asset prices evolve in a deterministic manner under uncertainty described using a priori information
about possible price increments; namely, it is assumed that they lie in given compact sets depending
on the price history (such a model is an alternative to the traditional probabilistic market model1).

Within the framework of the above-described market model, we study the problem of pricing
options, by which we mean nondeliverable2 OTC contracts the payments for which depend on the
evolution of the prices of the underlying assets up to the moment of expiration. The seller of
the option assumes a contingent liability that, unlike contingent insurance policy liabilities, can
be protected against market risk through hedging in the markets.3 One of the most important
ways to hedge contingent liabilities on a sold option is the superreplication,4 in other words, the
superhedging (we prefer to use the second of the two equivalent terms).

In the aforementioned series of publications, we focus on the problem of superhedging options in
the presence of trading constraints (within the framework of a financial market model with uncertain

1 In the deterministic approach that we propose, a reference probability measure is not initially specified as it is
assumed in the probabilistic approach; see, e.g., [8].

2 For the purposes of risk management, derivative financial instruments are used, which, as a rule, are nondeliverable
contracts.

3 This includes transactions with underlying assets and a risk-free asset.
4 This term originated from the fact that it is impossible to replicate contingent liabilities in incomplete markets

(which is possible only in complete markets).
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deterministic price evolution). The problem of pricing an option with superhedging is to determine
the minimum level of funds at the initial moment5 that are necessary for the seller when choosing an
appropriate hedging strategy to guarantee coverage of the contingent obligation on the sold option
(the payments for which, recall, depend on the price history).

We consider options of the American style (American options), when the counterparty of the
seller (the owner of the option) can exercise the option (i.e., demand payment in accordance with
the rules established by this contract) at any time up to the expiration of the option. Options of
the European and Bermuda styles can be considered as a common case of American options under
certain conditions of regularity, including the “no arbitrage” market in a certain sense.

Let us formalize the construction described above for the superhedging problem. The main
premise in the proposed approach is the problem of “uncertain” price dynamics by the assumption
of a priori information about price movements6 at time t, namely, the assumption that the incre-
ments ∆Xt of discounted prices7 lie in a priori given compact sets8 Kt(·) ⊆ Rn, where the dot
designates the price history up to time t−1 inclusive, t = 1, . . . , N . By v∗t (·) we denote the greatest
lower bound of the portfolio value at time t, with a known history that guarantees, with a certain
choice of an admissible hedging strategy, the validity of current and future obligations arising in
relation to possible payments on an American option. The corresponding Bellman–Isaacs equations
at discounted prices arise directly from the economic meaning by choosing the “best” admissible
hedging strategy9 at step t, h ∈ Dt(·) ⊆ Rn for the worst-case scenario y ∈ Kt(·) of (discounted)
price increments for given functions gt(·) describing the potential payout of the option. Thus, we
obtain the recurrence relations10

v∗N(x̄N) = gN(x̄N),

v∗t−1(x̄t−1) = gt−1(x̄t−1)∨ inf
h∈Dt(x̄t−1)

sup
y∈Kt(x̄t−1)

[
v∗t (x̄t−1, xt−1 + y)− hy

]
,

t = N, . . . , 1,

(BA)

where x̄t−1 = (x0, . . . , xt−1) describes the back story with respect to the current time t. Conditions
for (BA) to hold are stated in Theorem 3.1 in [3].

In this case, it is convenient (formally) to consider that g0 = −∞ (the lack of obligations for
payments at the initial time); gt ≥ 0 for t = 1, . . . , N in the case of an American option. The
set Dt(·) is assumed to be convex with 0 ∈ Dt(·).

The multivalued mappings x 7→ Kt(x) and x 7→ Dt(x), as well as the functions x 7→ gt(x), are
assumed to be given for all x ∈ (Rn)t, t = 1, . . . , N . Therefore, the functions x 7→ v∗t (x) are given
by Eqs. (BA) for all x ∈ (Rn)t.

In Eqs. (BA), the functions v∗t , as well as the corresponding least upper bounds and greatest
lower bounds, take values in the extended set of real numbers R ∪ {−∞,+∞} = [−∞,+∞]—the
two-point compactification11 of R.

5 In other words, it is the premium charged to the option buyer if the option seller uses pricing that is consistent with
superhedging.

6 The increments are taken “backward,” i.e. ∆Xt = Xt −Xt−1, where Xt is the vector of discounted prices at time t;
the ith component of this vector is the unit price of the ith asset.

7 We assume that the risk-free asset has a constant price equal to one.
8 The dot designates variables describing price evolution. More precisely, this is the back story, x̄t−1 =
(x0, . . . , xt−1) ∈ (Rn)t for Kt, while for the functions v∗t and gt introduced below, this is the history, x̄t =
(x0, . . . , xt) ∈ (Rn)t+1.

9 The vector h describes the size of the positions taken in assets, i.e., the ith component of this vector is the number
of units of the ith asset bought or sold.

10 The ∨ sign denotes the maximum, and hy = ⟨h, y⟩ is the inner product of a vector h by a vector y.
11 The neighborhoods of points −∞ and +∞ have the form [−∞, a), a ∈ R and (b,+∞], b ∈ R, respectively.
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The derivation of the Bellman–Isaacs equations (BA) is readily obtained by a reasoning of an
“engineering” nature. In an informal economic language, this can be explained as follows, assum-
ing, for simplicity, that the least upper bounds and greatest lower bounds in (BA) are attained.
Let t ≤ N ; by the current (present) time t − 1 the history of (discounted) prices x1, . . . , xt−1 is
known. The value Vt−1 of the portfolio hedging the contingent obligation on a sold American
option for guaranteed performance of obligations must be, first, not less than current obligations
equal to the potential payments gt(x1, . . . , xt−1). Second, the portfolio value Vt = Vt−1 + Ht∆Xt

at the next time (here the strategy Ht is formed at time t − 1 and can only depend on the price
history x1, . . . , xt−1) must be guaranteed, for any scenario ∆Xt = y ∈ Kt(x1, . . . , xt−1) of price
movement at step t, not less than v∗t (x1, . . . , xt−1, xt−1 + y). Thus, to cover future obligations, the
value of the portfolio Vt−1 when choosing the strategy Ht = h ∈ Dt(x1, ..., xt−1) must be at least
v∗t (x1, . . . , xt−1, xt−1 + y) − hy in the worst-case scenario y ∈ Kt(x1, ..., xt−1) of price movement
at step t, i.e., with y ∈ Kt(x1, ..., xt−1) maximizing the expression v∗t (x1, . . . , xt−1, xt−1 + y) − hy.
The resulting value is minimized by choosing the strategy h ∈ Dt(x1, ..., xt−1) for estimating the
required reserves to cover potential future payments. It remains to set v∗t (x1, . . . , xt−1) equal to the
maximum of two values: the current liabilities and the amount of reserves to cover potential future
payments.

We will call a trajectory of asset prices (x0, . . . , xt) = x̄t on the time interval [0, t] = {0, . . . , t}
possible if x0 ∈ K0, ∆x1 ∈ K1(x0), . . . , ∆xt ∈ Kt(x0, . . . , xt−1); t = 0, 1, . . . , N . By Bt we denote
the set of possible trajectories of asset prices on the time interval [0, t]; hence

Bt =
{
(x0, . . . , xt) : x0 ∈ K0,∆x1 ∈ K1(x0), . . . ,∆xt ∈ Kt(x0, . . . , xt−1)

}
. (1.1)

Note that (1.1) is equivalent to the recurrence relations12

Bt =
{
(x̄t−1, xt) : x̄t−1 ∈ Bt−1,∆xt ∈ Kt(x̄t−1)

}
=

{
(x̄t−1, xt) : x̄t−1 ∈ Bt−1, xt ∈ xt−1 +Kt(x̄t−1)

}
, t = 1, . . . , N.

(1.2)

One of the conditions for Eqs. (BA) to hold is the assumption, stated in Theorem 3.1 in [3], on
the boundedness of the payout functions gt, owing to which the functions v∗t are bounded above.
The assumption is as follows:

there exist constants Ct ≥ 0 such that for each t = 1, . . . , N

and all possible trajectories x̄t = (x0, . . . , xt) ∈ Bt

one has gt(x0, . . . , xt) ≤ Ct.

(B)

We will assume the constants Ct to be chosen minimal; i.e.,

Ct = sup
x ∈Bt

gt(x);

and we will denote

C =
N

∨
t=1

Ct. (1.3)

For convenience of notation, in the last variable we make an “additive” replacement of the func-
tions v∗t , assuming

wt(x̄t−1, y) = wt(x1, . . . , xt−1, y) = v∗t (x1, . . . , xt−1, xt−1 + y), (T)

12 Here x+A = {z : z − x ∈ A}.
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and will use wt here and in what follows on the right-hand sides of the Bellman–Isaacs equations,
t = N, . . . , 0, i.e., in the form

v∗t−1(·) = gt−1(·)∨ inf
h∈Dt(·)

sup
y∈Kt(·)

[
wt(·, y)− hy

]
, t = N, . . . , 1.

Recall that here and in what follows, the dot denotes the “current” variables; in the last formula,
for example, the argument is x̄t−1.

In what follows, we adopt the assumptions listed in Theorem 3.1 in [3] and the assumptions
listed in item 1 of Remark 3.1 in [3] to be true.

The proposed approach allows one, to a certain extent, to simplify the mathematical technique
and make the formulation of statements more understandable for economists; the advantages of the
approach include game-theoretic interpretation.13 Owing to the constructiveness of the approach,
the question of the “smoothness” of solutions suggests itself immediately, directly from the form
of Eqs. (BA), which is the main topic of this paper. These “smoothness” properties, as we will
see from subsequent publications, will be required to establish one of the conditions of the game
equilibrium (the upper semicontinuity of solutions of (BA)) as well as to establish conditions for
the coincidence of solutions of the superhedging problem in the probabilistic and deterministic
approaches (the continuity of solutions of Eqs. (BA)). Of particular interest is the circumstance
established in this work that it is a coarse14 (robust) condition of no guaranteed arbitrage with
unlimited profit NDSAUP introduced in [4] that is generally required to obtain the continuity of
solutions of Eqs. (BA).

2. GENERAL CONDITIONS FOR SEMICONTINUITY AND CONTINUITY OF SOLUTIONS
OF THE BELLMAN–ISAACS EQUATIONS

The “smoothness” properties of solutions of the Bellman-Isaacs equations (BA) are determined by
the corresponding “smoothness” properties of the payout functions gt(·) as well as of the multivalued
mappings Kt(·) and Dt(·) specifying the a priori information about price increments and trading
constraints, respectively. Actually, it is the guaranteed deterministic approach that creates the
incentive to study this “smoothness.”

Note that the requirements for certain properties of “smoothness” of the description of market
dynamics are obtained from considerations of the model of a financial market to be realistic with
an uncertain deterministic evolution of prices, a fact that we have already noted in [3].

As realistic stochastic scenarios of market behavior we consider the (probability) distributions
of a discrete-time stochastic process describing the evolution of prices for which the conditional
distributions of the current price depend continuously (in the weak topology) on the price history.
In other words, for the stochastic model of price dynamics, the transition kernels Qt corresponding
to the conditional probabilities of price Xt ∈ Rn at time t with a known history X̄t−1 = x̄t−1 ∈ (Rn)t

have the Feller property. If for the distribution of the vector X̄t = (X̄t−1, Xt) there exists a (regular)
version of the conditional distribution P (X ∈ ·|X̄t−1 = x) = Qt(x, ·) that has the Feller property,
then this option is unique for x ∈ supp(PX̄t−1

), where PX̄t−1
is the distribution of the random

vector X̄t−1 and supp(π) denotes the (topological) support of the measure π. In this case, it is
natural to choose the Feller version of the regular conditional distribution, and the deterministic

13 With no trading constraints, this interpretation allows one to give an economically important explanation of the
origin of risk-neutral probabilities as one of the properties of the most unfavorable mixed market strategies.

14 One of our fundamental considerations is that since the description of uncertainty in the market cannot be accurate
in practice, fundamental properties such as the “no arbitrage” market (in one sense or another), should not change
under small disturbances of the market model. In this regard, in [4] we introduced a new concept of structural
stability for the market to be “no arbitrage” and established criteria of a geometric nature for this property.
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and stochastic approaches lead to the same notions of “no arbitrage,” when the reference probability
measure is specified using Feller transition kernels (by the Ionescu–Tulcea theorem).

We have proposed the following formalization of the realism of the model15 in the context of the
approach we are considering.

Definition 2.1. We say that a financial market model with an uncertain evolution of prices is
realistic if there exist mixed market strategies for which there are Feller transition kernels Qt(x, ·)—
conditional distributions Xt with a known history X̄t−1 = x such that16 suppQt(x, ·) = x +Kt(x)
for t = 1, . . . , N .

The results17 obtained in [5] imply the following criterion for a realistic model.

Theorem 2.1. For a realistic financial market model with uncertain deterministic price evolu-
tion18 it is necessary and sufficient that the multivalued mappings Kt(·), t = 1, . . . , N , be lower
semicontinuous.

Obviously, the semicontinuity properties (from above or from below) for the multivalued map-
pings x̄t−1 7→ Kt(x̄t−1) and x̄t−1 7→ xt−1 +Kt(x̄t−1), t = 1, . . . , N , are equivalent, as is the case for
the functions v∗t and wt, t = 0, . . . , N .

Here and in what follows, by N (Y ) we denote the class of all nonempty subsets of Y , and by K(Y )
we denote the class of all nonempty compact subsets of the topological space Y .

Now let us establish sufficient conditions for the “regular behavior” of the set of possible trajec-
tories for price dynamics that are given by the compact set K0 of initial price states and compact-
valued19 mappings x̄t−1 7→ Kt(x̄t1), t = 1, . . . , N . To this end, we make the following additional
assumption:20

the multivalued mapping (x0, . . . , xt−1) 7→ Kt(x0, . . . , xt−1)

of (Rn)t into K(Rn) is upper h-semicontinuous.
(USC− PH)

Remark 2.1 .

1. In the general case of a multivalued mapping, the upper semicontinuity for a metric space Y
implies the upper h-semicontinuity,21 see Proposition 2.61 in [9].

2. The lower semicontinuity and upper semicontinuity are equivalent for compact-valued map-
pings (Theorem 2.68 in [9]).

15 It is hardly possible to give economic reasons for stochastic price dynamics to be specified by transition kernels
(conditional probabilities for a given price history) that do not satisfy the Feller property.

16 The last condition reflects the realism of deterministic scenarios of price increments.
17 In this paper, the general case of topological spaces is considered, and the necessary conditions for the existence

of a Feller kernel with given supports are weaker than the sufficient conditions for its existence, but in the case of
a finite-dimensional Euclidean space, the necessary and sufficient conditions coincide.

18 In this case, the compactness of Kt(·), t = 1, . . . , N is not required—only closedness is assumed (as in poten-
tial topological supports of probability measures). Note that in the case of compact-valued mappings, the lower
semicontinuity implies the lower h-semicontinuity.

19 As per assumption (C) in [3].
20 The upper (lower) semicontinuity in the sense of Pompeiu–Hausdorff, in other words, the upper (lower) h-

semicontinuity of the multivalued mapping F : X 7→ N (Y ) at the point x0 ∈ X, is defined for a topological
space X and a metric space Y with a metric ρ as the continuity of the numerical function x 7→ eρ(F (x), F (x0))
(respectively, x 7→ eρ(F (x0), F (x))) at the point x0, where eρ(A,B) is the Pompeiu deviation of the set A from the
set B, eρ(A,B) = sup{ρ(x,B), x ∈ A}, ρ(x,B) = inf{ρ(x, x′), x′ ∈ B}. Note that the Pompeiu–Hausdorff distance
is hρ(A,B) = eρ(A,B)∨ eρ(B,A). A multivalued mapping is upper (lower) h-semicontinuous if it is upper (lower)
semicontinuous at all points in the domain.

21 Upper (lower) semicontinuity is defined as the openness of the set {x ∈ X : F (x) ⊆ G} for any open G ⊆ Y
(respectively, as the openness of the sets {x ∈ X : F (x) ∩G ̸= ∅} for any open G ⊆ Y ).
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3. If a mapping F : X 7→ N (Y ) is an h-continuous multivalued mapping with closed values, then
the graph {(x, y) ∈ X × Y : y ∈ F (x)} is closed (in the topology of the product of spaces);
see Proposition 2.63 in [9].

4. The image22 F (x) = ∪
x∈K

F (x) of a compact set K ⊆ X for a compact-valued semicontinuous

mapping F : X 7→ K(Y ) is compact (Corollary 2.20 in [9]).

Proposition 2.1. Let condition (USC-PH) be satisfied. Then

1. The sets Bt described by relations (1.2) are compact, t = 0, . . . , N .
2. If, in addition, the potential payout functions gt occurring in Eq. (BA) are upper semicontin-

uous, then the uniform boundedness condition (B) is satisfied.

Proof. Assertion 1 is easy to verify by induction. Indeed, this holds for t = 0, because B0 = K0

is compact. If this is true for t = 0, . . . , s− 1, where s ∈ {1, . . . , N − 1}, then, with the use of (1.2),
the set

Bs =
{
(x̄s−1, xs) : x̄s−1 ∈ Bs−1, xs = xs−1 +Ks(x̄s−1)

}
is the graph of the multivalued mapping F : Bs−1 7→ K(R), where Fs(x̄s−1) = xs−1 + Ks(x̄s−1),
which is upper semicontinuous in the sense of Pompeiu–Hausdorff, and the set Bs−1 is compact.

In accordance with item 3 in Remark 2.1, the set Bs is closed. By item 2 in Remark 2.1, the
mapping F is upper semicontinuous, and by item 4 in Remark 2.1, the image F (Bs) is compact.
Since the closed set Bs is contained in the compact set Bs−1 × F (Bs), it follows that the set Bs is
compact.

Assertion 2 readily follows from Assertion 1, since the semicontinuous functions gt are bounded
above (and attain maximum) on the compact sets Bt for t = 1, . . . , N . ■

We need classical results—Berge’s three theorems [6, 7], see also [9]. For the reader’s convenience,
we present their wording. Assume that X and Y are Hausdorff topological spaces.

Theorem 2.2 (Berge). If a numerical function g : X ×T 7→ [−∞,+∞] is upper semicontinuous
and a multivalued mapping F : X 7→ N (Y ) is lower semicontinuous, then the function g∗ : X 7→
[−∞,+∞] defined by

g∗(x) = inf
y∈F (x)

g(x, y) (2.1)

is upper semicontinuous.

Theorem 2.3 (Berge). If a numerical function g : X × T 7→ [−∞,+∞] is upper semicontin-
uous and a compact-valued mapping F : X 7→ K(Y ) is upper semicontinuous,23 then the function
g∗ : X 7→ [−∞,+∞] defined by

g∗(x) = sup
y∈F (x)

g(x, y) (2.2)

is upper semicontinuous.

Remark 2.2 . Since
− inf

y∈F (x)

[
− g(x, y)

]
= sup

y∈F (x)

g(x, y), (2.3)

we see that Theorem 2.2 can be stated in an equivalent form.24

22 Here image is understood in the sense of a multivalued mapping.
23 Note that in the book [6], the compactness of F is included in the definition of upper semicontinuity, in addition

to the fact that the set {x ∈ X : F (x) ⊆ G} is open for any open G ⊆ Y .
24 Theorem 2.2′ is Proposition 3.1 in [9], and Theorem 2.3 is Proposition 3.3 in [9].
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Theorem 2.2′. For a lower semicontinuous function g : X × Y 7→ [−∞,+∞] and a lower
semicontinuous multivalued mapping F (x), the function g∗ : X 7→ [−∞,+∞] defined by (2.2) is
lower semicontinuous.

Accordingly, Theorem 2.3 can also be stated in equivalent form.

Theorem 2.3′. For a lower semicontinuous function g : X × Y 7→ [−∞,+∞] and an upper
semicontinuous compact-valued mapping F : X 7→ K(Y ), the function g∗ : X 7→ [−∞,+∞] defined
by (2.1) is lower semicontinuous.

A statement similar to Theorem 2.2 can also be obtained by weakening the requirements for the
function g but strengthening the requirements for the multivalued function F .

Proposition 2.2. If for each y ∈ Y the functions x 7→ gy(x) = g(x, y) ∈ [−∞,+∞], x ∈ X ,
are upper semicontinuous and the sets {x ∈ X : y ∈ F (x)} are open, then the function
g∗ : X 7→ [−∞,+∞] defined by (2.1) is upper semicontinuous.

Proof. Set

φy(x) =

0 if y ∈ F (x)

+∞ if y /∈ F (x).

Then
g∗(x) = inf

y∈Y

[
gy(x) + φy(x)

]
with the function φy(·) being upper semicontinuous and hence the function gy(·)+φy(·) being upper
semicontinuous as well. Since the greatest lower bound of upper semicontinuous functions is upper
semicontinuous, it follows that the function g∗(·) is upper semicontinuous. ■

By using identity (2.3), we can restate Proposition 2.2 in an equivalent manner.

Proposition 2.2′. If for each y ∈ Y the functions x 7→ gy(x) = g(x, y) ∈ [−∞,+∞] are lower
semicontinuous and the sets {x ∈ X : y ∈ F (x)} are open, then the function g∗ defined by (2.2) is
lower semicontinuous.

Remark 2.3 .

1. If for each y ∈ Y the sets {x ∈ X : y ∈ F (x)} are open, then the multivalued function
F is lower semicontinuous, since for an open G ⊆ Y the sets {x ∈ X : F (x) ∩ G ̸= ∅} =
∪
y∈G

{x : y ∈ F (x)} will be open as unions of open sets.

2. The openness of the sets {x ∈ X : y ∈ F (x)}, generally speaking, does not follow from the
lower (or upper) semicontinuity of the mapping F . In the case of a Y -metric space with a
metric ρ, it is well known (see [9, Propositions 2.26, 2.61, and 2.64]) that for each y ∈ Y the
functions x 7→ ρ(y, F (x)) are upper (or, respectively, lower) semicontinuous. If F takes closed
values, i.e., the set F (x) is closed for each x ∈ X, then about the set {x ∈ X : y ∈ F (x)} =
{x ∈ X : ρ(y, F (x)) = 0} one can only assert that it is closed (or, accordingly, is a set of the
type25 Gδ).

3. The joint upper (lower) semicontinuity of the numerical function g(x, y) implies the upper
(lower) semicontinuity of the functions x 7→ gy(x) = g(x, y) of one variable: if g is upper
semicontinuous, then considering the Cauchy net (xα, yα), where xα ≡ x and yα → y∗, we
note that (xα, yα) → (x, y∗) and hence lim sup

α
gx(yα) = lim sup

α
g(xα, yα) ≤ g(x, y∗) = gx(y

∗).

In a similar way, we can also prove the assertion about the lower semicontinuity; however,
25 That is, representable in the form of a countable intersection of open sets.
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this also follows from what has already been proved by selecting g = −f , where f is lower
semicontinuous.

4. In Theorems 2.3 and 2.3′, the maximum and minimum, respectively, are attained for
each x ∈ X at some y∗(x) ∈ F (x).

Sufficient conditions for the continuity of the function g∗ defined by (2.2) are given by the
following theorem.26

Theorem 2.4 (Berge). Let a function g : X × Y 7→ R be continuous, and let F : X 7→ K(y) be
a continuous27 multivalued mapping. Then the function g∗ : Y 7→ R defined by (2.2) is continuous,
and the multivalued mapping M : X 7→ K(Y ), where28 M(x) = {y ∈ F (x) : g(x, y) = g∗(x)}, is
upper semicontinuous.

From the above results, one can readily obtain conditions of semicontinuity for the solution v∗t
of the main equations (BA). Using notation (T), we introduce the function

x̄t−1 7→ ρt(x̄t−1) = inf
h∈Dt(x̄t−1)

sup
y∈Kt(x̄t−1)

[
wt(x̄t−1, y)− hy

]
. (2.4)

Theorem 2.5. Let condition (USC-PH) of the upper h-semicontinuity of multivalued mappings
x̄t−1 7→ Kt(x̄t−1), t = 1, . . . , N , be satisfied. Further, assume that the following conditions are also
satisfied for t = 1, . . . , N :

1. The multivalued mappings x̄t−1 7→ Dt(x̄t−1) are lower semicontinuous.
2. The numerical functions x̄t 7→ gt(x̄t) are upper semicontinuous.

Then the functions x̄t 7→ v∗t (x̄t) defined by relations (BA) are upper semicontinuous, t = 1, . . . , N .

Proof. Let conditions 1 and 2 be satisfied. Let us prove the upper semicontinuity of the func-
tions vs by induction. For s = N the assertions in the theorem obviously hold true, since v∗N = gN .
Now let this be true for s = N, . . . , t. Let us show that this is also true for s = t−1, where N ≥ t > 1.
By the induction assumption, the function (x̄t−1, y) 7→ wt(x̄t−1, y) is upper semicontinuous. Us-
ing (USC-PH) and Theorem 2.3, we conclude that the function

(x̄t−1, h) 7→ φ(x, h) = sup
y∈Kt(x̄t−1)

[
wt(x̄t−1, y)− hy

]
, (2.5)

is upper semicontinuous, because the function ((x̄t−1, h), y) 7→ wt(x̄t−1, y) − hy is jointly upper
semicontinuous. Applying Theorem 2.2 to the function defined by (2.5), we conclude that the
function ρt defined by (2.4) is upper semicontinuous, and consequently, so is the function

x̄t−1 7→ v∗t−1(x̄t−1) = gt−1(x̄t−1)∨ ρt(x̄t−1). ■ (2.6)

Assume that

cl(A) is the closure of A.

int(A) is the interior of A.

ri(A) is the relative interior of the convex set A.

Lemma 2.1. Let X be a Hausdorff topological space, and let F : X 7→ 2R
n \ {∅} be a multivalued

mapping taking convex values. Then

26 This result is often called “Berge’s maximum theorem;” in [9], it is Theorem 3.4.
27 Simultaneously upper and lower semicontinuous multivalued mapping.
28 That is, M(x) is the set of maximizers, those y ∈ Y for which the maximum is attained in (2.2) for a given x ∈ X.
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1. The lower semicontinuity of F (·) is equivalent to the lower semicontinuity of the multivalued
mapping x 7→ ri(F (x)).

2. If, in addition, int(F (x)) ̸= ∅ for all x ∈ X , then the lower semicontinuity F (·) is equivalent
to the lower semicontinuity of x 7→ int(F (x)).

Proof.

1. Since
ri
(
F (x)

)
⊆ F (x) ⊆ cl

(
F (x)

)
(2.7)

and, in view of the convexity of F (x), by Theorem 6.3 in [11] we obtain

cl
(
ri
(
F (x)

))
= cl

(
F (x)

)
. (2.8)

By Proposition 2.38 in [9], the multivalued mapping x 7→ F (x) is lower semicontinuous if and
only if so is the mapping x 7→ cl(F (x)), and so (2.7) and (2.8) imply the desired assertion.

2. In the case of int(F (x)) ̸= ∅, one has

ri
(
F (x)

)
= int

(
F (x)

)
. ■ (2.9)

Remark 2.4 .

1. The nondegeneracy of the trading constraints, by which we mean the solidity of the convex set
Dt(·), i.e., int(Dt(·)) ̸= ∅, is quite a natural assumption for financial models; in this case, by
virtue of the convexity of Dt(·), we can apply Lemma 2.1, so, without loss of generality, the sets
Dt(·) can be considered to be open when we speak of the preservation of lower semicontinuity
of Dt(·) with no other requirements.

2. On the other hand, the property of lower semicontinuity of the multivalued mapping
F : X 7→ N (Y ) is equivalent to the lower semicontinuity of the multivalued mapping
F̄ : X 7→ N (Y ), where F̄ (x) = cl(F (x)), see Proposition 2.38 in [9]. In a number of cases, for
a lower semicontinuous Dt(·) it is convenient to assume, without loss of generality, that the
sets Dt(·) are closed (nondegeneracy is not required in this case) with no other requirements.

3. In Theorem 2.5 we can assume, without loss of generality, that the sets Dt(·) are closed,
because the values v∗t (·) do not change under closure of Dt(·). Indeed, denoting D̄t(·) =
cl(Dt(·)), we have the inequality

inf
h∈D̄t(x)

φ(x, h) ≤ inf
h∈Dt(x)

φ(x, h), (2.10)

where the function φ is given by formula (2.5). For each h ∈ D̄t(x), there exists a se-
quence hn ∈ Dt(x) such that hn → h. By virtue of the upper semicontinuity of the function φ
(established when proving Theorem 2.5)

φ(x, h) ≥ lim sup
n→∞

φ(x, hn) ≥ inf
h∈D̄t(x)

φ(x, h),

and so the equality takes place in (2.10).
On the other hand, applying relations (2.7) and (2.8) to F (·) = Dt(·), we conclude that
the value v∗t does not change if Dt(·) is replaced by D′

t(·) = ri(Dt(·)), and in the case of
nondegeneracy, considering (2.9), we can consider, without loss of generality, that Dt(·) are
open.

4. For a number of models, trading constraints are time constant and history independent,
i.e., Dt(·) ≡ D (for example, when short positions on a risky asset are prohibited, i.e.,
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when D = [0,∞)n). In this case, the set {x ∈ (Rn)t−1 : h ∈ Dt(·)} is either empty
(if h /∈ D) or coincides with the entire space (Rn)t−1 (if h ∈ D), so the set is open (and hence
Propositions 2.2 and 2.2′ are applicable) and closed at the same time, and the multivalued
mappings x 7→ Dt(·) are continuous.

5. By K̃t = Kt(Bt−1) we denote the image Bt−1 of the multivalued mapping Kt, where Bt is
given by (1.1). Note that under condition (USC-PH) the function defined by (2.5) is bounded
owing to the compactness of K̃t, by Proposition 2.1, uniformly in x̄t−1 ∈ K̃t for each h,
because C ≥ wt ≥ 0 : for each y ∈ Kt(x̄t−1) ⊆ K̃t,

C − hy ≥ wt(x̄t−1, y)− hy ≥ −hy,

max
y∈−K̃t

hy ≥ −hy ≥ min
y∈−K̃t

hy = −max
y∈K̃t

hy,

based on which,29 we conclude that

C + σ−K̃t
(h) ≥ sup

y∈Kt(x̄t−1)

[
wt(x̄t−1, y)− hy

]
≥ −σK̃t

(h), (2.11)

where σA(h) is the support function of the set A.
6. By virtue of the upper semicontinuity of the function y 7→ wt(·, y) − hy in the conditions of

Theorem 2.5 (i.e., under conditions 1 and 2), the least upper bound over y is attained at some
value y ∈ Kt(x̄t−1).

7. Note that for x̄t−1 ∈ Bt−1 the function (2.5) is convex in the variable h, takes finite values
with the estimate (2.11), and, in particular, is continuous with respect to h (Corollary 10.1.1
in [11]).

8. The function ρt(·) defined by (2.4) can take the value −∞. At the same time, since 0 ∈ Dt(x),
the function ρt(·) is bounded above, ρt(·) ≤ C.

To ensure the property of lower semicontinuity of the Bellman–Isaacs functions defined by (BA),
we need to make an additional assumption concerning the trading constraints; namely,

the set Dt(x̄t−1) is compact for each x̄t−1, t = 1, . . . , N. (C− T)

Theorem 2.6. Let condition (C-T) be satisfied, let complex-valued mappings x̄t−1 7→ Dt(x̄t−1) be
upper semicontinuous, let x̄t−1 7→ Kt(x̄t−1) be lower semicontinuous, and let the numerical functions
x̄t−1 7→ gt(x̄t−1) be lower semicontinuous for t = 1, . . . , N . Then the functions x̄t 7→ v∗t (x̄t) defined
by relations (BA) are lower semicontinuous, t = 1, . . . , N .

Proof. We conduct the proof by induction. For s = N , the assertion holds since v∗N = gN . Let it
hold for s = N, . . . , t. Let us show that it is also satisfied for s = t−1 (for t > 1). Theorem 2.2′ can
be applied to the function φ defined by (2.5), because the function ((x̄t−1, h), y) 7→ wt(x̄t−1, y)−hy
is jointly lower semicontinuous, and so φ is lower semicontinuous. Further, Theorem 2.3′ applies to
the function ρt(·) defined by (2.4), and so this function is lower semicontinuous as well, and (2.6)
implies the lower semicontinuity of the function v∗t−1(·). ■

Theorem 2.7. Let condition (C-T) be satisfied, let the compact-valued mappings x̄t−1 7→Dt(x̄t−1)
and x̄t−1 7→ Kt(x̄t−1) be continuous,30 and let the numerical functions x̄t−1 7→ gt(x̄t−1) be continuous.
Then

1. The functions x̄t 7→ v∗t (x̄t) given by relations (BA) are continuous.
29 The support function of a compact set takes finite values.
30 The continuity of a multivalued mapping means simultaneously upper and lower semicontinuity. For compact-valued

mappings, this is equivalent to continuity in the Pompeiu–Hausdorff metric.
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2. The multivalued mappings (x̄t−1, h) 7→ Mt(x̄t−1, h), where Mt(x̄t−1, h) is the set of maximizers
y ∈ Kt(x̄t−1) for which the maximum of the function (2.5) is attained, as well as the multi-
valued mappings x̄t−1 7→ Nt(x̄t−1), where Nt(x̄t−1) is the set of minimizers h ∈ Dt(x̄t−1) for
which the minimum in (2.4) is attained, are lower semicontinuous, t = 1, . . . , N .

Proof. The assertion follows from Theorems 2.5 and 2.6 as well as Berge’s theorem 2.4. ■

Remark 2.5 .

1. If Y is a metric space,31 then the upper semicontinuity property of the multivalued mapping
is preserved under closure, see Proposition 2.40 in [9]. Therefore, if Dt(·) is replaced by
D̄t(·) = cl(Dt(·)), then Theorem 2.7 remains valid in view of item 2 in Remark 2.4 on the
preservation of the value of the function v∗t (·).

2. In fact, the above results also give the conditions of semicontinuity or continuity in a more
general case, namely, for the model described in [3], formulas (3.6) and (3.7), if simulta-
neously with the trading constraints inherent in margin trading,32 we impose constraints on
borrowing a risk-free asset by specifying an h-convex function33 αt(h, x̄t−1) ≤ 0, with auxiliary
constraints h ∈ Dt(·), the corresponding Bellman–Isaacs equations have the form

v∗N(x̄N) = gN(x̄N),

v∗t−1(x̄t−1) = gt−1(x̄t−1)

∨ inf
h∈Dt(x̄t−1)

[
sup

y∈Kt(x̄t−1)

(wt(x̄t−1, y)− hy)∨µh⊕x̄t−1∨(hx̄t−1 + αt(h, x̄t−1))

]
,

where h⊕ = ((h1)+, . . . , (hn)+), (a)+ = 0∨ a, and a ∈ R.
For the applicability of Theorem 2.5, it is necessary to require the upper semicontinuity of
the function x 7→ αt(h, x), x ∈ Bt−1; for the applicability of Theorem 2.6, the joint lower
semicontinuity of αt; and for the applicability of Theorem 2.7, the joint continuity of αt.

3. Note that all the above results are of a general nature and are in no way connected with
the assumptions of the no arbitrage type. To ensure the properties of lower semicontinuity
and continuity of the Bellman–Isaacs functions wt in the case when (C-T) fails, i.e., when Dt

is unbounded, we need additional conditions relating the behavior of the multivalued map-
pings Kt(·) and Dt(·). Below we give the relevant conditions and proofs, which are more
technical in nature than those presented above.

3. SMOOTHNESS CONDITIONS FOR SOLUTIONS OF THE BELLMAN–ISAACS
EQUATIONS LINKING UNCERTAINTY OF PRICE MOVEMENTS

AND TRADE RESTRICTIONS

We will use the notation
K∗

t (·) = conv(Kt(·)) is the convex hull of Kt(·).
σA is the support function of the set A; i.e., σA(y) = sup

h∈A

hy.

bar(A) = {y ∈ Rn : σA(y) < +∞} is the barrier cone34 of the set A.

31 In fact, the normality of the topological space Y suffices.
32 Margin trading in the financial market implies the presence of intermediaries (brokers) who allow (upon the con-

clusion of a general agreement with a market participant) borrowing in securities. At the same time, the regulator
usually establishes requirements that the share of own funds in the portfolio of a participant in margin trading
should not be lower than the established level; this leads to trading constraints.

33 αt is the maximum allowable debt (for example, bank credit limit) taken with negative sign.
34 This cone is convex and contains the point 0.

AUTOMATION AND REMOTE CONTROL Vol. 82 No. 11 2021



A GUARANTEED DETERMINISTIC APPROACH TO SUPERHEDGING 2035

In [4], the notion of structural stability of “no arbitrage” was introduced and it was proved (The-
orem 2) that the structurally stable condition of no guaranteed arbitrage RNDSAUP is equivalent
to the validity of the condition

0 ∈ int
{
z : z +K∗

t (·)∩bar(Dt(·)) ̸= ∅
}
. (SR)

This condition and its strengthening play an important role in the proof of the results of this section,
which are stated below. Note also that the proof of these results will essentially use the boundedness
condition (B) for the payoff functions gt, t = 1, . . . , N .

Proposition 3.1. Let the multivalued mappings Dt(·) take closed values for t ∈ {1, . . . , N}, and
let condition (B) be satisfied. Then

Da
t (·) = {h ∈ Dt(·) : sup

y∈Kt(·)
[wt(·, y)− hy] ≤ a}

is compact35 for each a ∈ R if and only if condition RNDSAUP is satisfied.

Proof. Denote

Tt(·) =
{
z ∈ Rn :

(
z +K∗

t (·)
)
∩ bar

(
Dt(·)

)
̸= ∅

}
; (3.1)

condition (SR), equivalent to RNDSAUP, is written as

0 ∈ int
(
Tt(·)

)
. (3.2)

Since wt ≥ 0, as well as owing to (2.1), wt ≤ C, we have the inequalities

sup
y∈K∗

t (·)
[−hy] = sup

y∈Kt(·)
[−hy] ≤ sup

y∈Kt(·)

[
wt(·, y)− hy

]
≤ C + sup

y∈Kt(·)
[−hy] = C + sup

y∈K∗
t (·)

[−hy].

Denoting

D̂b
t (·) =

{
h ∈ Dt(·) : sup

y∈K∗
t (·)

[−hy] ≤ b} = {h ∈ Dt(·) : σK∗
t (·)(−h) ≤ b

}
, (3.3)

we obtain D̂a−C
t (·) ⊆ Da

t (·) ⊆ D̂a
t , and so Da

t (·) is compact for all a ∈ R if and only if the D̂a
t (·) are

compact for all a ∈ R.
Consider the function

h 7→ ft,·(h) = χDt(·)(h) + sup
y∈K∗

t (·)
(−hy), (3.4)

where

χD(h) =

0 if h ∈ D

+∞ if h /∈ D.

The function defined by (3.4) is a closed36 proper37 convex function, because the same refers to the
first term in (3.4), while the second term in (3.4) is an everywhere finite convex function and hence
everywhere continuous (see Corollary 10.1.1 in [11]). In accordance with Corollary 14.2.2 in [11],
for the set {h ∈ Rn : ft,·(h) ≤ a} = D̂a

t (·) to be bounded (and hence compact by virtue of the
semicontinuity of the function defined by (3.4)) for each a ∈ R it is necessary and sufficient that 0

35 The empty set is considered compact.
36 Lower semicontinuous (the terminology of [11]).
37 If a function takes finite values on a nonempty convex set and is +∞ outside it.
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be an inner point of the set T ′
t (·) = {z ∈ Rn : f∗

t,·(z) < ∞}, where z 7→ f∗
t,·(z) is the function dual

to the function h 7→ ft,·(h); i.e.,

T ′
t (·) =

{
z ∈ Rn : sup

h∈Rn

[
hz − ft,·(h)

]
< ∞

}
.

In this case, using the classical Kneser minimax theorem [10], we obtain

sup
h∈Rn

{
hz −

[
χDt(·)(h) + sup

y∈K∗
t (·)

(−hy)

]}
= sup

h∈Dt(·)

[
hz + inf

y∈K∗
t (·)

(hy)

]
= sup

h∈Dt(·)
inf

y∈z+K∗
t (·)

(hy) = inf
y∈z+K∗

t (·)
sup

h∈Dt(·)
(hy) = inf

y∈z+K∗
t (·)

σD(y).

If
(
z +K∗

t (·)
)
∩ bar

(
Dt(·)

)
= ∅, then σD(y) = ∞ for all y ∈ z +K∗

t (·) and inf
y∈z+K∗

t (·)
σD(y) = +∞.

If, however,
(
z +K∗

t (·)
)
∩ bar

(
Dt(·)

)
̸= ∅, then inf

y∈z+K∗
t (·)

σD(y) < ∞. Thus,

T ′
t (·) =

{
z ∈ Rn : z +K∗

t (·) ∩ bar
(
Dt(·)

)
̸= ∅

}
;

i.e., T ′
t (·) = Tt(·); the latter implies the desired assertion. ■

Remark 3.1 .

1. Note that, when proving Proposition 3.1, it was established that condition (SR) and the
closedness of the sets Dt(·) are sufficient for the compactness of the sets D̂a

t (·).
2. It can readily be verified that the set Tt(·) defined by (3.1) is convex.
3. For the case of no trading constraints, i.e., when Dt(·) = Rn, the barrier cone bar

(
Dt(·)

)
is {0}, and condition (3.2) is equivalent to the robust condition of no arbitrage opportunities
RNDAO, which, in accordance with Proposition 1 in [4], is equivalent to the simultaneous
validity of the condition of no arbitration opportunities NDAO and the full size of the compact
sets Kt(·), t = 1, . . . , N , i.e., the condition 0 ∈ int(K∗

t (·)), t = 1, . . . , N .

In the sequel, we assume that the Dt(·) are closed sets. (By virtue of item 3 in Remark 2.4 and
item 1 in Remark 2.5, this is not a limitation for Theorems 2.5 and 2.7 to hold.)

Lemma 3.1. Let Dt(·) be closed sets, and let condition RNDSAUP be satisfied; then for a ≥ C
the function ρt(·) defined by (2.4) can be represented in the form

ρt(·) = inf
h∈D̂a

t (·)
sup

y∈Kt(·)

[
wt(·, y)− hy

]
; (3.5)

thus, Dt(·) can be replaced by a compact convex set D̂a
t (·) with 0 ∈ D̂a

t (·). In particular, the lower
semicontinuous (and convex ) function h 7→ sup

y∈Kt(·)
[wt(·, y)− hy] attains the minimum value ρt(·) at

some point h∗(·) ∈ D̂C
t .

Proof. If h0 /∈ D̂a
t (·), where a ≥ C, then, since 0 ∈ Dt(·), for such an h0 we have

sup
y∈K∗

t (·)

[
wt(·, y)− h0y

]
≥ sup

y∈K∗
t (·)

[−h0y] > a ≥ C

≥ sup
y∈Kt(·)

[
wt(·, y)− hy

]∣∣
h=0

≥ inf
h∈Dt(·)

sup
y∈Kt(·)

[
wt(·, y)− hy

]
;

the latter implies (3.5). ■
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We say that a multivalued mapping F : X 7→ N (Y ) is locally precompact if for any point x0 ∈ X
there exists a neighborhood Vx of this point such that its image F (Vx) = ∪

x∈Vx

F (x) is precompact.38

If, in addition, X is compact, then, obviously, the image of F (x) is precompact. (It suffices to select
a finite subcover from the cover Vx, x ∈ X, and note that a finite union of compact sets is compact.)

Lemma 3.2. Let the following condition be satisfied: for each point x0 ∈ Bt−1 there exists a
neighborhood V (x0) of this point such that Ǩt(x0) = ∩

x∈V (x0)
K∗

t (x) ̸= ∅, and moreover,39

0 ∈ int

({
z : z + Ǩt(x0) ∩ bar

(
Dt(·)

)
̸= ∅

})
. (SSR)

Then the multivalued mapping x 7→ D̂b
t (x), x ∈ Bt−1 , is locally precompact.

Proof. For x ∈ V (x0), in view of (3.3), we have

D̂b
t (x) ⊆ Ďb

t (x0) =
{
h ∈ Dt(x0) : σǨt(x0)(−h) ≤ b

}
;

reproducing the argument in Proposition 3.1 and replacing K∗
t (x) by Ǩt(x), we conclude that the

sets Ďb
t (x0), x0 ∈ Bt−1, are compact for all b ∈ R if and only if (SSR) is satisfied; hence we obtain

the local precompactness of the multivalued mapping x 7→ D̂b
t (x), x ∈ Bt−1, subject to (SSR). ■

Lemma 3.3. Let multivalued mappings x 7→ Dt(x) be closed,40 let multivalued mapping
x 7→ Kt(x) be lower semicontinuous, and let Bt be precompact sets, t = 1, . . . , N . Then the multi-
valued mappings x 7→ D̂a

t (x) are closed.

Proof. Since Bt = Kt(Bt−1) = ∪
x∈Bt−1

Kt(x) is precompact by condition, it follows that the

multivalued mapping x 7→ Kt(x) is uniformly bounded on Bt−1, and therefore, so are the convex
hulls K∗

t (x) = conv(Kt(x)) on Bt−1,

sup
x∈Bt−1

sup
y∈K∗

t (x)

∥y∥ = A < ∞. (3.6)

The lower semicontinuity of Kt(·) implies the lower semicontinuity of K∗
t (·) by Proposition 2.24(a)

in [9]. Consider sequences xn and hn, n = 1, 2, . . ., such that xn ∈ Bt−1, xn → x0, hn ∈ D̂b
t (x

n),
and hn → h0. By Proposition41 9.10 in [2], in view of (3.6), we obtain

b ≥ σK∗
t (x

n)(−hn) ≥ σK∗
t (x

0)(−h0)−A∥hn − h0∥.

Based on this, we have

b ≥ lim inf
n→∞

σK∗
t (x

n)(−hn) ≥ lim inf
n→∞

σK∗
t (x

n)(−h0) ≥ σK∗
t (x

0)(−h0),

because the function x 7→ σK∗
t (x)

(h) is lower semicontinuous for each h; see, e.g., Proposition 2.35
in [9]. Moreover, since the multivalued mapping x 7→ Dt(x) is closed by assumption, we have
h0 ∈ Dt(x

0). Thus, h0 ∈ {h ∈ Dt(x
0) : σK∗

t (x
0)(−h) ≤ b} = D̂b

t (x
0). ■

38 In other words, in the terminology of [2], this mapping is compactly bounded at all points from X; in [9], the
mapping is also called “locally compact” (which, in our opinion, is unfortunate, since this term already refers to
topological spaces).

39 Of course, (SSR) implies Ǩt(x0) ̸= ∅. We can interpret Ǩt(·) as a new dynamics of the market with uncertainty
diminished compared with K∗

t (·); in this case, the Ǩt(·) are convex compact sets.
40 A multivalued mapping F : X 7→ N (Y ) is said to be closed if for Cauchy nets xα and yα such that xα → x,

yα ∈ F (xα), and yα → y one has y ∈ F (x). In other words, the graph of the mapping F is closed.
41 This is the result in [2] concerning the Lipschitz property (with constant A) for support functions.
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Theorem 3.1. Let t = 1, . . . , N , let numerical functions x̄t 7→ gt(x̄t) be lower semicontinuous,
let multivalued mappings x̄t−1 7→ Dt(x̄t−1) be closed, let multivalued mappings x̄t−1 7→ Kt(x̄t−1) be
lower semicontinuous, let condition (SSR) be satisfied, and let sets Bt be precompact. Then the
functions (x̄t−1, y) 7→ wt(x̄t−1, y) defined by relations (BA) are lower semicontinuous.

Proof. Using Lemmas 3.2 and 3.3, we prove by Proposition 2.23 in [9] that the locally
precompact and closed mapping42 x 7→ D̂b

t (x) is upper semicontinuous. Applying Lemma 3.1
and Theorem 2.6, where Dt(·) is replaced by D̂a

t (·) for some a ≥ C, we obtain the desired
assertion. ■

Remark 3.2 . Note that the proof of Theorem 3.1 established the upper semicontinuity of the
compact-valued map x 7→ D̂b

t (x) under the conditions of Theorem 3.1 concerning Kt(·), Dt(·),
and Bt.

Proposition 3.2. Suppose that multivalued mappings x 7→ Kt(x), t = 1, . . . , N , are lower
semicontinuous and that condition (SGNSAUP)43 is satisfied for all x,

int
(
K∗

t (·)
)∩bar

(
Dt(·)

)
̸= ∅. (3.7)

Then

1. There exist neighborhoods V (x) of points x such that the following condition is satisfied for
Ǩt(x) = ∩

x′∈V (x)
K∗

t (x
′):44

int
(
Ǩt(x)

)∩bar
(
Dt(x)

)
̸= ∅. (3.8)

2. Condition (SSR) is satisfied.

Proof.

1. Fix t and x. In accordance with (3.7), there exists an r > 0 and a y ∈ bar(Dt(x)) such that
Br(y) ⊆ K∗

t (x). In accordance with Proposition 2.42, (a) in [9], the lower semicontinuity
of Kt(·) implies the similar property for K∗

t (·) = conv(Kt(·)). By Lemma 2.51 in [9], for
each given ε ∈ (0, r) there exists a neighborhood V (x) of the point x such that for each
x′ ∈ V (x) one has Bε(y) ⊆ K∗

t (x
′). Consequently, by setting Ǩt(x) = ∩

x′∈V (x)
K∗

t (x
′), we

obtain Ǩt(x) ⊇ Bε(y). Therefore, int(Ǩt(x))∩ bar(Dt(x)) ̸= ∅.
2. Consider the “new” dynamics of the market with price movement uncertainty described by

the compact sets Ǩt(·), which are convex as intersections of convex compact sets. For such
a market, condition (SGNSAUP) in Theorem 4.1 in [4] is satisfied. This is precisely (3.8);
therefore, condition RNDSAUP is satisfied, and we can apply item 1 of Theorem 4.1 in [4],
in accordance with which condition (SR) is satisfied, which for the “new” market dynamics is
condition (SSR) for the “old” market dynamics, i.e., is described by Kt(·). ■

Fix a ≥ C ≥ 0, where the constant C is given by relation (1.3). Without loss of generality, we
can assume45 that C > 0, since otherwise gt(·) ≡ 0, which is not of interest from the viewpoint of
economic interpretation.

42 A closed mapping takes closed values; see, e.g., Remark 2.12 in [9].
43 This condition appears in Theorem 4.1 in [4] and implies the full size of compact sets Kt(·), i.e., int(K∗

t (·)) ̸= ∅.
44 Thus, the compact sets Ǩt(·) will also be full-size under the assumptions of Proposition 3.2.
45 However, to ensure that a > 0 (which is required in the proof of Proposition 3.3), one can simply require a > C.
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Proposition 3.3. Let compact-valued mappings Kt(·) be continuous, let Dt(·) be lower semicon-
tinuous and closed 46 on Bt−1 , and let condition (SR) be satisfied. Then the multivalued mapping

x 7→ D̂a
t (x) = Dt(x)∩Ea

t (x), x ∈ Bt−1,

where
Ea

t (x) =
{
h ∈ Rn : σK∗

t (x)
(h) ≤ a

}
,

is continuous.

Proof. Let us demonstrate the lower semicontinuity for x 7→ D̂a
t (x). We fix t ∈ {1, . . . , N}

and start with establishing the lower semicontinuity for Ea
t (·). By Proposition 2.6, (f) in [9], it

suffices to make sure that for a converging sequence xn → x0 from Bt−1 the Kuratowski lower limit
lim inf
n→∞

Ea
t (xn) contains Ea

t (x0). Since lim inf
n→∞

Ea
t (xn) = {x : ρ(x,Ea

t (xn)) → 0} (see Remark 1.43
in [9]), for an arbitrary h0 ∈ Ea

t (x0) it is necessary to show the existence of a sequence hn ∈ Ea
t (xn)

such that hn → h0. Set

rn = hρ(K
∗
t (xn),K

∗
t (x0)) ≤ hρ(Kt(xn);Kt(x0)) → 0,

see inequality 5.12 in [2]. Here we use the fact that for compact-valued mappings (K∗
t (·) is compact-

valued) the continuity coincides with h-continuity by Theorem 2.68 in [9]. Set hn = αnh0, where
αn = a

a+rn∥h0∥ → 1 as n → ∞. Using Proposition 9.11 in [2], we obtain

σK∗
t (xn)(hn) ≤ σK∗

t (x0)(hn) + rn∥hn∥ = αnσK∗
t (x0)(h0) + rnαn∥h0∥ ≤ αna+ αnrn∥h0∥ = a;

i.e., hn ∈ Ea
t (xn), hn → h0 ∈ Ea

t (x0), and the lower semicontinuity of Ea
t (·) has been established.

Note that a > 0 by the above-made assumption and that the set 1
a
Ea

t (x) = {h : σK∗
t (x)

(h) ≤ 1}
is the (Minkowski) polar for K∗

t (·); see [1, formula (70) and Theorem 12.2]. By Theorem 6.6, (a)
in [1], the point 0 is an inner point of the set polar to K∗

t (x), because it is bounded (by virtue
of compactness, by Theorem 2.6 in [1]). Therefore, 0 ∈ int(Ea

t (x)) for all x ∈ Bt−1. Fur-
ther, 0 ∈ Dt(·)∩ int(Ea

t (·)) ̸= ∅, and the sets Dt(·) and Ea
t (·) are convex; consequently, we can apply

Proposition 2.54 in [9], in accordance with which the multivalued mapping D̂a
t (·) = Dt(·)∩Ea

t (·) is
lower semicontinuous.

According to Lemma 3.3, the multivalued mapping x 7→ D̂a
t (x) is closed. By item 1 in Remark 3.1,

taking into account the fact that closed multivalued mappings take closed values (Remark 2.12
in [9]), the sets Dt(·) are closed, with D̂a

t (·) being compact according to item 1 in Remark 3.1.
Since the sets D̂a

t (·) are convex, we can apply Theorem 2.102 in [9], according to which a closed
lower semicontinuous multivalued mapping with argument in a metric space and with values being
path-connected compact subsets of a finite-dimensional Euclidean space is continuous. ■

Theorem 3.2. Assume that for t = 1, . . . , N the numerical functions x̄t 7→ gt(x̄t) are continuous,
the multivalued mappings x̄t−1 7→ Kt(x̄t−1) are continuous, condition RNDSAUP is satisfied, and
the multivalued mappings x̄t−1 7→ Dt(x̄t−1) are lower semicontinuous and closed. Then assertions 1
and 2 in Theorem 2.7 hold true.

Proof. Fix an a > C and choose D̂a
t (·) instead of Dt(·) in formulas (BA) using Lemma 3.1. By

Proposition 3.3, the compact-valued mapping x 7→ D̂a
t (x) is continuous, so we can readily apply

Theorem 2.7. ■

46 In the terminology of the book [2], the weakly continuous map x 7→ Dt(·) is simultaneously upper and lower weakly
semicontinuous; moreover, weak upper semicontinuity is equivalent to closedness (see [2, Theorem 14.7]) and weak
lower semicontinuity coincides with (ordinary) lower semicontinuity (see [2, Remark 14.1]).
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