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Abstract—We propose a method for constructing a sequence of Boolean vectors of input
variables that delivers test pairs (v1, v2) of neighboring vectors in the space of input and internal
variables for robustly testable path delay faults (robust Path Delay Faults (PDFs)) in sequential
logic circuits. The purpose of this work is to clarify the possibility of constructing a test sequence
for a given subset of paths without using scanning technologies, i.e., without additional hardware
costs within the constraint of the sequence length for a single path. The experiments carried out
show that test sequences can be constructed not for all paths (sometimes for none) for which
test pairs exist in the combination component of the sequential circuit.

Keywords: sequential logic circuit, homing sequence, Reduced Ordered Binary Decision Diagram
(ROBDD), robustly testable path delay fault (PDF), rising (falling) transition

DOI: 10.1134/S0005117921110102

1. INTRODUCTION

One of the main parameters of high-performance logic circuits is high clock speed, i.e., high
speed of operation of the circuit. It is determined by the speed of signals passing through the logic
gates along the paths connecting the inputs and outputs of the circuit. Manufacturers are striving
to increase the clock speed.

To determine the circuit clock frequency, one allocates the path with the maximum delay—the
critical path. The delay in this path determines the speed at which the circuit operates. However,
at a high speed of operation and a high level of integration, there appear capacities, inductances,
and resistances in the circuits that are not foreseen by the developers and cannot be calculated in
advance. This leads to additional delays in the circuit and a decrease in its design speed, which
is undesirable. The Path Delay Fault (PDF) model is one of the most common logic delay models
used in practical logic testing. The path delay fault model assumes that the delays in individual
path elements and in communication lines between them are small, but path delay as a whole
can exceed the time between adjacent clock signals and distort circuit operation. Robustly and
nonrobustly testable path delay faults are distinguished. A robustly testable fault is understood
as a path delay fault that is detected regardless of the existence of other path delays in the circuit
that exceed admissible values. Otherwise, the fault is called nonrobustly testable. When a robustly
testable fault occurs, one can accurately determine the path along which the delay occurs, that
is, exceeds the time between adjacent clock signals. Appearance of a nonrobustly testable fault
does not provide such an opportunity. Information about the resulting delays allows one to modify
the circuit so as to maintain its design performance or to mask the effect of the detected delay [1]
with the same purpose. The pairs of vectors (v1, v2) are used to test path delays. The vectors in
each pair can differ from each other in the variable that marks the beginning of the path under
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consideration and possibly also in the values of other variables. In the future, we will agree to use
(Boolean) “vectors” and “test-pair sets” as synonyms. The delays of the opposite (rising and falling)
transitions of signal values may differ, so in the general case, it is necessary to have two test pairs
for each path. By a rising transition, as is customary in foreign publications, we mean a sequence
of changes in signal values along the path that ends with a change from zero to unit signal at its
output. Accordingly, a falling transition is a sequence of changes in signal values along the path
that ends with a change from unit to zero signal at its output. Let the test-pair vector v1 arrive
at the circuit at time t with the arrival of a clock signal. When the next clock signal arrives, the
vector v2 arrives at the circuit. If a signal is observed at the output of the circuit with a value that
differs from the expected one with the arrival of the third sync signal, then we assume that there is
a delay in the paths of the circuit.

In practice, different scanning methods are used when testing path delays. When these methods
are implemented within the Launch-on-Shift (LOS) technology, one of the vectors of the pair is
a test set for a constant fault of the internal pole of the circuit, and the second vector is obtained by
shifting the first. When using Launch-on-Capture (LOC) technology, the second vector is obtained
based on the response of the combination component of the circuit to the first vector. It is clear
that with such methods of generating pairs of vectors, it is far from being always possible to obtain
test pairs for robustly testable path delay faults. Usually, when using these technologies, it is
possible to detect approximately 20% of such faults, while the use of the precise methods [2], which
guarantee the construction of a test pair for a robustly testable fault if it exists, allows detecting
from 40% to 90% and more such faults for a given set of paths of the combination component of
the sequential circuit. The precise methods focus on reducing power consumption. The problem
of reducing power consumption in delay testing is explored in many publications [3–7]. Another
problem in delay testing is the high hardware cost associated with delivering tests within scanning
technologies. As is well known [8, 9], scanning technologies use special triggers in feedback lines
that are more complex than D-flip-flops. In the circuit operational mode, these triggers perform,
by analogy with D-flip-flops, a one-cycle delay of the signal associated with the state (internal)
variable, and in the test mode, the circuits form a shift register into which the component of the
test vector corresponding to the internal variables is introduced clock cycle by clock cycle. Additional
hardware is also required to separate the operating and testing modes of a sequential circuit. The
exact methods can be applied within the framework of Random Access Scan (RAS) technologies,
the implementation of which, unfortunately, involves more hardware costs than the use of LOS or
LOC technologies. Thus, the listed methods of testing path delays are associated with considerable
hardware costs, which we would like to avoid. The studies carried out in the present paper permit
one to find out whether this is always possible.

There are many test pairs of adjacent Boolean vectors (all or some) that detect a robustly testable
path delay fault in the combination component of a sequential circuit. It is required to construct
an input sequence that delivers one (arbitrary) test pair in a given set from the initial state q0 of
a sequential circuit within the constraint on the sequence length. Algorithms for constructing such
sequences are proposed under the following conditions:

1. The beginning of the path is marked by an input variable.
2. The beginning of the path is marked by a state (internal) variable of the circuit.

If the desired sequences can be found for each of the paths in a given set, then we detect path delays
without additional hardware costs by combining them.

Section 2 discusses the properties of tuple pairs for robustly testable path delay faults. Section 3
describes a procedure for obtaining a Reduced Ordered Binary Decision Diagram (ROBDD graph)
representing the set of all test pairs of neighboring tuples for robustly testable path delay faults.
In Sec. 4, we present algorithms for constructing a sequence that delivers a test pair for a robustly
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tested path delay fault in a sequential circuit from the initial state. Section 5 discusses experimental
results.

2. SOME PROPERTIES OF TEST PAIRS OF TUPLES FOR ROBUSTLY
TESTABLE PATH DELAY FAULTS

We have a single-output circuit C and the corresponding equivalent normal form (ENF). In [10],
the problem of constructing pairs of test cases for robustly and nonrobustly testable path delay
faults is considered based on ENF analysis. The sets v2 of test pairs are test sets for constant faults
of ENF letters.

In the case of a rising transition, a 0-constant malfunction of the ENF letter corresponding to
a path α is tested (ap-fault). In the presence of a malfunction, all occurrences of the letter are
replaced in the ENF by the constant 0. The test set that detects this malfunction is the set v2 of
the test pair, which generates a change in the signal at the circuit output from zero to one.

In the case of a falling transition, a 1-constant failure of the ENF letter corresponding to a path
α is tested (bp-fault). In the presence of a malfunction, all occurrences of the letter are replaced in
the ENF by the constant 1. The test set that detects this malfunction is the set v2 of the test pair,
and it generates a change in the signal at the circuit output from one to zero.

It was shown in [10] that test pairs that detect robustly testable path delay faults satisfy the
following conditions:

1. If v2 is a ap-test tuple, then v1 is a bp-test tuple of the test pair and vice versa.
2. The function implemented by circuit C takes opposite values on the tuples of a test pair.
3. The minimum-cover interval u of the vectors v1, v2 is orthogonal to all ENF conjunctions not

containing the letter associated with the path α.
4. The tuples (v1, v2) of the test pair are generated by the same nonempty conjunction.

When the tuple v1 is replaced by the tuple v2, the circuit can get into an interim state, which
is a test set v1 for another path of the circuit. As a result, one can determine the delay of a path
other than the considered one. This situation is excluded if condition 3 is satisfied. To check
condition 3, it is proposed to use the ENF scheme in [10]. However, as a rule, the ENF turns out to
be cumbersome even for small circuits. For neighboring sets of the test pair (v1, v2), no intermediate
states arise when passing from v1 to v2. The use of this fact eliminates the need to analyze the ENF.

Theorem 1. The neighboring tuples of the test pair (v1, v2) in which v2 is the ap-test tuple and
v1 is the bp-test tuple, or vice versa, detect a robustly testable path delay fault for both excursions of
the signal values of this path (for rising and falling transitions).

Theorem 2. If there exists a test pair of tuples (bp, ap) that are not neighboring and detect
a robustly testable path delay fault α, then there exists a test pair of neighboring tuples that detects
this delay.

The very fact of the existence of a test pair of neighboring tuples for robustly testable faults
in the presence of a test pair for nonneighboring tuples, perhaps for the first time, was noted as
a consequence of theorems on the properties of the ENF when substituting constants identical for
neighboring tuples into it [11]. From the ENF, there remains a disjunction of the letters associated
with the variable that marks the beginning of the path. The configuration of these letters allows one
to determine what type of path delay is tested by the presented pair of adjacent tuples. Theorem 2
confirms this result on the basis of studying the properties of ENF conjunctions (in which no
variables are replaced by constants) that ensure the existence of a test pair for robustly testable
path delay faults [10].

AUTOMATION AND REMOTE CONTROL Vol. 82 No. 11 2021



1952 MATROSOVA et al.

It follows from what has been said that if the path under consideration is robustly testable, then
there exists a test pair for it consisting of neighboring tuples.

This also means that to establish the existence of a test pair for a robustly testable path delay
fault, it suffices to restrict oneself to the search for test pairs consisting of neighboring test tuples.
The algorithm proposed in [12] for constructing all test pairs of adjacent tuples for detecting robustly
testable path delay faults guarantees that all robustly testable paths are found in the circuit.

To construct the set of all test pairs of neighboring vectors for robustly testable faults of the path
under consideration, in [12] it is proposed to precompute the Boolean difference (Boolean derivative)
of this path. The method for calculating the Boolean difference and representing it in the form of
a ROBDD graph R(Dpath) is based on performing operations on ROBDD graphs extracted from
fragments of a combination circuit characterized by polynomial complexity.

3. OBTAINING TEST PAIRS OF NEIGHBORING TUPLES OF ROBUSTLY TESTABLE
FAULTS FROM ROBDD R(Dpath)

All kinds of test tuples v2 for both signal excursions are presented in the form of the
ROBDD R(Dpath) [12]. Recall that in the case of a rising transition, v2 is a test tuple for the ap-fault
of the letter marking the beginning of the path α. For a falling transition, v2 is a test tuple for
the bp letter malfunction marking the beginning of the path α. Here is the procedure for extracting
all test pairs for the path under consideration [12]. Let the beginning of the path α be marked by
the variable xi without inversion.

The graph Rrise = R(Dpath)&xi(R(Dpath)&xi) is a ROBDD graph representing all tuples v2 for
a rising transition.

The graph Rfall = R(Dpath)&xi(R(Dpath)&xi) is a ROBDD graph representing all tuples v2 for
a falling transition.

Two formulas are given for each type of excursions in the signal values of the path α, since the
ENF letter associated with the path under consideration can have different inversion signs.

By R′
rise we denote a ROBDD graph obtained from Rrise by removing the variable xi, and by R′

fall,
a ROBDD graph obtained from Rfall by removing the variable xi. In both cases, the signs of the
variable xi are irrelevant.

By symbol Rrob we denote a ROBDD graph representing test pairs of tuples neighboring in the
variable xi for robustly testable path delay faults α, Rrob = R′

rise &R′
fall.

It follows from the procedure of constructing Rrob that the graph does not contain the variable xi

marking the beginning of the path. The path from the root of the graph Rrob to its 1-terminal
vertex is a conjunction such that a Boolean vector in the space of variables x1, . . . , xi−1, xi+1, . . . , xn

specifies a test pair in the space of n variables for the path in question. One of the vectors of the
pair is obtained by assigning the value of 0 to the variable xi and the other, the value of 1.

If the value of 1 is reached at the vector v2 and the output of the single-output circuit (for
a multioutput circuit, at the output associated with path α), then v2 is the vector for a rising
transition; if the value is 0, then v2 is the vector for a falling transition.

In the sequential scheme, the pairs of neighboring Boolean vectors defined by the ROBDD
graph Rrob are associated with complete states; i.e., the input components and components by state
variables are distinguished in the vectors of the pair.

From the test pair, we form triples of vectors that detect the delays of inverse excursions of
the signals of the path under consideration, either v2-v1-v2 or v1-v2-v1. This means that when
using test pairs from neighboring Boolean vectors, it is possible to detect opposite excursions in
the signal values of the path under consideration in the combination component with three vectors
instead of four.
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Table 1. STG-description of the behavior of a circuit with memory

x1 x2 x3 q q′ y1 y2 y3 y4 y5

0 – – 1 1 0 0 0 1 0

– 0 – 1 1 0 0 0 1 0

1 1 – 1 2 1 0 0 1 0

– – 0 2 2 0 0 1 1 0

– – 1 2 3 1 0 1 1 0

1 0 – 3 3 0 1 0 0 0

0 – – 3 4 1 1 0 0 0

– 1 – 3 4 1 1 0 0 0

– – 0 4 4 0 1 0 0 1

– – 1 4 1 1 1 0 0 1

However, if the state variables in the combination component are not available, it is proposed to
separately deliver pairs of the sequential circuit from the initial state q0 for each of the sequences
of excursions of the path under consideration. The point here is that it is necessary not only to
get into a state that corresponds to the beginning of a sequence of three vectors, but then to be in
a special chain of transitions generated by the triple of test vectors; the longer the chain, the lower
the probability of getting into it.

4. ALGORITHMS FOR CONSTRUCTING A SEQUENCE THAT DETECTS A ROBUSTLY
TESTED PATH DELAY FAULT IN A SEQUENTIAL CIRCUIT

Let us present algorithms for constructing a sequence of vectors of input variables of a sequential
circuit that delivers a test pair to the inputs of the combination component of the circuit from the
initial state q0. Recall that we are talking about the neighboring Boolean vectors of the test pair
with respect to the variable marking the beginning of the path under study. These algorithms,
together with the corresponding test pairs, form sequences that detect robustly testable path delay
faults—one input sequence for each sequence of excursions in the signal values of the path under
consideration from a given set of paths.

Let the sequential diagram be derived from the State Transition Graph (STG) description in
which the states are encoded. The STG description of the behavior of a discrete sequential device
has been used in foreign publications since the last century. It is used in conditions when the
symbols of the input and output alphabet of a finite state machine (an abstract model of the
behavior of a device with memory) have already been coded by the developer of the device. In the
STG description, the condition for the transition from one state to another (with the simultaneous
formation of the output symbol) is represented as a ternary vector in the space of input variables
and state variables of a sequential circuit. This allows one, in the general case, to compactly specify
a set of conditions for this transition in comparison with the transition-exit tables used in the
theory of finite automata. Table 1 shows an example of such a description. Here the set of states is
represented by the symbols {1, 2, 3, 4}.

Let us associate the states with Boolean vectors in the space of variables z1, z2 as follows: 1—
z1
0
z2
0 ,

2—
z1
0
z2
1 , 3—

z1
1
z2
0 , 4—

z1
1
z2
1 , to obtain a table that represents the system of partial Boolean functions on

the set of input variables and state variables (Table 2). In the table, the transition functions are
marked by variables z′1, z′2, and the output functions, by the variables y1, y2, and so on.
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Table 2. Description of the behavior of a circuit with memory after state encoding

x1 x2 x3 z1 z2 z′1 z′2 y1 y2 y3 y4 y5

0 – – 0 0 0 0 0 0 0 1 0

– 0 – 0 0 0 0 0 0 0 1 0

1 1 – 0 0 0 1 1 0 0 1 0

– – 0 0 1 0 1 0 0 1 1 0

– – 1 0 1 1 0 1 0 1 1 0

1 0 – 1 0 1 0 0 1 0 0 0

0 – – 1 0 1 1 1 1 0 0 0

– 1 – 1 0 1 1 1 1 0 0 0

– – 0 1 1 1 1 0 1 0 0 1

– – 1 1 1 0 0 1 1 0 0 1

This table is a task for the synthesis of a device. The codes of minimum length have been used
to encode the states. Other codes are often used when receiving a synthesis task, for example,
constant-weight codes, Berger codes, and their modifications [13, 14], and others.

Consider the following facts:

1. If there are no loops in the transition diagram corresponding to the STG description, then it
is impossible to construct a sequence that delivers a test pair for paths whose beginning is
marked by the input variable of the circuit.

2. If the resulting set of codes (in the work area specified by the STG description) lacks neigh-
boring vectors as a result of the coding of states, then it is impossible to construct a sequence
that delivers a test pair for paths whose origins are marked by a state (internal) variable in
the sequential circuit.

Thus, the set of all pairs of neighboring Boolean vectors that define the complete states of the
circuit and detect robustly testable delays of the considered path in the combination part of the
sequential circuit is represented by the ROBDD graph Rrob. In the ROBDD Rrob, the Shannon
expansion is performed first in terms of internal variables and then in terms of input variables. This
follows [12] from the method of its construction.

Bearing in mind that the test pairs (v1, v2) specified by Rrob consist of an input and an internal
component, we represent them as v1 = vin1 , vs1; v2 = vin2 , vs2; i.e., the test pair will be further defined
as (vin1 , v

s
1; v

in
2 , v

s
2).

We consider the following situations:

(a) The adjacent Boolean vectors extracted from Rrob differ in the input variable.
(b) The adjacent Boolean vectors extracted from Rrob differ in the internal variable.

Case (a). Consider a test pair (vin1 , v
s
1; v

in
2 , v

s
1) of vectors that must be fed to the combination

component of the sequential circuit to detect delays in a given path α under the conditions of
difference between the vectors of the test pair (components vin1 , v

in
2 ) in the input variable xi and

given the coincidence of the components in the state variables. For simplicity, we assume that the
variable marking the given path has no inversion. Let us describe the procedure for delivering a test
pair at the appropriate times:
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Fig. 1.

1. First, using a suitable input sequence, the construction of which will be described below, we
set the circuit (at time t1) to the state vs1. Here neither the input signal nor the state from
which the transition to the state vs1 is performed is of any importance.

2. From the state vs1, under the action of the input signal vin1 arriving at time t2 (it is at this
time that the input of the combination component of the sequential circuit of the first vector
vin1 , vs1 of the test pair is supplied), we go to the state vs1; i.e., we implement a loop in the
automaton transition diagram so as to reach the state vs1 at time t3.

3. In the state vs1 at time t3, we supply the vector vin2 to the inputs of the circuit; i.e., we
ensure the arrival of the second vector vin2 , vs1 of the test pair at the inputs of the combination
component. It does not matter what the next state of the circuit will be, it is only important
that there should be a change in the signal at the output associated with the path under
consideration.

At time t4, we observe a delay fault at the output of the combination component corresponding
to the path if a delay fault occurs.

Note that the neighboring vectors of the test pair arrive at consecutive times. The transitions
at the time instants t1, t2, and t3 are illustrated in Fig. 1.

Thus, to deliver a test pair, it is necessary to get from the initial state q0 to the state vs1. This
can be done by constructing a sequence that sets the circuit from the initial state to some state
from the set of states of the type vs1. Moreover, not all states with a loop are of interest but only
those in which the loop is realized by the input component vin1 contained among the complete states
represented by Rrob. Having provided the supply of the input component in this state, we then
form the vector vin2 , v

s
1 by replacing the value of the variable xi in vin1 with the inverse.

We will use the algorithm proposed in [15] to construct a homing sequence from the initial state
q0 to a state from the given set. In this algorithm, the set of states is represented by the ROBDD
graph Rs0 . Constructing the homing sequence from the initial state is a common part for different
types of signal excursions and different types of variables marking the beginning of a path. For each
of these situations, one has to construct its own graph Rs0 .

Thus, we construct a set Rs0 for the test pair in which the neighboring vectors differ in the input
variable xi. From the STG description, we select a fragment that represents loops in the transition
table of the corresponding finite state automaton. The fragment consists of rows of the form

k1qi → qi
k2qi → qi

. . .

. . .

kmqi → qi
km+1qj → qj

. . .

. . .

km+sqj → qj
. . .

AUTOMATION AND REMOTE CONTROL Vol. 82 No. 11 2021



1956 MATROSOVA et al.

00 01

1110
0(1)

0(1)

1(1)

1(1)

1(0)0(0)

0(0)

1(0)

Fig. 2. Transition diagram in a sequential circuit.

Here the ki are the conjunctions (ternary vectors) on the set of input variables of the circuit,
and qi, qj, . . . are the states of the STG description (the states of a finite automaton) represented by
Boolean vectors when encoding. The left-hand side of the considered fragment, i.e., the conjunctions
of the input variables, together with the states assigned to them, are represented in the form of
the ROBDD Rp. This graph will be useful when considering all paths from the presented set the
beginnings of which are marked by the input variables of the sequential circuit. Let us move on to
considering the given path α.

The sequence of steps for a falling transition of the path α:

1. From Rrob we form ap-test tuples (tuples vin1 , vs1) of the test pair that are associated with the
input letter xi, representing them by an appropriate ROBDD graph Rrob/xi

= Rrob &xi.
2. Of the ap-test tuples, we select those which generate loops: Ra/p = Rrob/xi

&Rp; i.e., we
obtain the set of all vectors of the form vin1 , vs1 that are assigned to time t2 when testing for
a path delay.

3. In Ra/p, we isolate the set of internal states and represent it by a graph Rs0 .
4. Having obtained the vector vin1 , vs1, we then form a vector vin2 , vs1 that is generated by the

graph Rrob and supply it at time t3. The vector vin2 is different from the vector vin1 in the
variable xi.

After finding a test pair for a rising transition, we perform the following steps of the algorithm
for bp-test tuples.

The sequence of steps for a rising transition of the path α:

1. From Rrob we form bp-test tuples (tuples vin1 , vs1) of the test pair that are associated with the
input letter xi, representing them by an appropriate ROBDD graph Rrob/xi

= Rrob &xi.
2. Of the bp-test tuples we select those which generate loops: Rb/p = Rrob/xi

&Rp; i.e., we obtain
the set of all vectors of the form vin1 , vs1 that are assigned to time t2 when testing a path delay.

3. In Rb/p, we isolate the set of internal states and represent it by a graph Rs0 .
4. Having obtained the vector vin1 , vs1, we then form a vector vin2 , vs1 that is generated by the graph

Rrob and supply it at time t3. The vector vin2 is different from the vector vin1 in the variable xi.

Consider an illustrative example. Let the behavior of an automaton be represented by the
transition diagram shown in Fig. 2. In the transition diagram, the states are encoded as follows:
1 is

z1
0
z2
0 , 2 is

z1
0
z2
1 , 3 is

z1
1
z2
0 , and 4 is

z1
1
z2
1 . We have a special case of the STG description in which

the conditions of transitions are represented by Boolean vectors. Assume that the initial state q0 is
represented by a vector

z1
0
z2
0 corresponding to symbol 1.
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In the diagram, the labels on the arcs are the input and output (in parentheses) vectors. In this
case, these are one-component vectors. When coding states, this description turns into a specifica-
tion of a system of Boolean functions (see Table 3).

From the table, we obtain a realization of the system of Boolean functions in the form of a system
of DNFs of input variables and state variables,

z′1 = xz1z2 ∨ xz1z2;

z′2 = x ∨ z1z2;

y = xz2 ∨ xz2.

This system realizes the combination component of the sequential circuit depicted in Fig. 3.
Consider the path x → 4 → 7 → y.
Let us calculate the Boolean difference for this path. In the example, we use operations over

DNFs rather than ROBDD graphs for simplicity. To preserve compliance with the text of the
algorithm, the symbol D (instead of DNF) will be accompanied in brackets by the designation of
the corresponding ROBDD graph in the text. Here the symbols U1, U2, . . . denote the outputs of
the corresponding circuit elements,

DU7
/DU4

= (U1 ∨ U4)|U4=0 ⊕ (U1 ∨ U4)|U4=1 = U1;

DU4
/Dx = (xz2)|x=0 ⊕ (xz2)|x=1 = z2;

Dpath = (xz2)z2 = (x ∨ z2)z2 = z2.

Thus, Dpath = z2.
Further, we calculate D(Rrob),

D(Rrise) = xz2;

D(Rfall) = xz2;

D(R′
rise) = z2;

D(R′
fall) = z2;

D(Rrob) = z2.

From Table 3, we select transitions associated with loops in the transition diagram. We define
conditions ensuring these transitions by the appropriate DNF,

D(Rp) = xz1z2 ∨ xz1z2.

Table 3. Tabular definition of the system of Boolean functions

x z1 z2 z′1 z′2 y

0 0 0 0 0 0

0 0 1 0 1 1

1 0 0 0 1 1

0 1 0 0 0 0

1 1 0 0 1 1

0 1 1 1 0 1

1 1 1 0 1 0

1 0 1 1 1 0
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Fig. 3. Beginning of a path in the circuit is marked by variable x.

For a falling transition, we perform steps 1–3 of the algorithm to obtain the state D(Rs0) =
z1
0
z2
1 :

1. D(Rrob/x) = Rrobx = xz2.
2. D(Ra/p) = xz1z2.
3. D(Rs0) = z1z2.

In what follows, we construct a sequence that sends the circuit from the initial state q0(
z1
0
z2
0) to

the state
z1
0
z2
1 .

We try to find a sequence of length one by multiplying DNFs corresponding to state variables,
D(Rs1) = xz1 ∨ xz2 ∨ xz1z2.

It follows from the resulting DNF that under the action of the input symbol
x

1, from the state
z1
0
z2
0

we get into the state
z1
0
z2
1 . From the state

z1
0
z2
1 under the action of the input symbol

x

0 we get into
the same state

z1
0
z2
1 (Fig. 2). This means that, using a sequence of length one, at time t1 we get into

a state in which we can organize the arrival of the required test pair. Namely, under the action of
the input signal

x

0, we form the first vector of the test pair at time t2. Being in the same state
z1
0
z2
1

at the next time t3, we send the input signal
x

1 and form the second vector of the test pair. This
can be seen from the transition diagram (Fig. 2).

For a rising transition, we perform steps 1, 2 of the algorithm,

1. D(Rrob/x) = xz2.
2. D(Rb/p) = 0.

Since D(Rb/p) = 0, we conclude that it is impossible to deliver a test pair for a rising transition
for the path in question.

Case (b). Consider a test pair (vin1 , v
s
1; v

in
1 , v

s
2) of vectors that must be fed to the combination

component of the sequential circuit to detect a delay in a given path α under conditions of difference
between the vectors of the test pair (components of vs1, vs2) in the state variable zi, while the
components in the input variables coincide. For simplicity, we assume that the variable marking the
given path has no inversion. Let us describe the procedure for delivering a test pair at appropriate
times:

1. Preliminarily, using a suitable input action, we set the circuit (at time t1) to the state vs1. In
this case, neither the input signal nor the state from which the transition to the state vs1 is
performed is of any significance.
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Fig. 4.

2. From the state vs1, under the action of the input signal vin1 arriving at time t2 (it is at this
moment that the input of the combination component of the sequential circuit of the first
vector vin1 , vs1 of the test pair is supplied), we go to the state vs2; i.e., we go to a neighboring
state that differs from vs1 in the variable zi.

3. In the state vs2 at time t3, we supply the vector vin1 to the circuit inputs; i.e., we ensure
the arrival of the second vector vin1 , vs2 of the test pair at the inputs of the combination
component. It does not matter what the next state of the circuit will be, it is only important
that there should be a change in the signal at the output associated with the path under
consideration.

At time t4, we observe a delay fault at the output of the combination component corresponding
to the path if a delay fault occurs.

Note that the neighboring vectors of the test pair arrive at consecutive times. The transitions
at times t1, t2, and t3 are illustrated in Fig. 4.

Thus, to deliver a test pair in all the situations noted above, it is necessary to get from the initial
state q0 to the state vs1. In this case, not all states with transitions to neighboring states are of
interest but only those in which the transition is realized with respect to the input component vin1
contained among the complete states represented by Rrob. Having provided the supply of the input
component in this state, we then form the vector vin1 , vs2 by replacing the value of the variable zi
in vs1 with the inverse one.

In the STG description, we isolate a fragment that represents transitions into neighboring states.
The fragment consists of rows of the form

k1qi1 → qj1

k2qi1 → qj1

. . .

. . .

kmqi1 → qj1

km+1qi2 → qj2

. . .

. . .

km+sqi2 → qj2

. . .

Here the ki are the conjunctions (ternary vectors) on the set of input variables of the scheme,
and qi1 , qj1 , qi2 , qj2 . . . are the states of the STG description (the states of a finite automaton) repre-
sented by Boolean vectors under encoding. The left-hand side of the considered fragment, i.e., the
conjunctions of the input variables together with the states assigned to them, are represented in the
form the ROBDD Rs. This graph will be useful when considering all paths from the presented set
the beginnings of which are marked by the state variables of the sequential circuit. Let us pass to
considering a given path α.
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Fig. 5.

The sequence of steps for a falling transition of the path α:

1. From Rrob, we form ap-test tuples (tuples vin1 , vs1) of the test pair that are associated with the
state variable zi, representing them by an appropriate ROBDD graph Rrob/zi = Rrob & zi.

2. Of the ap-test tuples, we select those which generate transitions into the neighboring states
in the variable zi, Ra/s = Rrob/zi &Rs; i.e., we obtain the set of all vectors of the form vin1 , vs1
associated with the time t2 when testing for a path delay.

3. In Ra/s, we isolate the set of internal states and represent it by a graph Rs0 .
4. Having obtained the vector vin1 , vs1, we then form a vector vin1 , vs2 that is generated by Rrob and

supply it at time t3. The vector vs2 is different from the vector vs1 in the variable zi.

When finding a test pair for a rising transition, we perform the following steps of the algorithm
for the bp-test tuples.

The sequence of steps for a rising transition of the path α:

1. From Rrob, we select bp-test tuples (tuples vin1 , vs1) of the test pair that are associated with the
input letter zi, representing them by an appropriate ROBDD graph Rrob/zi

= Rrob & zi.
2. Of the bp-test tuples, we select those which generate transitions into the neighboring state in

the variable zi, Rb/s = Rrob/zi
&Rs; i.e., we obtain the set of all vectors of the form vin1 , v

s
1

associated with time t2 when testing for a path delay.
3. In Rb/s, we isolate the set of internal states and represent it by a graph Rs0 .
4. Having obtained the vector vin1 , vs1, we then form a vector vin1 , vs2 that is generated by Rrob

and supply it at time t3. The vector vs2 is different from the vector vs1 in the variable zi.

Thus, in all the above algorithms (step 3), a suitable set Rs0 is formed to find test pairs.
We find a sequence [15] that sets the circuit from the initial state q0 to one of the states of the

set Rs0 corresponding to the desired pair, i.e., to the state vs1. Having obtained this state, we use
a ROBDD graph from the set {Ra/p, Ra/s, Rb/p, Rb/s} for a test pair of the same type, and using this
graph, we find the first vector of the test pair and then the second vector by the method specified
in step 4 of the algorithm corresponding to the desired pair.

Consider an example. In the circuit, we are given the path z1 → 3 → 8 → 9 → z′1 (see Fig. 5).
The beginning of the path is marked by the variable z1.
We calculate the Boolean difference for this path,

DU9
/DU8

= (U8 ∨ U6)|U8=0 ⊕ (U8 ∨ U6)|U8=1 = U6 ⊕ 1 = U6;
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DU8
/DU3

= (U3x)|U3=0 ⊕ (U3x)|U3=1 = x;

DU3
/Dz1 = (z1z2)|z1=0 ⊕ (z1z2)|z1=1 = z2;

Dpath = (xz1z2)xz2 = (x ∨ z1 ∨ z2)xz2 = xz2.

Thus, the Boolean difference is representable in the form Dpath = xz2.
Further, we calculate D(Rrob),

D(Rrise) = xz1z2;

D(Rfall) = xz1z2;

D(R′
rise) = xz2;

D(R′
fall) = xz2;

D(Rrob) = xz2.

We have obtained a unique conjunction that does not contain the variable marking the beginning
of the considered path. The conjunction generates a unique test pair. We have obtained (

x

1
z1
1
z2
1 ,

x

1
z1
0
z2
1).

From Table 3, we isolate transitions representable by neighboring vectors on the set of vari-
ables z1, z2. We set conditions ensuring these transitions in the form of the DNF

D(Rs) = xz1z2 ∨ xz1z2 ∨ xz1z2 ∨ xz1z2 ∨ xz1z2.

Consider a falling transition. Choose a vector
x

1
z1
0
z2
1 . This is a ap-test tuple, since it turns the

DNF of a single-output subcircuit in which the path in question lies into unity.

For a falling transition, we perform steps 1–3 of the algorithm to obtain the state D(Rs0) =
z1
0
z2
1 ,

1. D(Rrob/z1
) = xz1z2.

2. D(Ra/s) = xz1z2

3. D(Rs0) = z1z2.

To ensure the delivery of a test pair, we need to get from the initial state q0 represented by the
vector

z1
0
z2
0 into the state

z1
0
z2
1 . It was shown earlier that it is possible to get into the state

z1
0
z2
1 from

the initial state
z1
0
z2
0 based on the input symbol

x

1 (D(Rs1) = xz1∨xz2∨xz1z2.). In the state
z1
0
z2
1 , we

form the test pairs
x

1
z1
0
z2
1 and

x

1
z1
1
z2
1 . This situation can be observed in the transition diagram (Fig. 2).

Consider a rising transition. Choose a vector
x

1
z1
1
z2
1 . This is a bp-test tuple, since it turns the DNF

of a single-output subcircuit where the considered path lies into zero.
Let us try to find a sequence of length one by multiplying the DNFs corresponding to the state

variables: D(Rs1) = xz1z2. The resulting DNF in the initial state
z1
0
z2
0 does not turn into unity.

Consequently, there does not exist a sequence of length 1 delivering the desired test pair. Let us
try to find a sequence of length two. This means that we need to find conditions for the transition
from the initial state into the state

z1
0
z2
1 . These conditions have already been found and represented

in the form of a DNF. Under the action of the input symbol x = 1, we get from the initial state
z1
0
z2
0

into the state
z1
0
z2
1 . Further, from the state

z1
0
z2
1 , under the action of the input symbol

x

1, we fall
into the state

z1
1
z2
1 . Thus, we have obtained an input sequence

x

1,
x

1 sending the circuit into the
state

z1
1
z2
1 . This can be seen from the transition diagram (Fig. 2). We form the first vector of the

test pair
x

1
z1
1
z2
1 . Under the action of the input signal x = 1, we pass into the state

x

1
z1
0
z2
1 ; i.e., we

ensure supplying the test pair for a rising transition. This situation can also been seen from the
transition diagram (Fig. 2).
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Table 4. Results of experiments

name i s xf xr zf zr xob zob ob N %

s27 4 3 8 8 18 2 8 2 10 58 17.2%

s208 11 8 0 0 0 3 0 0 0 643 0%

s298 3 14 40 0 0 0 0 0 0 1 179 0%

s386 7 6 45 57 320 572 0 160 160 1 351 11.8%

s510 19 6 0 0 906 724 0 575 575 1 373 41.9%

s820 18 5 34 451 1 860 1 392 0 1 313 1 313 3 055 42.87%

s832 18 5 34 450 1 859 1 391 0 1 312 1 312 3 052 42.98%

s1488 8 6 0 58 2 578 2 209 0 1 612 1 612 5 384 29.94%

s1494 8 6 0 58 2 628 2 247 0 1 626 1 626 5 351 30.39%

For each path from a given set and each type of signal value excursions, we construct the
corresponding sequences that detect a path delay, combine them, and obtain a test sequence for
a given set of paths. Note that the resulting test sequence consists of fragments starting in the
state q0.

5. RESULTS OF EXPERIMENTS

The algorithms described above were implemented as a program. The CUDD library was used
for operations on ROBDD graphs. Experiments were carried out on some benchmarks, the results
of which are compiled in Table 4. Only the longest paths were considered in the circuits presented
in the benchmarks. The length of the homing sequence was limited to a thousand input vectors;
however, during the experiment, the homing sequences did not reach even a hundred input vectors.
The last column in the table shows the proportion (in percent) of paths for which a test pair was
delivered from the initial state of the sequential circuit that detects a robustly testable path delay
fault. This fraction is determined with respect to all paths for which there are test pairs for the
same faults under the conditions of the availability of inputs mapped to the state variables of the
combination component.

The results of experiments carried out on reference circuits showed that the fraction of paths for
which it is possible to deliver test pairs that detect robustly testable path delay faults is at best
forty-odd percent. Of the nine schemes, for two it was not possible to deliver test pairs for any
of the considered paths at all. This means that it is impractical to abandon scanning technologies
despite the associated high hardware costs.

The notation is as follows:

name The name of the benchmark.

i The number of inputs.

s The number of state variables.

xr The number of paths whose beginning is marked by an input variable and for which a test
pair can be delivered from the initial state of the circuit. The test pair is intended for a rising
transition.

xf The number of paths whose beginning is marked by an input variable and for which a test
pair can be delivered from the initial state of the circuit. The test pair is intended for a falling
transition.

AUTOMATION AND REMOTE CONTROL Vol. 82 No. 11 2021



CONSTRUCTING A SEQUENCE DETECTING ROBUSTLY TESTABLE 1963

zr The number of paths whose beginning is marked by a state variable and for which a test pair
can be delivered from the initial state of the circuit. The test pair is intended for a rising
transition.

zf The number of paths whose beginning is marked by a state variable and for which a test pair
can be delivered from the initial state of the circuit. The test pair is intended for a falling
transition.

xob The number of paths whose beginning is marked by an input variable and for which test pairs
can be delivered for both excursions of signal values from the initial state of the circuit.

zob The number of paths whose beginning is marked by a state variable and for which test pairs
can be delivered for both excursions of signal values from the initial state of the circuit.

ob The total number of robustly testable paths for each of which both signal excursions are
detectable.

N The number of paths for which there exist nonempty graphs Rrob.

% The fraction (in percent) of robustly testable paths for which it has been possible to deliver
a test pair among the paths for which there exist nonempty graphs Rrob.

6. CONCLUSIONS

Earlier, a method was proposed for finding all test pairs consisting of adjacent tuples of Boolean
vectors that detect robustly testable path delay faults when they are delivered to the inputs of the
combination component of a sequential circuit. In this paper, we propose a method for delivering
such test pairs from the initial state q0 of a sequential circuit under constraints on the sequence
length based on operations over ROBDD graphs. The work is focused on investigating the possibility
of abandoning the use of scanning techniques that involve large hardware costs. In the paper, the
classes of automata and methods of coding states are isolated for which delivery of test pairs
existing in the combination component is impossible. The experiments carried out on benchmarks
have shown that it is far from being always possible to deliver at least one test pair, no matter which
one, for a path that has test pairs for the combination component under the conditions of availability
of its state variables. This means that for some sequential circuits, it may turn impossible to detect
robustly testable path delay faults without considerable hardware costs.

APPENDIX

Proof of Theorem 1. We will bear in mind that, in the general case, the ap-test tuple of
the test pair for a robustly testable path delay fault turns several nonempty ENF conjunctions
into unity (there are no mutually inverse variables in nonempty ENF conjunctions). Each of these
conjunctions contains an ENF literal associated with the path α. (The ENF literal is a variable
symbol with a suitable inversion sign and a sequence of indices representing the path α.) The
variable associated with the literal is present only once in such a conjunction. This is because the
bp-test tuple of the (bp, ap) test pair is generated by a conjunction that does not contain literals that
differ from the literal associated with path α only by a sequence of indices mapped to another path
in the circuit. At the same time, both test tuples of the pair under consideration are generated by
the same nonempty ENF conjunction (condition 4). Note that the test tuple for the ap-fault (by
construction) is orthogonal to each ENF conjunction that does not contain the literal associated
with path α. The test tuple for a bp-fault (by construction) is orthogonal to all ENF conjunctions.
Let us take into account the fact that any test tuple is a Boolean vector, and therefore, it is
orthogonal to the empty conjunction. This means that the minimum-cover interval u generated
by the neighboring vectors (bp, ap) is orthogonal to each ENF conjunction that does not contain
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a literal associated with the path α. Thus, for the considered neighboring sets, the conditions of
being a test pair for a robustly testable path delay fault listed earlier in the paper are satisfied.
Bearing in mind Theorem 5 in the paper [7], we arrive at the conclusion that the test pair found can
be used to detect opposite excursions in the signal values of the path under consideration. The proof
of the theorem is complete. ■

Proof of Theorem 2. Let u be the minimum-cover interval of tuples (bp, ap) of a test pair
for a robustly testable path delay fault. Consider the ap-test tuple. This tuple (by construction)
is orthogonal to each conjunction that does not contain a literal associated with the path α and
possibly meets some other conjunctions of the considered ENF. Let us construct the set b ′ adjacent
in the variable xi for ap. Here xi is the variable marking the beginning of the path for which
the test pair (bp, ap) was constructed. The set b ′ is absorbed by the interval u; therefore, it is also
orthogonal to each conjunction that does not contain a literal associated with the path α. Moreover,
b ′ is orthogonal to all conjunctions containing a literal associated with the path α with respect to
the variable xi; that is, b ′ is orthogonal to the conjunctions of the ENF as a whole. This means
that it belongs to the domain of zero values of the function represented by the ENF and is a bp-test
tuple. The proof of the theorem is complete. ■
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