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Abstract—We consider a system of nonlinear discrete-time equations subject to the influence
of a discrete random process of the “white” noise type. It is assumed that the system admits
a “partial” (with respect to some part of state variables) zero equilibrium. The problem of partial
stability in probability is posed—the stability of a given equilibrium is not with respect to all but
only to part of the variables determining it. To solve the problem, a discrete-stochastic version
of the Lyapunov function method is used with the appropriate refinement of the requirements
for the Lyapunov function. To expand the capabilities of the method used, it is proposed to
correct the domain in which the auxiliary Lyapunov function is constructed; this is achieved by
introducing an additional (vector, generally speaking) auxiliary function. Conditions of partial
and asymptotic stability in probability in the indicated form are obtained. An example is given
showing the specific features of the proposed approach.
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1. INTRODUCTION

Stability problems are among the main problems of qualitative analysis and synthesis of nonlinear
dynamical systems subjected to random disturbances and structural changes. As in the case of
deterministic systems, the Lyapunov function method is used to solve these problems.

The development of the stochastic version of the method of Lyapunov functions was greatly
influenced by the idea due to Kats and Krasovskii [1] about using the averaged derivative of the
Lyapunov function, which can be calculated knowing only the right-hand sides of the system and
the probabilistic characteristics of the random process affecting it. This approach, proposed for
systems of differential equations with right-hand side containing a homogeneous Markov chain with
finitely many states, largely predetermined many subsequent studies, including systems of stochastic
differential equations in the Itô form [2, 3] as well as more general classes of stochastic systems with
random parameters and/or structure [4, 5].

A separate line of research is associated with the analysis of the stability of discrete-time (finite-
difference) systems subjected to random factors. The increased interest in discrete-time systems is
associated with the use of digital control systems, problems of financial mathematics, biocenose dy-
namics, as well as problems of the numerical solution of systems of stochastic differential equations.
In this way, the corresponding discrete-stochastic version of the method of Lyapunov functions was
developed [2, 6–13] as applied to the highly general problem on the stability of the zero equilibrium
with respect to all variables. The problem of stability of compact sets in the system state space
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was also considered [14]. The averaged derivative (or differential generating operator [2, 3, 5]) is
replaced in these cases by the averaged finite difference of the Lyapunov function [6].

Starting from Rumyantsev’s publications [15, 16], the theory of stability of deterministic systems
and then of stochastic systems with continuous dynamics considers partial stability problems (see
the survey [17]): stability of the zero equilibrium with respect to some of the variables, as well as
stability of a “partial” (zero) equilibrium with respect to all or some of the variables. From the
formal mathematical point of view, the problem of stability of a “partial” equilibrium with respect
to all variables belongs to the problem of stability of noncompact (closed but unbounded) sets,
while problems of stability with respect to some of the variables have independent significance and,
generally speaking, are not reducible to any problems of stability of sets. The point is that stability
with respect to some of the variables does not imply the proximity of the trajectories corresponding
to perturbed motions and the unperturbed motion (equilibrium) of the system.

Substantively, the indicated partial stability problems naturally arise in applications both based
on the requirement of normal operation and in assessing the capabilities of the system to be designed.
They can also be viewed as auxiliary problems in the analysis of stability of selected equilibria with
respect to all variables. In addition, there arise related partial stabilization problems for nonlinear
control systems, which have been actively examined in recent years. However, partial stability
and stabilization problems have practically not been studied for systems of stochastic discrete-time
equations.

The present paper discusses a system of nonlinear discrete-time (finite-difference) equations of
general form subject to the influence of a discrete random process such as white noise. It is assumed
that the system admits a partial (with respect to some part of the state variables) zero equilibrium.
The statement of the stability in probability problem for this equilibrium is given; stability is
considered with respect to part of the state variables determining it. The possibility of solving the
problem on the basis of the Lyapunov function method is analyzed.

2. DEFINITIONS. STATEMENT OF THE PROBLEM

Consider a linear finite-dimensional space of vectors x with Euclidean norm ‖x‖. Introduce
a partitioning of a vector x into two parts, x = (yT, zT)T (where “T” stands for transposition).
By Z+ = {k = 0, 1, 2, . . . } we denote the set of nonnegative integers.

Assume that we are given a finite-dimensional nonlinear system of stochastic discrete (finite-
difference) equations [2, 6–14]

x(k + 1) = X
(
k,x(k), ξ(k)

)
,

where k ∈ Z+ is discrete time; x(k) is the sequence of state vector values determining the system
state; and ξ(k) is a sequence of independent random vectors defined on a probability space (Ω, F , P)
with identical distribution laws for each k ∈ Z+. Here Ω is the space of elementary events {ω} with
a σ-algebra of F -measurable sets, filtration Fk, and a probability measure P : F → [0, 1] defined on
this space.

Taking into account the partitioning x = (yT, zT)T, we represent the system in question in the
form of two groups of equations

y(k + 1) = Y
(
k,y(k), z(k), ξ(k)

)
, z(k + 1) = Z

(
k,y(k), z(k), ξ(k)

)
. (1)

Under the condition
Y
(
k,0, z(k), ξ(k)

)
≡ 0,

the set M = {x(k) : y(k) = 0} is a “partial” equilibrium of system (1).
Assume also that the vector function X = (YT,ZT)T determining the right-hand side of sys-

tem (1) is continuous in x and ξ in the domain ‖x‖ < ∞ for each k ∈ Z+. The initial value x0
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of the state vector will be assumed to be deterministic. Then (see, e.g., [9, 11]) for all k0 ≥ 0
and x0 there exists a unique random multidimensional Markov process that is consistent with the
flow of σ-algebras Fk and is a random vector function {x(k) = x(k; k0,x0), ξ(k)} in the space {x, ξ}
whose realizations {x(k, ω) = x(k, ω; k0,x0), ξ(k, ω)} satisfy system (1). For all k ≥ k0, this random
process and the corresponding collection of realizations of the random vector function determine
a solution of system (1) with the initial conditions x0 = x(k0; k0,x0) as well as the collection of
sample paths of system (1) corresponding to this solution. The Markov property of solutions of
system (1) is used in the sequel to justify the conditions for partial stability in probability.

Under the assumptions made, the “partial” equilibrium y(k) = 0 of system (1) is an invariant
set of this system. The assumption X(k,0, ξ(k)) ≡ 0 about the existence of a “complete” equi-
librium x(k) = 0 is not necessary and can even contradict the meaning of the problems being
solved.

Following the approach of partial stability theory, we will analyze the stability of the “partial”
equilibrium y(k) = 0 not with respect to all the variables determining it but with respect to some
part of those, defined in advance. To this end, we assume that y = (yT

1 ,y2)T, with the vector y1

including the components of y with respect to which stability is considered.
In this case, the variables occurring in the vector z are “uncontrolled,” although they signifi-

cantly affect the dynamics of the y1-variables. To expand the operation capabilities of the notions
of y1-stability of the “partial” equilibrium y(k) = 0 considered in what follows, we arbitrarily
introduce a partitioning z = (zT

1 , z
T
2 )T of the vector z into two groups of variables.

By Dδ we denote the domain of x0 such that ‖y0‖ < δ, ‖z10‖ ≤ L, and ‖z20‖ < ∞; the
domain D∆ is obtained by replacing δ with ∆.

Definition. For large values of z10 and on the whole with respect to z20, a “partial” equilib-
rium y(k) = 0 of system (1) is

1. y1-stable in probability if for each k0 ∈ Z+ and any arbitrarily small numbers ε > 0 and γ > 0,
as well as for each number L > 0 given in advance, there exists a number δ(ε, γ, L, k0) > 0
such that for all k ≥ k0 and x0 ∈ Dδ one has the relation

P

{
sup
k≥k0

∥∥y1(k; k0,x0)
∥∥ > ε

}
< γ. (2)

2. Uniformly y1-stable if δ = δ(ε, γ, L).
3. Asymptotically y1-stable if it is uniformly y1-stable in probability and, in addition, for

each k0 ∈ Z+ and for each number L > 0 given in advance there exists a number ∆(L) > 0
such that for all k ≥ k0 and x0 ∈ D∆ one has the limit relation

lim
‖y0‖→0

P

{
lim

k→+∞

∥∥y1(k; k0,x0)
∥∥ = 0

}
= 1.

Remark 1 . It can be shown (see, e.g., [5]) that if x0 is a random variable (independent of ξ(k))
and the inclusions x0 ∈ Dδ and x0 ∈ D∆ hold almost certainly (with probability 1), then we obtain
definitions equivalent to the above-introduced definitions of partial stability.

Remark 2 . The closest to the ones introduced are the notions of partial stability of a “partial”
equilibrium of stochastic systems of differential equations in Itô form with respect to all [18, 19]
and part [20] of the variables. The assumptions about “on the whole with respect to z0” or “for
large values of z0” are typical of the definitions of stability (both in all and part of the variables)
of a “partial” equilibrium y(k) = 0 of system (1) but lead to different requirements for the Lya-
punov functions. Partitioning the vector z0 into two parts gives rise to “intermediate” concepts
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of y1-stability in the sense of the above-introduced Definitions 1–3. In this case, the suitable choice
of the partition z = (zT

1 , z
T
2 )T depends on the structure of system (1) and is a result of finding

a trade-off between the informative meaning of the concept of the y1-stability of the “partial” equi-
librium y(k) = 0 and the corresponding requirements for the Lyapunov functions. Moreover, the
above-introduced notions of stability arise when passing (by means of the notation w = k, r = k−k0)
from system (1) to the time-invariant discrete system

x(r + 1) = X
(
x(r), w(r), ξ(r)

)
, w(r + 1) = w(r) + 1,

when the requirements of uniformity (nonuniformity) with respect to k0 in the problems of y1-
stability for large values of z0 or on the whole in z0 of a “partial” equilibrium y(k) = 0 are replaced
by the requirements “on the whole in w0” (“for large values of w0”).

3. PARTIAL STABILITY CONDITIONS

In the context of the Lyapunov function method, we consider single-valued scalar functions
V = V (k,x), V (k,0) ≡ 0, continuous in x for each k ∈ Z+ and defined in the domain

‖y1‖ < h, ‖y2‖+ ‖z‖ <∞. (3)

An analog of the derivatives of these functions according to system (1) are their averaged differ-
ence (increments) calculated by the formula [6, 9]

LV (k,x) = E

[
V
(
k + 1,X

(
k,x(k), ξ(k)

))
|x(k) = x

]
− V (k,x),

where the operator E[V (k + 1,X(k,x(k), ξ(k)))|x(k) = x] determines the conditional expectation,
for x(k) = x, of the random variable V (k + 1,X(k,x(k)ξ(k))) generated by the set of realiza-
tions {x(k, ω), ξ(k, ω)} of a process {x(k), ξ(k)} that is a solution of system (1).

To state the partial stability conditions, we will also additionally use the following auxiliary
functions.

1. Scalar functions V ∗(k,y, z1), V ∗(y, z1) that are required to render concrete (in accordance
with the statement of the problem) requirements for the Lyapunov V -function and an auxiliary
vector function µ(k, x), µ(k,0) ≡ 0, by means of which we correct the domain where the main
Lyapunov V -function is constructed. These functions are continuous in x for each k ∈ Z+ in
the domain (3).

2. Continuous scalar functions ai(r), ai(0) = 0 (i = 1, 2, 3) monotone increasing in r > 0 (Hahn-
type functions [16]) defining the standard requirements for the main Lyapunov V -function.

Introducing, along with the main Lyapunov V -function, the auxiliary function µ(k,x) is moti-
vated as follows. When studying the y1-stability in probability of a “partial” equilibrium y(k) = 0 of
system (1), in the general case, one has the dependence of Lyapunov V -functions not only on k, y1

but also on y2, z. In such a situation, the analysis of the posed problem about y1-stability in the
usually considered domain

‖y1‖ < h1 < h, ‖y2‖+ ‖z‖ <∞ (4)

does not always allow one to reveal the desired properties of the Lyapunov V -function or endow
it with these properties. The reason lies in the requirement ‖y2‖ + ‖z‖ < ∞, which considerably
complicates producing the necessary estimates for the Lyapunov V -function and its averaged finite
difference.
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The indicated requirement essentially means counting on the “worst-case” scenario of changes in
the variables y2, z, and it can be replaced by the “softer” requirement

‖y1‖+
∥∥µ(k,x)

∥∥ < h1 < h, ‖y2‖+ ‖z‖ <∞ (5)

if we mean the “extended” (y1,µ)-stability of the “partial” equilibrium y = 0 of system (1). In this
case, the µ-function is not specified initially but is selected when solving the original y1-stability
problem, with the possibility of the extension of the concept of y1-stability occurring because of the
dependence of the µ-function not only on k and y but also on z.

Therefore, it is not only possible but also expedient to select a suitable Lyapunov V -function to
be consistent with the choice of the domain in the (k,x)-space in which this function is considered.
This consistency can be achieved by introducing, along with the main Lyapunov V -function, an
additional (generally speaking, vector) auxiliary function µ(k,x) for correcting the domain in which
the main Lyapunov V -function is constructed.

Theorem 1. Suppose that for system (1), along with the main scalar Lyapunov V -function, one
can specify an auxiliary vector function µ(k,x), µ(k,0) ≡ 0, such that the following conditions are
satisfied:

V (k,x) ≥ a1

(
‖y1‖+

∥∥µ(k,x)
∥∥), (6)

V (k,x) ≤ V ∗(k,y, z1), V ∗(k,0, z1) ≡ 0, (7)

LV (k,x) = E
[
V (k + 1,X(k,x(k), ξ(k))|x(k) = x

]
− V (k,x) ≤ 0 (8)

for each k ∈ Z+ and a sufficiently small h1 > 0 in the domain (5).
Then the “partial” equilibrium y(k) = 0 of system (1) is y1-stable in probability for large values

of z10 on the whole with respect to z20.
If conditions (7) are replaced with the conditions

V (k,x) ≤ V ∗(y, z1), V ∗(0, z1) ≡ 0, (9)

then the “partial” equilibrium y(k) = 0 of system (1) is uniformly y1-stable in probability for large
values of z10 on the whole with respect to z20.

The proofs of Theorem 1 and the subsequent Theorem 2 are moved to the Appendix.
Within the framework of the considered approach, we can also state the conditions of asymptotic

y1-stability in probability for large values of z10 on the whole with respect to z20 of the “partial”
equilibrium y(k) = 0 of system (1). Here is one of the versions of such conditions.

Theorem 2. Suppose that for system (1), along with the main scalar Lyapunov V -function, one
can indicate an additional vector function µ(x), µ(0) ≡ 0, for which the conditions

a1

(
‖y1‖+

∥∥µ(x)
∥∥) ≤ V (k,x) ≤ a2

(
‖y1‖+

∥∥µ(x)
∥∥), (10)

LV (k,x) ≤ −a3

(
‖y1‖+

∥∥µ(x)
∥∥), (11)

as well as conditions (9), are satisfied for each k ∈ Z+ and a sufficiently small h1 > 0 in the
domain (5).

Then the “partial” equilibrium y(k) = 0 of system (1) is asymptotically y1-stable in probability
for large values of z10 on the whole with respect to z20.

Remark 3 . The auxiliary Lyapunov V -function and its averaged difference (increment) LV (k,x)
according to system (1) in Theorems 1 and 2 are, generally speaking, alternating functions in the
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domain (4) for each k ∈ Z+. Along with the main Lyapunov V -function, an additional auxiliary
µ-function is introduced for the most expedient replacement of the domain (4) by the domain (5).

Conditions (7) are “intermediate” between the less restrictive condition V (k,0, z) ≡ 0 and the
more restrictive conditions V (k,x) ≤ V ∗(k,y), V ∗(k,0) ≡ 0, under which the “partial” equilib-
rium y(k) = 0 of system (1) is, respectively, y1-stable in probability for large values of z0 or
y1-stable in probability on the whole with respect to z0.

Remark 4 . Within the framework of the proposed approach, the nonlinear Lyapunov
V -functions can be constructed as alternating quadratic forms (or forms of higher order)
V (k,x) ≡ V ∗(k,y1,µ(k,x)) of the variables y1, µ. In this case, the choice of µ-functions must be
coordinated with conditions (7), (9); for example, auxiliary µ-functions of the form µ = µ(y2, z1),
µ(0, z1) ≡ 0 are admissible.

If a subsystem of the form

y1(k + 1) = Y1

(
k,y1(k),µ(k), ξ(k)

)
,

µ(k + 1) = Y∗1

(
k,y1(k),µ(k), ξ(k)

)
can be separated from system (1), then the Lyapunov V -function can be constructed using the
numerical method in [11] as applied to the problem of stability with respect to all variables (with
respect to y1, µ) of the zero equilibrium of this subsystem.

Remark 5 . If system (1) admits a “complete” equilibrium x(k) = 0, then in the case of
µ(k,x) ≡ 0, ξ(k) ≡ 0, ‖x0‖ < δ and under conditions (6) and (8) we have a discrete version
of the classical Rumyantsev theorem [15] on the stability with respect to part of the variables. In
the case of ξ(k) ≡ 0, Theorem 1 transforms into discrete versions [21, 22] of the corresponding
theorems in [23, 24].

Remark 6 . The stability with respect to some of the variables “on the average” of the zero equilib-
rium of systems of discrete-time stochastic equations was studied in [25, 26] by isolating “truncated”
subsystems [25], as well as by constructing auxiliary systems [26]. The possibilities of using the Lya-
punov function method to solve partial stability (stabilization) problems for systems of stochastic
differential equations were analyzed in [27–31], including systems with a random structure [32–34];
a model example is used in [35] to compare optimal stabilization problems with respect to all and
part of the variables for quasilinear systems of stochastic differential equations.

4. EXAMPLE

Let the discrete-time system (1) consist of the equations

y1(k + 1) =
[
a+ αξ1(k)

]
y1(k) + ly2(k)z1(k),

y2(k + 1) =
[
b+ dy1(k)

]
y2(k),

z1(k + 1) =
[
c+ ey1(k)

]
z1(k),

z2(k + 1) = Z2

(
k,x(k)

)
,

(12)

where ξ1(k) is a sequence of independent random variables with standard normal distribution for
each k ∈ Z+; the function Z2 is arbitrary and satisfies only the general requirements for system (1);
and a, b, c, d, e, l, and α are constant parameters.

System (12) admits the “partial” equilibrium

y1(k) = y2(k) = 0. (13)
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Along with the main Lyapunov function

V (x) = y2
1 + 2y2

2z
2
1 , (14)

we also consider the auxiliary function µ1 = y2z1.
Conditions (9) and (10) are satisfied for the Lyapunov V -function in the domain (5), and its

averaged difference (increment) LV (x) according to system (12) is determined for all k ∈ Z+ as
follows:

LV (x) = E
[(
ay1(k) + ly2(k)z1(k) + αy1(k)ξ1(k)

)2

+ 2y2
2(k)z2

1(k)(b+ dy1(k))2(c+ ey1(k))2|x(k) = x
]
− y2

1 − 2y2
2z

2
1

= a2y2
1 + 2aly1y2z1 + l2y2

2z
2
1 + α2y2

1 + 2b2c2y2
2z

2
1

+ r1y1y
2
2z

2
1 + r2y

2
1y

2
2z

2
1 + r3y

3
1y

2
2z

2
1 + 2d2e2y4

1y
2
2z

2
1 − y2

1 − 2y2
2z

2
1

= (a2 + α2 − 1)y2
1 + 2aly1µ1 + (l2 + 2b2c2 − 2)µ2

1 + r1y1µ
2
1

+ r2y
2
1µ

2
1 + r3y

3
1µ

2
1 + 2d2e2y4

1µ
2
1,

r1 = bcr0, r2 = 2(b2e2 + 4bcde+ c2d2), r3 = der0, r0 = 4(be+ cd);

the conditional expectation has been calculated in view of the relationsE[ξ1(k)] = 0 andE[ξ2
1(k)] = 1

determining the standard normal distribution of the random variables ξ1(k).
Under the inequalities

a2 + α2 < 1, (a2 + α2 − 1)(l2 + 2b2c2 − 2) > a2l2 (15)

satisfied for each k ∈ Z+ with a sufficiently small h1 > 0 in the domain (5) (but not in the
domain (4)), for any values of the parameters d and e one has the estimate LV (x) ≤ −β(y2

1 + µ2
1),

β = const > 0. It follows that, apart from conditions (9) and (10), the Lyapunov V -function (14)
also satisfies condition (11) in the domain (5).

Based on Theorem 2, we conclude that under conditions (15), the “partial” equilibrium (13) of
system (12) is asymptotically y1-stable in probability for large z10 on the whole with respect to z20.

Let us geometrically explain this property of partial stability in connection with Definitions 2
and 3 introduced in Sec. 2. For each k0 ∈ Z+ and for any arbitrarily small numbers ε > 0 (ε < h1)
and γ > 0, as well as for each number L > 0 given in advance, the boundary of the admissible do-
main x0 ∈ Dδ of initial disturbances in the three-dimensional space Oy1y2z1 is the cylinder ‖y0‖ = δ
of height 2L lying between two planes y1 = ±ε (Fig. 1) with δ = δ(ε, γ, L). If the solutions of sys-
tem (12) start inside this δ-cylinder for k = k0 (with an arbitrary value of z20), then the sample paths
corresponding to the indicated solutions in the space Oy1y2z1 will remain between the indicated
two ε-planes with probability at least 1− γ for all k ≥ k0 .

We can also indicate a number ∆ = ∆(γ, L, h1) > 0 such that

P

{
sup
k≥k0

∣∣y1(k; k0,x0)
∣∣ ≥ h1

}
< γ,

P

{
lim

k→+∞
y1(k; k0,x0) = 0

}
≥ 1− γ

(16)

for all k ≥ k0 and x0 ∈ D∆. If the solutions of system (12) start inside a ∆-cylinder ‖y0‖ = ∆ of
height 2L for k = k0 (with an arbitrary value of z20), then the corresponding sample paths in the
space Oy1y2z1 will not only stay with a probability at least 1−γ for all k ≥ k0 between the ε-planes
but will tend to the plane y1 = 0 as k →∞.
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y1

y1 = -e

y1 = e

|| y0|| = d

y2

z1

Fig. 1. Domains of admissible initial and current deviations from the invariant set y1(k) = y2(k) = 0.

y2

z1

Fig. 2. Domain of admissible initial and current deviations (in projection on the plane Oy2z1).

However, within the framework of the approach considered, based on the transition from the
domain (4) to the domain (5), one has the “extended” uniform (y1, µ1)-stability of the “partial” equi-
librium (13) of system (12), ensuring the legitimacy of such a transition. Therefore, the δ-cylinder
lies in the domain D∗ of the space Oy1y2z1 bounded by the surface y2

1 + y2
2z

2
1 = ε2. (In Fig. 2, the

location of the δ-cylinder is shown in projection on the plane Oy2z1; the corresponding rectangle
with sides of length 2δ and 2L lies in a domain whose boundaries are the branches of the hyper-
bolae y2z1 = ± ε.) If the solutions of system (12) start inside the δ-cylinder for k = k0 (with an
arbitrary value of z20), then the corresponding sample paths in the space Oy1y2z1 will remain with
probability at least 1− γ in the domain D∗ for all k ≥ k0.

An analysis of the structure of system (12) permits one to supplement the conclusions made:
under conditions (15), the sample paths in the space Oy1y2z1 corresponding to the solutions of
system (12) starting inside the ∆-cylinder ‖y0‖ = ∆ of height 2L (with an arbitrary value of z20)
“focus” with probability at least 1−γ as k →∞ or along the Oy2-axis, or along the Oz1-axis. Indeed,
by virtue of the existing “extended” asymptotic (y1, µ1)-stability of the “partial” equilibrium (13) of
system (12), the second and third equations in this nonlinear system can be represented in the form
of the linear recurrence equations

y2 (k + 1) =
[
b+ dy1(k; k0,x0)

]
y2(k),

z1 (k + 1) =
[
c+ ey1(k; k0,x0)

]
z1(k),
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Table 1

k ξ1(k) y1(k) y2(k) z1(k) ξ1(k) y1(k) y2(k) z1(k)

0 0 0.1 0.1 1 0 0.1 0.1 1

1 0 0.15 0.16 0.4333 −1 0.1167 0.16 0.4333

2 0 0.1443 0.2640 0.2094 1 0.1665 0.2587 0.1950

3 0 0.1275 0.4340 0.1000 1 0.1891 0.4311 0.0975

4 0 0.1072 0.7063 0.0461 0 0.1366 0.7282 0.0509

5 0 0.0861 1.1352 0.0203 −1 0.0599 1.1918 0.0239

6 0 0.0661 1.8005 0.0085 −1 0.0385 1.8590 0.0094

7 0 0.0484 2.8198 0.0034 1 0.0496 2.8601 0.0035

8 0 0.0338 4.3662 0.0013 0 0.0348 4.4320 0.0013

9 0 0.0226 6.6969 0.0005 0 0.0233 6.8022 0.0005

10 0 0.0145 10.197 0.00017 1 0.0227 10.362 0.00017

. . . . . . . . . . . . . . . . . . . . . . . . . . .

15 0 0.0009 79.001 7.6× 10−7 −1 0.0007 82.073 9.1× 10−7

. . . . . . . . . . . . . . . . . . . . . . . . . . .

20 0 0.000048 600.69 3.2× 10−9 −1 0.000017 623.28 3.7× 10−9

and with the component y1(k; k0,x0) of any solution of system (12) starting inside the ∆-cylinder of
height 2L, one has relations (16). Therefore, under conditions (15), for these solutions of system (12)
as k → ∞ with probability at least 1 − γ one has the relations |y2(k)| → ∞ and |z1(k)| → 0
(for |b| > 1 and |c| < 1) or the relations |y2(k)| → 0 and |z1(k)| → ∞ (for |b| < 1 and |c| > 1).

To render the obtained numerical data concrete, the left-hand side of Table 1 lists the results of
calculations based on the recurrence relations (12) in the range k ∈ [0, 20] for the “unperturbed”
case of ξ1(k) ≡ 0 with y1(0) = y2(0) = 0,1 and z1(0) = 1, as well as with the parameter values
a = 1/2, b = 3/2, c = 1/3, and d = e = l = 1. Under the random action ξ1(k), the sample paths
group around the “unperturbed” trajectory, focused along the Oy2-axis as k → ∞. To estimate
the effect of the random action upon the dynamics of system (12), the right-hand side of Table 1
lists the results of computations for α = 1/3 and with the same values of parameters in the case
where the admissible realization ξ1(k) is determined on the interval k ∈ [0, 20] by the sequence
{0,−1, 1, 1, 0,−1,−1, 1, 0, 0, 1, 1,−1, 0, 0,−1, 1, 0,−1, 1,−1}.

5. CONCLUSIONS

For a nonlinear system of stochastic discrete-time (finite-difference) equations subject to the ac-
tion of a discrete random process of the white noise type, a statement of the problem of stability
(asymptotic stability) with respect to the variables of the “partial” zero equilibrium is given. The
initial values of the “uncontrolled” variables that do not determine the considered “partial” equilib-
rium are assumed to be large (bounded in the norm by any predetermined number) in one part and
arbitrary in the other.

Sufficient conditions are given for the solvability of this problem in the context of the discrete-
stochastic version of the Lyapunov function method in the corresponding modification. Along with
the main Lyapunov V -function, we consider an additional (vector, generally speaking) auxiliary
µ-function for correcting the domain in which the main Lyapunov V -function is constructed. The
expediency of this approach lies in the fact that, as a result, the main Lyapunov V -function, as well
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as its averaged difference (increment) according to the system in question, can be of alternating
signs.

APPENDIX

Proof of Theorem 1.
I. Assume that conditions (6)–(8) are satisfied in the domain (5) for each k ∈ Z+ and for

a sufficiently small h1 > 0.
Take an arbitrary number ε (0 < ε < h1) and consider an arbitrary time k0 and an initial point

x0 in the domain
Dε =

{
‖y0‖ < ε, ‖z10‖ ≤ L, ‖z20‖ <∞

}
.

Consider a random process x(k; t0,x0) (k ≥ k0) that is a solution of system (1) and denote the
“integer” time of the first exit of this process from the domain ‖y1‖ ≤ ε by τε. If some trajectories
leave the domain ‖y1‖ ≤ ε in no finite time, then τε for these trajectories is taken to be ∞. Set

τ(k) = min(τε, k); τ(k0) = k0.

One has the relations

V
(
τ(k),x

(
τ(k); k0,x0

))
−V (k0,x0) = V

(
τ(k),x

(
τ(k); k0,x0

))
−V

(
τ(k − 1),x

(
τ(k − 1); k0,x0

))
+ V

(
τ(k − 1),x

(
τ(k − 1); k0,x0

))
− V

(
τ(k − 2),x

(
τ(k − 2); k0,x0

))
+ · · ·

+ V
(
τ(k0 + 1),x

(
τ(k0 + 1); k0,x0

))
− V (k0,x0) =

k−1∑
s=k0

∆V
(
τ(s),x

(
τ(s); k0,x0

))
;

∆V
(
τ(s),x

(
τ(s); k0,x0

))
= V

(
τ(s+ 1),x

(
τ(s+ 1); k0,x0

))
− V

(
τ(s),x

(
τ(s); k0,x0

))
.

It follows from these equalities that for the sequence v(k) of random variables v(k) =
V (τ(k),x(τ(k); k0,x0)) generated by the realizations {x(k, ω), ξ(k, ω)} of the random process
{x(k), ξ(k)} determined by system (1) one has the “averaged” relations

E
[
V
(
τ(k),x(τ(k); k0,x0)

)
− V (k0,x0)

]
= EV

(
τ(k),x(τ(k); k0,x0)

)
− V (k0,x0)

=

k−1∑
s=k0

E∆V
(
τ(s),x(τ(s); k0,x0)

)
.

Taking into account the equalities (obtained with allowance for the rule of calculating the re-
peated expectation)

E

[
∆V

(
τ(s),x

(
τ(s); k0,x0

))]
= E

[
V

(
τ(s+ 1),X

(
τ(s),x

(
τ(s); k0,x0

)
, ξ
(
τ(s)

))
− V

(
τ(s),x

(
τ(s); k0,x0

)))]

= E

{
E

[
V
(
τ(s+ 1),X

(
τ(s),x

(
τ(s), ξ(τ(s))|x(τ(s))

))
= x

(
τ(s); k0,x0

))]}

−E

[
V
(
τ(s),x

(
τ(s); k0,x0

))]
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= E

{
E

[
V
(
τ(s+ 1),X

(
τ(s),x(τ(s), ξ(τ(s)))

)
|x(τ(s)) = x

(
τ(s); k0,x0

))]

− V
(
τ(s),x

(
τ(s); k0,x0

))}
= E

[
LV
(
τ(s),x

(
τ(s); k0,x0

))]
,

we arrive at the relation (a discrete-time version of the Dynkin formula) [9]

EV
(
τ(k),x

(
τ(k); k0,x0

))
− V (k0,x0) =

k−1∑
s=k0

E

[
LV
(
τ(s),x

(
τ(s); k0,x0

))]
.

As a result, based on condition (8), we obtain the inequality

EV
(
τ(k),x

(
τ(k); k0,x0

))
≤ V (k0,x0) <∞. (A.1)

If the inequality k > τε holds (in this case, τ(k) = τε), then we have the relations∥∥y1(τ(k); k0,x0)
∥∥ =

∥∥y1(τε; k0,x0)
∥∥ ≥ ε.

If, however, we have the inequality k < τε (in this case,e τ(k) = k), then, based on the Chebyshev–
Markov inequality and the estimate (A.1), we find

P
[∥∥y1(k; k0,x0)

∥∥ > ε
]
≤ a−1

1 (ε)E

[
a1

(∥∥y1(k; k0,x0)
∥∥)]

≤ a−1
1 (ε)E

[
a1

(∥∥y1(k; k0,x0)
∥∥+

∥∥∥µ(k,x(k; k0,x0)
)∥∥∥)]

≤ a−1
1 (ε)E

[
V
(
k,x(k; k0,x0)

)]
= a−1

1 (ε)E

[
V
(
τ(k),x

(
τ(k); k0,x0

))]
≤ a−1

1 (ε)V (k0,x0).

(A.2)

Since the Lyapunov function V (k,x) is continuous for each k ∈ Z+, V (t,0) ≡ 0, and condi-
tions (7) are satisfied for all k0 ≥ 0 and for each given number L > 0, we conclude that the limit
relation

lim
‖y0‖→0

V (k0,x0) = 0 (A.3)

holds for ‖z10‖ ≤ L uniformly with respect to ‖z20‖ <∞.
Therefore, for all k0 ≥ 0 and for each given number L > 0, based on inequalities (A.2) and (A.3),

we have the limit relation

lim
‖y0‖→0

P

[
sup
k>k0

∥∥y1(k; t0,x0)
∥∥ > ε

]
= 0,

which holds for ‖z10‖ ≤ L uniformly with respect to ‖z20‖ <∞.
As a result, for each k0 ≤ 0 and for any arbitrarily small numbers ε > 0 and γ > 0, as well as for

each number L > 0 given in advance, there exists a number δ(ε, γ, L, k0) > 0 such that inequality (2)
holds for all k ≥ k0 and x0 ∈ Dδ. Consequently, for large values of z10 on the whole with respect
to z20 the “partial” equilibrium y(k) = 0 of system (1) is y1-stable in probability.

II. If conditions (9) are satisfied instead of conditions (7), then for each given number L > 0 the
limit relation (A.3) is satisfied for ‖z10‖ ≤ L uniformly not only with respect to ‖z20‖ <∞ but also
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with respect to k0 ≥ 0. As a result, for each k0 ≥ 0 and for any arbitrarily small numbers ε > 0
and γ > 0, as well as for each number L > 0 given in advance there exists a number δ(ε, γ, L) > 0
independent of k0 such that inequality (2) holds for all k ≥ k0 and x0 ∈ Dδ. Consequently, for large
values of z10 on the whole with respect to z20 the “partial” equilibrium y(k) = 0 of system (1) is
uniformly y1-stable in probability. The proof of Theorem 1 is complete. �

Proof of Theorem 2. Under the assumptions of the theorem, the “partial” equilibrium y(k) = 0
of system (1) is uniformly y1-stable in probability for large values of z10 on the whole with respect
to z20.

Based on inequality (A.1), the sequence v(k) of random variables v(k) = V (τ(k),x(τ(k); k0,x0))
generated by realizations {x(k, ω), ξ(k, ω)} of the random process {x(k), ξ(k)} determined by sys-
tem (1) forms a nonnegative supermartingale, which is an analog of a monotone decreasing sequence
in the deterministic case. Therefore, based on inequality (A.1), for each initial point x0 in the do-
main Dε, with probability 1 one has the limit relation [36]

v(k) = V
(
τ(k),x(τ(k); k0,x0)

)
→ v∗, k →∞.

Using the well-known scheme of analysis [2, 3, 9], it can be shown that the equality v∗ = 0 is
satisfied with probability 1. Indeed, applying the operation of expectation and passing to the limit
on both sides of inequality (11), with probability 1 we obtain

E

[
a3

(∥∥∥y1

(
τ(k); k0,x0

)∥∥∥)]→ 0, k →∞.

Therefore, by virtue of conditions (10), (11) and the Fatou lemma the equality E[a3(a−1
2 (v∗))] = 0

holds, which implies that v∗ = 0. However, in the case of v∗ = 0, as ‖y0‖ → 0 one has the limit
relation

P

{
lim

k→+∞

∥∥y1(k; k0,x0)
∥∥ = 0

}
= 1,

and consequently, the “partial” equilibrium y(k) = 0 of system (1) is asymptotically y1-stable in
probability for large values of z10 on the whole with respect to z20. The proof of Theorem 2 is
complete. �
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