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Abstract—In the paper, we consider conditions providing the coincidence of the cores and
superdifferentials of fuzzy cooperative games with side payments. It turned out that weak
homogeneity is one of the simplest sufficient conditions. Moreover, by applying the so-called
S∗-representation of a fuzzy game introduced by the author, we show that for any v with
nonempty core C(v) there exists some game u such that C(v) coincides with the superdifferential
of u. By applying the subdifferential calculus, we describe a structure of the core for classical
fuzzy extensions of the ordinary cooperative game (e.g., the Aubin and Owen extensions) as
well as for some new continuations, like the generalized Airport game.
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1. INTRODUCTION

The paper deals with the analysis of the relationship between the cores and superdifferentials of
fuzzy TU -cooperative games of n persons. The requirements ensuring the coincidence of these cores
and superdifferentials are studied. The simplest sufficient conditions include some weak analog of the
homogeneity of fuzzy games. Particular attention is paid to the consideration of the inhomogeneous
case. Using the so-called S∗-representation of a fuzzy game proposed by the author [3], we manage
to show that for an arbitrary game v with a nonempty core there exists a game u such that the core
of v coincides with the superdifferential of u. The resulting general theorem about the representation
of the core in the form of the superdifferential of a suitable modification of the original game permits
one to use the technique of subdifferential calculus [5, 6, 9] to describe the structure of cores of both
classical fuzzy extensions of ordinary games (for example, for Aubin’s extensions [9]) and some new
extensions like a generalization of the well-known Airport game [4, 11].

The main content of the paper is divided into three sections. The first of them (Sec. 2) contains
the notation and definitions necessary in what follows. It also states a criterion for the nonemptiness
of the core of a fuzzy game with side payments as well as the definition of the S∗-representation
of such a game and some properties of this representation. In particular, the coincidence of cores
of fuzzy games with the cores of their S∗-representations is noted. The second one (Sec. 3) estab-
lishes the main result, a theorem on the coincidence of the core of a fuzzy V -balanced game with
the superdifferential of its homogeneous modification. Finally, in the third one (Sec. 4), possible
applications of subdifferential calculus are illustrated by an example in which we analyze the core
of the Aubin extension vAub of an “almost positive” cooperative game v and the anticore of one
generalization of the well-known Airport game, which simulates the rational distribution of costs
for the construction of a runway (see [4, 11] for details). The description of the core of the Aubin
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CORE AND SUPERDIFFERENTIAL OF A FUZZY 927

extension vAub established here deserves a special mention: this core is a singleton and consists of
the Shapley value of the game v.

2. MAIN DEFINITIONS

To keep the presentation self-contained, we start from the definition of a fuzzy TU -cooperative
game of n persons. Let us first recall the definition of a fuzzy coalition [8, 9]. Let N = {1, . . . , n}
be the set of players in the game under consideration. Let IN denote the unit hypercube defined by
the formula IN := {τ = (τ1, . . . , τn) ∈ RN | τi ∈ [0, 1], i ∈ N}. Fuzzy coalitions are elements of the
set σF := IN \{0}. We also recall that each standard coalition S ⊆ N is identified with its indicator
function eS defined by the formula (eS)i = 1 for i ∈ S, and (eS)i = 0 for i ∈ N \S. Further, for each
fuzzy coalition τ = (τ1, . . . , τn) ∈ σF by N(τ) we denote its support N(τ) := {i ∈ N | τi > 0}. As
usual, for a vector x = (x1, . . . , xn) ∈ RN and a set S ⊆ N , by xS ∈ RS we denote the restriction
of x to S, (xS)i = xi, i ∈ S. The restriction of τ ∈ σF to its support N(τ) is denoted by τ+ := τN(τ).
For a = (a1, . . . , am) and b = (b1, . . . , bm) ∈ Rm, by a · b, as usual, we denote the inner product

of the vectors a and b, a · b =
m∑
k=1

akbk. Finally, setting Rτ := RN(τ), we introduce the following

definition.

Definition 2.1. The fuzzy TU -cooperative game of n persons generated by a generalized charac-
teristic function v : σF → R is the multivalued mapping τ 7→ Gv(τ) that takes each fuzzy coalition τ
to the set of payoffs attainable by τ ; this set is defined by Gv(τ) = {x ∈ Rτ | τ+ · x ≤ v(τ)}.

Thus, according to Definition 2.1 and the terminology adopted in [9, 11], a fuzzy TU -cooperative
game v is a fuzzy NTU -game of a special type in which the sets of payoffs attainable by coalitions τ
are some half-spaces with normals τ+ in the corresponding spaces Rτ .

Let us recall [3, 9] the main concepts of the present paper, namely, the definition of blocking in
a fuzzy game v and the notion of core of this game. Throughout the following, as usual, the payoffs
attainable by the “grand coalition” eN will be called the payoffs of the game v.

Definition 2.2. A fuzzy coalition τ = (τ1, . . . , τn) is said to block a payoff x = (x1, . . . , xn) of
the game v if there exists a vector y = (yi)i∈N(τ) ∈ Rτ such that

(b.1)
∑

i∈N(τ)

τiyi ≤ v(τ).

(b.2) yi > xi, i ∈ N(τ).

Definition 2.3. The core of a fuzzy cooperative game v is the set of all payoffs of this game that
are not blocked by any coalition τ ∈ σF . The core of the game v will be denoted by C(v).

Passing to the statement of the criterion for the nonemptiness of the core C(v), recall [3] that a fi-
nite family of coalitions {τk}k∈K ⊆ σF is said to be F -balanced if there exist numbers λk ≥ 0, k ∈ K,
such that

∑
k∈K

λkτk = eN . Just as in [1], the nonnegative numbers λk occurring in this relation will

be called the weights corresponding to the family {τk}k∈K .

Definition 2.4. A fuzzy TU -cooperative game v : σF → R is said to be V -balanced if for
any F -balanced family of fuzzy coalitions {τk}k∈K and the corresponding weights λk, k ∈ K, one
has the inequality

∑
k∈K

λkv(τk) ≤ v(eN).

One can readily verify (see, e.g., [3]) that the core of a fuzzy TU -cooperative game v has the
form

C(v) =
{
x ∈ RN

∣∣x · eN = v(eN), x · τ ≥ v(τ), τ ∈ σF
}
. (2.1)

Based on this representation, the following criterion for the nonemptiness of C(v) was obtained in [3].
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Theorem 2.1. The core C(v) of a fuzzy TU -cooperative game v is nonempty if and only if the
game v is V -balanced.

To obtain the main result of the present paper concerning the cores and superdifferentials of
fuzzy games, it is expedient to use the so-called S∗-representation of such games introduced in [3].
Recall [3] that the S∗-representation v∗ of a game v is given by the formula

v∗(τ ∗) := sup

{
v(tτ ∗)/t

∣∣ t ∈ (0,
1

‖τ‖∞

]}
, τ ∗ ∈ σ∗F , (2.2)

where ‖τ‖∞ = max{|τi|
∣∣i ∈ N} for any τ = (τ1, . . . , τn) ∈ σF and the simplex σ∗F is part of the

hypercube IN , σ∗F := {τ ∈ σF
∣∣ ∑
i∈N

τi = 1}.

In what follows, we focus on the important class of S∗-regular fuzzy cooperative games.

Definition 2.5. A game v is said to be S∗-regular if its S∗-representation v∗ satisfies the following
conditions:

(S∗.1) v∗(τ ∗) <∞ for each τ ∗ ∈ σ∗F .
(S∗.2) v∗(eN/n) = v(eN)/n.

As was established in [3], the S∗-regularity of a game v is a necessary condition for its core to
be nonempty.

Proposition 2.1. If a fuzzy TU -cooperative game v has a nonempty core, then it is S∗-regular.

One more property, useful in what follows, of the S∗-representation v∗ of the game v has the
following form (Theorem 5.2 in [3]).

Theorem 2.2. If a fuzzy game v satisfies condition (S∗.2), then its core C(v) is nonempty if
and only if so is the core C(v∗) of its S∗-representation v∗.1 In this case, one has C(v) = C(v∗).

Finally, a useful criterion for the nonemptiness of the core of a fuzzy cooperative game can be
stated in terms of its homogeneity and weakened concavity.

Theorem 2.3. If the fuzzy cooperative game v : σF → R is homogeneous, then a necessary and
sufficient condition that the core C(v) be nonempty is that the restriction of v to the simplex σ∗F is
a concave game with respect to the center of gravity e∗N .2

3. ON THE REPRESENTATION OF THE CORE IN THE FORM
OF A SUPERDIFFERENTIAL

Passing to the representation of the core of a fuzzy game in the form of the superdifferential
of a suitable modification of this game, we recall the corresponding concepts of subdifferential
calculus [5, 7, 9]. For convenience, the superdifferential (which differs from the subdifferential only in
the sense of the corresponding inequalities) is used as the main object instead of the subdifferential.

Definition 3.1. Let v be a fuzzy TU -cooperative game of n persons. We say that a vector x ∈ Rn

is a supergradient of the game v at a point τ̄ ∈ σF if

v(τ)− v(τ̄) ≤ x · (τ − τ̄), τ ∈ σF . (3.1)

1 Recall [3] that C(v∗) = {x ∈ RN
∣∣e∗N · x = v∗(e∗N ), τ∗ · x ≥ v∗(τ∗), τ∗ ∈ σ∗F }.

2 A function v on σ∗F is said to be concave with respect to the center of gravity e∗N [3] if for any representation of e∗N
in the form of a convex combination e∗N =

∑
k∈K

λkτk, τk ∈ σ∗F , k ∈ K , one has the inequality v(e∗N ) ≥
∑
k∈K

λkv(τk).
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Remark 3.1 . It is clear that the gradient of a smooth concave game v at an interior point of the
set σF is its only supergradient at this point [5, 7].

Definition 3.2. The set of all supergradients of a game v at a point τ̄ will be denoted by ∂̂v(τ̄)
and will be called the superdifferential of v at that point.

Below, as before, we use the notation e∗N = 1
n
eN . One basic concept of the paper is given by the

following definition.

Definition 3.3. The superdifferential of a fuzzy TU -cooperative game v is the superdifferential
of v at the point e∗N .

Formula (3.1) and the definition of the subdifferential [5, 7] imply a simple formula relating the
superdifferential ∂(v)(τ̄) of a fuzzy game v at a point τ̄ ,

∂̂v(τ̄) =
{
x ∈ Rn | v(τ)− v(τ̄) ≤ x · (τ − τ̄), τ ∈ σF

}
with its subdifferential

∂(v)(τ̄) =
{
x ∈ Rn | v(τ)− v(τ̄) ≥ x · (τ − τ̄), τ ∈ σF

}
at the same point. Namely, the following relations are true:

∂̂v(τ̄) = −∂(−v)(τ̄), τ̄ ∈ σF .

The superdifferential and the core of a fuzzy game v are closely related. In particular, the follow-
ing simple but important result follows directly from their definition and from the representation
of the core C(v) as a solution of a system of linear inequalities (formula (2.1) in the preceding
part; see also Proposition 3.1 in [3]): if v(e∗N) = v(eN)/n, then each element of the core C(v) is
a supergradient of the game v at the point e∗N .

Proposition 3.1. For any fuzzy TU -cooperative game v satisfying the condition v(e∗N) = v(eN )

n
,

one has the embedding C(v) ⊆ ∂̂v(e∗N).

Proof. The case of C(v) = ∅ does not need justification. Therefore, we will assume that
the core C(v) is not empty. To verify the embedding C(v) ⊆ ∂̂u(e∗N), consider an arbitrary pay-
off x ∈ C(v) and some fuzzy coalition τ . Since x · τ ≥ v(τ), we see that the following inequality
holds: x · τ − v(e∗N) ≥ v(τ) − v(e∗N). Hence, by virtue of the condition v(e∗N) = v(eN)/n and
the equality v(eN)/n = x(e∗N) following from the inclusion x ∈ C(v), we obtain the desired rela-
tion x · τ − x(e∗N) ≥ v(τ)− v(e∗N). Since τ is arbitrary, we see that x belongs to the superdifferen-
tial ∂̂v(e∗N), as desired. �

For more meaningful statements, some additional conditions are required. Recall [3] that a fuzzy
game v is said to be homogeneous if v(tτ) = tv(τ) for all t > 0 and τ ∈ σF such that tτ belongs
to σF . We introduce two weakened versions of homogeneity.

Definition 3.4. We say that a game v is weakly homogeneous if there exist positive numbers µ
and ν such that µ < 1 < ν ≤ n and moreover, v(µe∗N) = µv(e∗N) and v(νe∗N) = νv(e∗N).

Definition 3.5. A fuzzy game v is said to be diagonally homogeneous (D-homogeneous) if we
have v(teN) = tv(eN) for each t ∈ [0, 1].

Remark 3.2 . One can readily verify that the condition occurring in the definition of diagonal
homogeneity is equivalent to the following: v(te∗N) = tv(e∗N) for each t ∈ [0, n].
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The following statement is simple but important.

Theorem 3.1. For any V -balanced weakly homogeneous fuzzy TU -cooperative game v satisfying
the condition v(e∗N) = v(eN)/n, one has C(v) = ∂̂v(e∗N).

Proof. The relation C(v) ⊆ ∂̂v(e∗N) was established in Proposition 3.1. Let us prove the
embedding ∂̂v(e∗N) ⊆ C(v). Let x be an arbitrary element of ∂̂v(e∗N). It follows from the weak
homogeneity of v that there exist numbers µ ∈ (0, 1) and ν ∈ (1, n] such that v(µe∗N) = µv(∗N)
and v(νe∗N) = νv(e∗N). Set δ = 1− µ and γ = ν − 1. By the definition of the supergradient at the
point e∗N , taking into account the weak homogeneity of the game v, we have

x · δe∗N = x · e∗N − x · µe∗N ≤ v(e∗N)− v(µe∗N) = δv(e∗N),

x · γe∗N = x · νe∗N − x · e∗N ≥ v(νe∗N)− v(e∗N) = γv(e∗N),

and therefore, since the numbers δ and γ are positive, we obtain the relation x · e∗N = v(e∗N). Hence,
in view of the inequalities

x · τ − x · e∗N ≥ v(τ)− v(e∗N), τ ∈ σ∗F ,

following from the inclusion x ∈ ∂̂v(e∗N), we have x · τ ≥ v(τ) for all coalitions τ ∈ σF . To complete
the proof of the inclusion x ∈ C(v), it remains to note that the condition v(e∗N) = v(eN)/n and the
equation x · e∗N = v(e∗N) established above imply the relation x · eN = v(eN). �

Corollary 3.1. If C(v) 6= ∅ and v is a diagonally homogeneous game, then C(v) = ∂̂v(e∗N).

Corollary 3.2. If C(v) 6= ∅ and v is a homogeneous game, then C(v) = ∂̂v(e∗N).

Remark 3.3 . One can readily verify that for a diagonally homogeneous game v (with nonempty
core), its superdifferentials at all points of the interval (0, ne∗N) := {te∗N | t ∈ (0, n)} coincide
with each other. This is true because they are equal to the core C(v). (The proof reproduces the
argument in Theorem 3.1 almost word for word.) Therefore, we can replace e∗N by any other point
of the interval (0, ne∗N) in the definition of the superdifferential of a diagonally homogeneous game.

Let us proceed to the general (not necessarily weakly homogeneous) case3 and show that for
any V -balanced fuzzy TU -cooperative game v there exists a fuzzy game u whose superdifferential
at the point e∗N coincides with the core of v, C(v) = ∂̂u(e∗N). Here one version of the game u
can be constructed using the S∗-representation v∗ of the fuzzy game v. Namely, from the S∗-
representation v∗ of the game v we construct the so-called homogeneous extension v̂ of the game v
to σF and show that this extension can play the role of the above-indicated game u.

Definition 3.6. The homogeneous extension of a game v is the function v̂ defined by the formula

v̂(τ) := tv∗(τ ∗) for τ = tτ ∗ ∈ σF , τ ∗ ∈ σ∗F . (3.2)

Remark 3.4 . The analysis of the basic properties of the homogeneous extension v̂ of the game v
is of considerable independent interest. In addition to the relationship between the cores of the
games v and v̂ considered below, we note here the theoretically important property of preserving
the concavity of the game v∗: if v∗ is a concave game, then so is the game v̂. Indeed, let v∗ be
a concave game. Consider arbitrary fuzzy coalitions τ ∗, τ ′∗ ∈ σ∗F , τ = tτ ∗, τ ′ = t′τ ′∗ and nonnegative
numbers λ and λ′ such that λ + λ′ = 1. Let us show that v̂(λτ + λ′τ ′) ≥ λv̂(τ) + λ′v̂(τ ′). To this
end, using formula (3.2), we obtain

v̂(λτ + λ′τ ′) = v̂

(
(λt+ λ′t′)

[
λtτ ∗ + λ′t′τ ′∗

λt+ λ′t′

])
= (λt+ λ′t′)v∗(τ̄ ∗), (3.3)

3 For example, the well-known multilinear Owen extension [10] is inhomogeneous.
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where
τ̄ ∗ =

λt

λt+ λ′t′
τ ∗ +

λ′τ ′

λt+ λ′t′
τ ′∗.

It is clear that τ̄ ∗, being a convex combination of the elements τ ∗ and τ ′∗ of σ∗F , belongs to the sim-
plex σ∗F . Therefore, relation (3.3) is defining for v̂(λτ+λ′τ ′). Namely, according to the construction
of v̂, we have v̂(λτ + λ′τ ′) = (λt+ λ′t′)v∗(τ̄ ∗). Hence, owing to the concavity of the function v∗, we
obtain

v̂(λτ + λ′τ ′) ≥ (λt+ λ′t′)

[
λt

λt+ λ′t′
v∗(τ ∗) +

λ′t′

λt+ λ′t′
v∗(τ ′∗)

]
.

Therefore, taking into account the relations v̂(tτ ∗) = tv∗(τ ∗), v̂(t′τ ′∗) = t′v∗(τ ′∗) and τ = tτ ∗,
τ ′ = t′τ ′∗, we obtain the desired result v̂(λτ + λ′τ ′) ≥ λv̂(τ) + λ′v̂(τ ′).

Let us proceed to the analysis of the relationship between the cores of the games v and v̂.

Theorem 3.2. For every function v , the game v̂ is homogeneous. Moreover, if the core C(v) is
nonempty, then the equality C(v) = C(v̂) holds.

Proof. The homogeneity of v̂ readily follows from the construction of this game. Indeed,
let τ = rτ ∗, and let t be an arbitrary nonnegative number. Then tτ = t′τ ∗, where t′ = tr. Therefore,
by the definition of v̂, we have v̂(tτ) = t′v∗(τ ∗) = trv∗(τ ∗) = tv̂(rτ ∗) = tv̂(τ).

Now let us show that C(v̂) = C(v). By Theorem 2.2 (in particular, proving the equality
C(v) = C(v∗) if C(v) is nonempty), it suffices to verify that C(v̂) = C(v∗).

1. C(v∗) ⊆ C(v̂).
Consider an arbitrary element x in C(v∗). It satisfies the relations x · τ ∗ ≥ v∗(τ ∗), τ ∗ ∈ σ∗F ,

and x · e∗N = v∗(e∗N).
Let us fix some fuzzy coalition τ = tτ ∗ ∈ σF . By virtue of the above relations we have

x · tτ ∗ ≥ tv∗(τ ∗) = v̂(τ), and in addition, x · eN = v(eN) = v̂(eN). Indeed, based on the equality
v∗(e∗N) = v(eN)/n, which follows in view of Proposition 2.1 from the assumption that C(v) 6= ∅, we
have v̂(eN) = nv∗(e∗N) = v(eN). Hence x · eN = v̂(eN). Since τ ∈ σF is arbitrary, we obtain the
desired relation C(v∗) ⊆ C(v̂).

2. C(v̂) ⊆ C(v∗).
Consider an arbitrary element x ∈ C(v̂), some fuzzy coalition τ ∗ ∈ σ∗F , and a number t > 0 such

that τ = tτ ∗ belongs to σF . By the definition of v̂ and the fact that x belongs to the core C(v̂), we
have the relations x · τ = x · tτ ∗ ≥ v̂(τ) = tv∗(τ ∗) and x · eN = x · ne∗N = v̂(eN) = nv∗(e∗N).

From the last relations, we obtain x · eN = nv∗(e∗N) = v(eN) and hence x · e∗N = v∗(e∗N) (in view
of the already mentioned equality v∗(e∗N) = v(eN)/n). Dividing the first of the above relations by t,
we obtain the inequality x · τ ∗ ≥ v∗(τ ∗). Since the choice of x ∈ C(v̂) and τ ∗ ∈ σ∗F is arbitrary, this
completes the proof of the embedding C(v̂) ⊆ C(v∗). �

Summarizing Corollary 3.2 and Theorem 3.2, we obtain the main result of the paper.

Theorem 3.3. The formula C(v) = ∂̂v̂(e∗N) holds for any V -balanced fuzzy TU -cooperative
game v.

4. APPLICATIONS OF THEOREM 3.3

Thus, according to Theorem 3.3, for any fuzzy cooperative game v with side payments that has
a nonempty core C(v) there exists a representation of this core in the form of the superdifferen-
tial ∂̂u(e∗N) of a suitable fuzzy game u (for which we can take the game v itself if it is homogeneous
or its homogeneous extension u = v̂ otherwise). As was already noted, the existence of such a repre-
sentation permits widely using the technique of subdifferential calculus, from questions concerning
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the existence of nonblocking payoffs for specific classes of fuzzy games to describing the structure
of their cores. Here are two examples demonstrating this capability. We point out right away that
the nonemptiness of the cores (anticores) of the games considered in these examples follows from
their superlinearity in the first example and sublinearity in the second example (Theorem 2.3 in the
preceding section; see also Corollary 5.3 in [3]).

Example 4.1 . We start from a description of the core of the classical Aubin extension [9] for
“almost positive” cooperative games v characterized by the fact that their Harsanyi dividends corre-
sponding to more than one-element coalitions are nonnegative (the set of such games will be denoted
by V+2). Let us show that the core of the Aubin extension for any game v ∈ V+2 consists of a single
element, the Shapley value Φ(v) of this game: C(v) = {Φ(v)}.

Let us proceed to a detailed consideration. Recall (see, e.g., [2]) that the Harsanyi dividends of
the usual game v are the numbers vT uniquely determined from the system of linear equations∑

T⊆S

vT = v(S), S ⊆ N

(by definition, v(∅) = 0). The Aubin extension [9] of the game v is the fuzzy game vAub defined by
the formula

vAub(τ) :=
∑
T⊆N

vT
∏
i∈T

τ
1/|T |
i , τ = (τ1, . . . , τn) ∈ σF (4.1)

where the number of elements of a finite set T is denoted by |T |. It is clear that if the divi-
dends vT are nonnegative for |T | ≥ 2, then the function vAub is concave on the set IN = {x ∈ RN |
xi ∈ [0, 1], i ∈ N}. We also recall that by Theorem 25.1 in [7], in the case of concavity of the func-
tion f , its differentiability at the point x∗ implies the equality ∂̂f(x∗) = {∇f(x∗)}, where ∇f(x∗)
is the gradient of the function f at the point x∗ (i.e., in the indicated case, the superdifferential of
the function f at the point x∗ consists of a single element, namely, the gradient ∇f(x∗)). Hence,
taking into account the differentiability of the extension vAub at the point e∗N , we obtain

∂̂vAub(e
∗
N) =

{
∇vAub(e∗N)

}
, v ∈ V+2,

where, as was already noted, V+2 is the collection of all (ordinary) TU -cooperative games of n
persons v such that vT ≥ 0 for |T | ≥ 2. Therefore, on the basis of the V -balance and homogeneity
of the game vAub, Theorem 3.1 implies the relation

C(vAub) =
{
∇vAub(e∗N)

}
, v ∈ V+2. (4.2)

Finally, according to one well-known formula for the Shapley value Φ(v) of the game v (see, e.g., [6]),
we have

Φ(v)i =
∑
T∈σi

vT/|T |, i ∈ N, (4.3)

where σi := {S ⊆ N | i ∈ S}, i ∈ N . Using formula (4.3), we find that the core C(vAub) of the
Aubin extension for any game v ∈ V+2 consists of a single element, the Shapley value of this game,

C(vAub) =
{

Φ(v)
}
, v ∈ V+2. (4.4)

Indeed, calculating the partial derivatives of the function vAub defined by formula (4.1) at the
point e∗N , we have

∂vAub
∂τi

(e∗N) =
∑
T∈σi

1

|T |
vT

 ∏
j∈T\i

τ
1/|T |
j

 τ
(1−|T |)/|T |
i

 (e∗N)

=
∑
T∈σi

1

|T |
vT

[(
n(1−|T |)/|T |)n(|T |−1)/|T |

]
=
∑
T∈σi

vT
|T |

,

which, by virtue of formula (4.3), gives the desired equality (4.4).
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Summarizing the above, we obtain the following statement.

Proposition 4.1. Let the Harsanyi dividends of the cooperative game v : S → R, S ⊆ N ,
corresponding to coalitions with two or more participants be nonnegative. Then the core of the Aubin
extension vAub of this game is a singleton and consists of its Shapley value, C(vAub) = {Φ(v)}.

Example 4.2 . In conclusion, let us give a description of the anticores of fuzzy games such as
the Airport game [4, 11] arising in the framework of the cooperative analysis of the rational dis-
tribution of costs in the implementation of joint projects. We recall the appropriate analogs of
the classical blocking and the core for such games and indicate the resulting modification of the
representation (2.1).

Definition 4.1. A fuzzy coalition τ = (τ1, . . . , τn) a-blocks a payoff x = (x1, . . . , xn) ∈ Gv(eN),
if there exists a y = (yi)i∈N(τ) ∈ Rτ such that

(ab.1)
∑

i∈N(τ)

τiyi ≥ v(τ).

(ab.2) yi < xi, i ∈ N(τ).

Definition 4.2. The anticore (briefly, a-core) of a fuzzy cooperative game v is the set of all
payoffs of this game that are not a-blocked by any coalition τ ∈ σF . The anticore of a game v will
be denoted by C−(v).

One can readily verify that the a-core of a fuzzy TU -cooperative game v has the form

C−(v) =
{
x ∈ RN

∣∣x · eN = v(eN), x · τ ≤ v(τ), τ ∈ σF
}
.

In addition, the relationship between the a-core and the ordinary core is given by the formula

C−(v) = −C(−v), v ∈ V.

Let us give an example of application of Theorem 3.3 and one well-known result of subdifferential
calculus to the description of the anticore of the so-called generalized airport game vA. The latter
is determined by a finite set of vectors A = {ak}k∈K ⊆ Rn by the formula

vA(τ) := max
k∈K

ak · τ, τ ∈ σF

(a fuzzy analog of the classical Airport game [4, 11] defined by the parameters K = {1, . . . , n},
ak = cke

k, k ∈ K, where the vector ek is the kth unit vector in the space Rn and ck is a positive
number). Taking into account the homogeneity of the game vA, on the basis of Theorem 3.3 and
the well-known result of subdifferential calculus (the subdifferential form of the clearing theorem
in [5, p. 50]) we obtain the following description of the anticore of the game vA.

Proposition 4.2. For any finite set of vectors A = {ak}k∈K , one has the formula

C−(vA) = co
{
ar | r ∈ R(N)

}
,

where R(N) := {r ∈ K | ar · eN = max
k∈K

ak · eN}.
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