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Abstract—The aim of the present paper is to synthesize an adaptive control system with
variable adaptation-loop gain to compensate for the plant parametric uncertainty. In contrast
to the existing ones, such a system simultaneously (1) includes an algorithm for the automatic
calculation of the parameter adjustment law gain in the controller, which operates in proportion
to the current regressor value, thus permitting one to obtain an adjustable upper bound for the
rate of convergence of the plant output–controller parameter errors to zero (subject to the
condition of persistent excitation of the regressor); (2) does not require knowing the signs or
values of the entries of the plant gain matrix. The Lyapunov second method and the recursive
least squares method are used to synthesize such a control system. For this system, the stability
and the boundedness of the above-mentioned error values are proved, and estimates for the rate
of their convergence to zero are obtained. The efficiency of our approach is demonstrated by
mathematical modeling of an example of a plant corresponding to the statement of the research
problem.
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1. INTRODUCTION

The main purpose of operation of adaptive control systems with a reference model is to maintain
the desired control performance in the presence of a substantial parametric uncertainty of the plant
by adjusting the controller parameters. Nowadays, there are two classical approaches to designing
such control systems, namely, indirect and direct adaptive control [1, 2]. This paper deals exclusively
with the problem of direct adaptive control based on the complete vector of state coordinates.

The algorithm for adjusting the controller parameters in direct adaptive control schemes is usu-
ally based on a first-order optimization method (the gradient descent method and its variations)
as well as on the Lyapunov second method [1, 3, 4]. So far, most adjustment laws involve the
following unresolved problems: first, a persistent excitation of the regressor is necessary for the
exponential decay of the parametric error between the adjusted and ideal controller parameters;
second, the adaptation law contains a parameter—the adaptation gain—that must be chosen ex-
perimentally [4, 5]. The main techniques for solving the first problem can be found in [6]. In the
present paper, we focus on the analysis and solution of the second problem.
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The very presence of an experimentally selected parameter in the adjustment law causes diffi-
culties, because it is not always possible to carry out experiments on its selection with a real plant,
while the gain selected on the basis of a mathematical model is most often unsuitable for the real
plant.

To analyze other problems that arise when using a constant value of the gain, we separately
consider the cases of presence and absence of a persistent excitation of the regressor.

In the absence of persistent excitation, it is well known [1] that the use of large values of the
adaptation-loop gain for a real plant can strongly amplify the high-frequency parasitic components in
the plant dynamics and the measurement noise, which is unacceptable from the viewpoint of robust
stability [7, 8]. Three types of instability of adaptive control systems caused by a high adjustment
law gain and the presence of parasitic high-frequency dynamics in the plant are distinguished in
the literature: instability due to fast adaptation, high-frequency instability, and instability due to
large values of the controller parameters obtained as a result of adaptation [1, 7, 8, 9]. All these
effects necessitate a trade-off in the choice of the gain: its values must be large enough to ensure
a satisfactory performance of the adaptation process but not large enough to enhance the parasitic
dynamics of the plant.

In addition, even if the gain is selected appropriately and the parasitic dynamics is absent, an
adaptive system provides the desired performance of the adjustment algorithm and hence of the
control only for a limited number of reference values for the plant under consideration. This is
because the adaptive control system, even with a linear plant and a linear reference model, forms
a nonlinear closed control loop, for which the superposition principle does not hold [10]. A gain
scaling method was proposed in [11, 12] to solve this problem and ensure the desired performance
for the widest range of tasks in the system. An approach using a similar idea can be found in [13].
These techniques allow the experimentally selected optimal rate to be scaled to different settings.
The disadvantage of this method is the need for the experimental, manual selection of the initial
gain value ensuring that the adaptation process has the desired convergence rate and of the scaling
factor. Thus, the main disadvantages of using a constant adaptation law gain value in the absence
of persistent excitation are the possible amplification of the high-frequency dynamics if the gain is
too large and the limited number of tasks for which the desired adjustment rate of the controller
parameters can be ensured.

In the presence of a persistent excitation, the above-described disadvantages associated with the
use of large gain values are supplemented with yet another problem. In [6, 7, 14], the existence of an
optimal gain value for the current regressor in the presence of persistent excitation was proved, and
it was shown by example that the convergence rate of the adaptation process decreases rather than
increases with the gain increasing beyond the optimal value. This means, on the one hand, that
the rate of convergence of the adjusted parameters to the ideal values cannot be made arbitrarily
large, and on the other hand, that for each new value of the regressor there exists a new optimal
value of the gain for the adaptation process.

It follows from the analysis that the use of an experimentally selected constant adaptation gain
in the presence as well as absence of persistent excitation leads to serious problems that significantly
reduce the likelihood of success in the practical implementation of adaptive control systems.

Thus, the problem of developing a method for adjusting the gain in the adaptation loop is topical
in the theory of adaptive systems and especially in their practical application.

Therefore, in this study we suggest to develop an adaptation loop that includes an algorithm
for calculating the gain and hence is free from the above-described disadvantages related to its
experimental selection. As a basis for the development of such a loop, we suggest to use the recursive
least squares method with exponential forgetting factor [1, 8]. The advantages of this method are
the presence of a gain adjustment law per se and the exponential decay of the parametric error
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with an adjustable convergence rate under the persistent excitation condition [1]. This approach is
widely known in identification theory; however, the authors have not been able to find its efficient
applications in direct adaptive control schemes.

In the present paper, when developing a parameter adaption loop for the controller with a variable
adjustment rate, we restrict ourselves to the case of persistent excitation of the predictor.

2. STATEMENT OF THE PROBLEM

We consider the adaptive control problem for a class of linear plants that can be written in the
space of state coordinates in the Frobenius form

ẋ = Ax+Bu, (2.1)

where x ∈ Rn is the vector of plant state coordinates, u ∈ R is the control, A ∈ Rn×n is the
Frobenius matrix of system states, and B = [0, 0, . . . , b] ∈ Rn×1 is the gain matrix. The values of A
and B are unknown, but the pair (A,B) is controllable. It is assumed that the state coordinate
vector x and the vector ẋ of its first derivatives are available for direct measurement. In practice, one
can estimate the derivative of the state coordinate vector, in particular, by the methods in [15, 16].
The reference model determining the desired control performance for the plant (2.1) with unknown
parameters is taken in the Frobenius form as well,

ẋref = Aref xref +Bref r, (2.2)

where xref ∈ Rn is the state coordinate vector of the reference model, r ∈ R is a bounded reference
input signal, and Bref = [0, 0, . . . , bref ] ∈ Rn×1. The state matrix Aref ∈ Rn×n of the reference
model is a Hurwitz matrix and is written in Frobenius form.

The equation for the errors between the plant equations (2.1) and the reference model equations
(2.2) can be found in the form

ėref = Aref eref +Bu− (Aref −A)x−Bref r. (2.3)

Since both the plant and the reference model are written in Frobenius form, it follows that the
adaptability condition [4] is naturally satisfied,

rank {B,Bref } = rank {B,A−Aref } = 1. (2.4)

Assertion. If the adaptability condition (2.4) is satisfied then so are the relations

BB† =

 Zn−1,n

0 0 . . . 1

 ;

BB† (Aref −A) = Aref −A; BB†Bref = Bref ,

(2.5)

where Zn−1,n is the zero matrix. The assertion can be verified, for example, by a straightforward
substitution of any matrices consistent with the statement of the problem into formulas (2.5).

Condition (2.4) and relations (2.5) permit one to rewrite Eq. (2.3) in the form

ėref = Aref eref +B
[
u−B† (Aref −A)x−B†Bref r

]
, (2.6)

where B† is the pseudoinverse of the matrix B.
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Then the control law delivering the desired control performance for the plant (2.1) can be deter-
mined from the error equation (2.6),

u∗ = B† [(Aref −A)x+Bref r] = krkxx+ krr,

krkx = B† (Aref −A) ; kr = B†Bref ,
(2.7)

where kx ∈ R1×n and kr ∈ R are the ideal control law parameters.
For the case of known, say, rated values of the entries of the matrices A and B, one can calculate

the ideal controller for the plant (2.1) by formulas (2.7).
For the case of unknown (quasistationary) parameters of the matrices A and B, we introduce

a control law with the current parameters

u = k̂rk̂xx+ k̂rr. (2.8)

From the definition of the parameters kx and kr in the expression (2.7), one can derive analytical
expressions for calculating the matrix B and the difference (Aref −A),

Aref −A = Bref kx; B = k−1
r Bref . (2.9)

Taking into account the expressions (2.9) when substituting the control law (2.8) into the error
equation (2.6), we obtain

ėref = Aref eref +B
[
k̂rk̂xx+ k̂rr

]
− (Aref −A)x−Bref r

= Aref eref + k−1
r Bref

[
k̂rk̂xx+ k̂rr

]
−Bref kxx−Bref r +

(
Bref k̂xx−Bref k̂xx

)
= Aref eref +Bref

[(
k̂x − kx

)
x+ k̂xx

(
k−1
r k̂r − I

)
+ r

(
k−1
r k̂r − I

)]
= Aref eref +Bref

[
k̃xx+

(
k−1
r k̂r − I

)(
k̂xx+ r

)]
= Aref eref +Bref

[
k̃xx− k̃−1

r k̂r

(
k̂xx+ r

)]
.

(2.10)

Here k̃x = k̂x − kx, k̃−1
r = k̂−1

r − k−1
r . In Eq. (2.10), we introduce the notion of a generalized

parameter error function ε,

ε = Bref θ̃
Tω, ω =

[
xT −k̂r

(
k̂xx+ r

) ]T

; θ̃T =
[
k̃x k̃−1

r

]
= θ̂T − θT. (2.11)

Here θ̂T ∈ Rn+1 are adjustable parameters via which one can calculate (by inverting the esti-
mate k̂−1

r ) the current parameters of the controller (2.8), θT ∈ Rn+1 are the ideal parameters via
which one can calculate (by inverting k−1

r ) the parameters of the ideal controller (2.7), and θ̃T ∈ Rn+1

is the difference between θ̂T and θT. Then Eq. (2.10), in view of (2.11), can be rewritten in the
form

ėref = Aref eref +Bref θ̃
Tω. (2.12)

Based on Eq. (2.12), one can derive an adaptation law for the controller (2.8). Since we can pass
from θ̂ to the current parameters k̂x, k̂r of the controller (2.8), its adaptation law will be understood
to be the adjustment law θ̂. The parametrization (2.12) was for the first time proposed in [17] with
the aim to construct an adaptation law that does not require knowledge of the plant gain matrix B.

For system (2.12), we need to construct a law for adjusting the parameters θ̂ not requiring an
experimental, manual selection of the adjustment law gain and ensuring the exponential decay of
the error ξ =

[
eT

ref θ̃T
]T under the persistent excitation condition for the regressor ω.
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Definition. For a bounded signal ω, the persistent excitation condition is satisfied if for all t > 0
there exists a T > 0 and an α > 0 such that

t+T∫
t

ω (τ)ωT (τ) dτ > αI, (2.13)

where I is the identity matrix and α is the excitation degree.

3. IDENTIFYING THE IDEAL PARAMETERS OF A CONTROLLER
WITH VARIABLE GAIN IN THE ADAPTATION LOOP

To achieve our goal, we start by constructing an estimation law θ̂ that only ensures the expo-
nential decay of the error θ̃T rather than of the entire vector ξ and does not involve manual gain
selection.

To this end, we introduce the notion of desired behavior for the error equation (2.12), which we
specify by the differential equation

ėd = Aref eref . (3.1)

Then the generalized parametric error (2.11) can be calculated via the difference between the
error equation (2.12) and its desired behavior (3.1),

ε = ėref − ėd = Bref θ̃
Tω = Bref

(
θ̂T − θT

)
ω = Bref

(
θ̂Tω − y

)
, (3.2)

where y is the ideal value of the parametric disturbance in system (2.12).
Equation (3.2) implies that

B†ref ε = θ̃Tω =
(
θ̂T − θT

)
ω = θ̂Tω − y. (3.3)

At this stage, following the recursive least squares method, we introduce the measurements y(τ)
and ω(τ), 0 6 τ < t, to construct the identification loop θ̂ (t) for the ideal parameters θ at time t.
Taking into account the new time, we write Eq. (3.3) as

B†ref ε = θ̂T (t)ω (τ)− y (τ) . (3.4)

In this case, the target criterion for minimizing the expression (3.4) according to the recursive
least squares method with exponential forgetting factor is written in the integral form

Q
(
θ̂
)

=
1

2

t∫
0

e−λ(t−τ)
(
B†ref ε

)T
B†ref εdτ, (3.5)

where λ is the exponential forgetting factor.
The condition for the minimum of the criterion (3.5) is that its gradient with respect to the

adjusted parameters is zero,

∇θ̂TQT
(
θ̂
)

=

t∫
0

e−λ(t−τ)ω (τ)
[
ωT (τ) θ̂ (t)− yT (τ)

]
dτ = 0. (3.6)
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In the expression (3.6), we use the property of the sum of integrals, multiply out, and transpose
the term containing the ideal value of the parametric disturbance to the right-hand side of the
equation,

t∫
0

e−λ(t−τ)ω (τ)ωT (τ) θ̂ (t) dτ =

t∫
0

e−λ(t−τ)ω (τ) yT (τ) dτ. (3.7)

From (3.7), using the least squares method, one can obtain an estimate θ̂ for the ideal parameters
of the controller θ,

θ̂ (t) =

 t∫
0

e−λ(t−τ)ω (τ)ωT (τ) dτ

−1

︸ ︷︷ ︸
Γ(t)

t∫
0

e−λ(t−τ)ω (τ) yT (τ) dτ. (3.8)

Here Γ(t) is the gain matrix of the parameter adjustment law for the approximating linear
regression.

The time variation law of the matrix Γ−1(t) can be found from the theorem on the derivative of
an integral with respect to the upper limit,

dΓ−1

dt
= ω(t)ωT(t)− λ

t∫
0

e−λ(t−τ)ω(τ)ωT(τ)dτ = ω(t)ωT(t)− λΓ−1(t). (3.9)

At this stage, we introduce the auxiliary equation

dI

dt
=

d

dt

[
Γ (t) Γ−1 (t)

]
=
dΓ (t)

dt
Γ−1 (t) +

dΓ−1 (t)

dt
Γ (t) = 0. (3.10)

Taking into account the expression (3.10) and the earlier-introduced definitions of the matri-
ces Γ(t) and Γ−1(t), we obtain the time variation law of the matrix Γ(t),

dΓ (t)

dt
= −Γ (t)

dΓ−1 (t)

dt
Γ (t) = λΓ (t)− Γ (t)ω (t)ωT (t) Γ (t) . (3.11)

We find a formula for estimating the parameters of the ideal control law (2.7) with allowance for
the expression (3.11) by differentiating the estimate (3.8) with respect to time,

dθ̂ (t)

dt
=
dΓ (t)

dt

t∫
0

e−λ(t−τ)ω (τ) yT (τ) dτ + Γ (t)
d

dt

 t∫
0

e−λ(t−τ)ω (τ) yT (τ) dτ


=
(
λ− Γ (t)ω (t)ωT (t)

)
θ̂ (t)− λθ̂ (t) + Γ (t)ω (t) yT (t)

= Γ (t)ω (t)
[
yT (t)− ωT (t) θ̂ (t)

]
.

(3.12)

In view of (3.4), Eq. (3.12) can be reduced to the form

dθ̂ (t)

dt
= −Γ (t)ω (t)

(
B†ref ε

)T
. (3.13)

Thus, the identification loop for ideal parameters of the controller (2.7) is described by the
evolution law (3.11) for the gain matrix and directly by the adaptation law (3.13),

˙̂
θ = −Γω

(
B†ref ε

)T
,

Γ̇ = λΓ− ΓωωTΓ.
(3.14)

AUTOMATION AND REMOTE CONTROL Vol. 82 No. 4 2021



ADAPTIVE CONTROL SYSTEM WITH A VARIABLE ADJUSTMENT LAW GAIN 625

Let us state the properties of the estimation loop (3.14) in the form of a theorem.

Theorem 1. The estimation loop (3.14) for the error θ̃ ensures the following properties:

1. The error θ̃ is a bounded function, θ̃ ∈ L2 ∩ L∞ ;
2. If the persistent excitation condition (2.13) holds and the first derivative of the regressor is

bounded, ω̇ ∈ L∞ , then the error θ̃ decays exponentially at a rate faster than κ (its value is
determined in the Appendix).

The proof of Theorem 1 is given in the Appendix.

4. SYNTHESIS OF ADAPTIVE CONTROL WITH A VARIABLE
ADJUSTMENT-LOOP GAIN

Earlier in the present paper, we have proved the convergence of the parametric error θ̃ to zero and
hence the identification properties of the estimation loop (3.14) for the ideal controller parameters.
However, the convergence of the entire vector ξ to zero and hence the stability of the closed-
loop control (2.12) when using the resulting estimates of the parameters have not been considered.
Therefore, let us take formulas (3.14) as basic ones and modify them so as to ensure the convergence
to zero not only of the parameter error θ̃ but also of the tracking error eref . We present the results
of this modification as the following theorem.

Theorem 2. Let the adaptation loop for the closed control loop (2.12) be described by the ex-
pressions

˙̂
θ = −Γω

[
B†ref ε+BT

ref Peref

]T
,

Γ̇ = λΓ− 2ΓωωTΓ,
(4.1)

where P is a matrix obtained by solving the Lyapunov equation

ATref P + PAref = −Q,

and Q is a matrix to be chosen experimentally.
Then

1. The error ξ is a bounded function, ξ ∈ L2 ∩ L∞.
2. Condition (2.13) ensures the exponential decay of the error ξ at a rate faster than ηmin.
3. Under condition (2.13), the maximum convergence rate ηmax of the error ξ to zero can be made

arbitrarily high by increasing the parameter λ.

The proof of Theorem 2, as well as the values of ηmin and ηmax, is given in the Appendix.

5. EXAMPLE

The efficiency of our approach was demonstrated by mathematical modeling of the closed-loop
system (2.12) when adapting the parameters of the control law (2.8) according to formulas (4.1).
Modeling was performed in Matlab/Simulink based on numerical integration by the Euler method.
In all the experiments, we used the constant discretization step τs = 10−6 s. The plant was described
in the experiments by the equation

ẋ =

[
0 1

4 2

]
x+

[
0

2

]
u.
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s

Fig. 1. Norm of the adaptation process gain matrix.

s s

Fig. 2. Transients of the norms of the parameter error θ̃ and the error ξ.

The reference model for the plant was chosen according to the equation

ẋref =

[
0 1

−8 −4

]
xref +

[
0

8

]
r.

According to the results presented, e.g., in [7], to ensure the persistent excitation condition for
a second-order plant, one should use a harmonic signal with at least two frequencies for the input
signal. Therefore, the persistent excitation condition (2.13) for the predictor ω was satisfied in the
experiments by using the harmonic signal

r = 125 sin (t) + 250 sin (125t) + 500 sin (250t) .

All in all, we carried out two experiments. In the first experiment (see Figs. 1 and 2), the initial
value of the matrix Γ(0), the initial values of the parameters of the control law (2.8), and the value
of the forgetting factor λ were selected as follows:

Γ (0) = 0,1I; θ̂T (0) =
[

0 0 1

]
; λ = 25.

It follows from the modeling results (Figs. 1 and 2) that the proposed adaptation loop (4.1)
ensures the exponential decay of the parameter error θ̃ and the error ξ, with a variable adaptation-
loop gain used in the adaptation process.

In the second experiment, we used different values of the forgetting factor λ,

λ1 = 25; λ2 = 100; λ3 = 1000.

However, the initial value of the matrix Γ(0) and the initial values of the coefficients of the
control law (2.8) were the same as in the first experiment.
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s s

Fig. 3. Transients of the norms of the parameter error θ̃ and the error ξ for various λ.

It follows from the modeling results (Fig. 3) that, when increasing the forgetting factor, the rate
of convergence of the parameter error and the error ξ increases as well. This confirms the results
obtained in the proof of Theorem 2.

It can also be seen from Fig. 3 that significant oscillations arise as λ→∞; this also confirms the
conclusions made in the Remark to Theorem 2. To eliminate this drawback, in further research we
plan to modify the developed adaptation loop (4.1) by using methods of extension and filtering of
the predictor [6] with the aim to minimize the value of T (maximize the admissible value of λ).

6. CONCLUSIONS

In the present paper, we have proposed an adaptive control system that, under the persistent
excitation condition, does not require experimental, manual selection of the adaptation process gain
matrix and, at the same time, ensures the exponential decay of the tracking error and the parameter
error with an adjustable upper bound for the convergence rate.

Unlike the classical gradient scheme, which has a limit convergence rate for the current regres-
sor [6, 13, 14], in the developed scheme, according to the proof of Theorem 2, the analysis performed,
and the results of experiments, the upper bound for the convergence rate can be made arbitrarily
large by increasing the forgetting factor λ.

In further studies, we plan to modify the developed adaptation loop so as to relax the assumptions
used (the persistent excitation condition and the availability of the first derivative of the state
coordinate vector) and improve its properties (eliminate the oscillations at large λ and ensure the
monotone exponential convergence).

APPENDIX

Proof of Theorem 1. To prove the theorem, we substitute the expression (3.3) into Eq. (3.13).
Then, under the condition θ = const, we have the equation

˙̃
θ = −ΓωωTθ̃. (A.1)

We select a candidate for the Lyapunov function as the quadratic form

V = θ̃TΓ−1θ̃,

λmin

(
Γ−1

) ∥∥∥θ̃∥∥∥2

6 V 6 λmax

(
Γ−1

) ∥∥∥θ̃∥∥∥2

,
(A.2)

where λmin(.) and λmax(.) are the minimum and maximum eigenvalues of a matrix.
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In view of Eqs. (3.9) and (3.13), the derivative of the quadratic form (A.2) along the trajectories
of Eq. (A.1) is as follows:

V̇ = 2θ̃
T

Γ−1 ˙̃
θ + θ̃TΓ̇−1θ̃ = −2θ̃

T

Γ−1
[
ΓωωTθ̃

]
+ θ̃T

[
ωωT − λΓ−1

]
θ̃

= −θ̃TωωTθ̃ − λθ̃TΓ−1θ̃ = −
(
B†ref ε

) (
B†ref ε

)T
− λθ̃TΓ−1θ̃

6 −
∥∥B†ref

∥∥2
‖ε‖2 − λλmin

(
Γ−1

) ∥∥∥θ̃∥∥∥2

.

(A.3)

The derivative (A.3) of the positive definite quadratic form (A.2) is a negative semidefinite
function, and therefore, the parameter error is θ̃ ∈ L∞, the generalized error is ε ∈ L∞, and Eq. (A.2)
is a Lyapunov function for system (A.1). At the same time, the Lyapunov function (A.2) has a finite
limit as t→∞,

V
(
θ̃ (t→∞)

)
= V

(
θ̃ (t0)

)
+

∞∫
t0

V̇ dt = V
(
θ̃ (t0)

)
−
∞∫
t0

[(
B†ref ε

) (
B†ref ε

)T
+ λ

(
θ̃TΓ−1θ̃

)]
dt

⇒
∞∫
t0

[∥∥B†ref

∥∥2
‖ε‖2 + λλmin

(
Γ−1

) ∥∥∥θ̃∥∥∥2
]
dt = V

(
θ̃ (t0)

)
− V

(
θ̃ (t→∞)

)
<∞,

and then θ̃ ∈ L2 ∩ L∞ and ω ∈ L∞ (as a result of the fact that ε ∈ L2 ∩ L∞).
We have thus proved the first part of Theorem 1. To prove the second part of Theorem 1, we

find the second derivative of the Lyapunov function (A.2),

V̈ = −2
(
B†ref ε̇

) (
B†ref ε

)T
− λ

(
2θ̃TΓ−1 ˙̃

θ + θ̃TΓ̇−1θ̃
)

= −2
(
B†ref ε̇

) (
B†ref ε

)T
− λ

(
2θ̃T

[
−ωωTθ̃

]
+ θ̃T

[
ωωT − λΓ−1

]
θ̃
)

= −2
(
B†ref ε̇

) (
B†ref ε

)T
+ λ

(
2θ̃TωωTθ̃ − θ̃T

[
ωωT − λΓ−1

]
θ̃
)
.

(A.4)

Based on the expression (A.4), it is difficult to draw a conclusion on the boundedness of the second
derivative of the function (A.2); therefore, in view of the relation ˙̃

θ =
˙̂
θ, we find the derivative of

the generalized parameter error (3.2),

ε̇ = Bref

[
˙̃
θTω + θ̃Tω̇

]
= Bref

[
−ΓωωTθ̃ω + θ̃Tω̇

]
. (A.5)

Taking into account the expression (A.5), for calculation we rewrite Eq. (A.4) as

V̈ = −2
[
−ΓωωTθ̃ω + θ̃Tω̇

] (
B†ref ε

)T
+ λ

(
2θ̃TωωTθ̃ − θ̃T

[
ωωT − λΓ−1

]
θ̃
)
.

According to what has been proved, we have θ̃ ∈ L2 ∩ L∞, ε ∈ L2 ∩ L∞, and ω ∈ L∞, and
by the statement of Theorem 1, ω̇ ∈L∞. Then, to conclude that V̈ ∈L∞, it remains to prove
the L∞-boundedness of the matrices Γ and Γ−1. To this end, we obtain a solution of the differential
equation (3.9),

Γ−1 (t) = Γ−1 (0) e−λt +

t∫
0

e−λ(t−τ)ω (τ)ωT (τ) dτ.
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Under the persistent excitation condition (2.13), it can readily be shown that for all t > T the
value of Γ−1 is bounded below by the expression

Γ−1 (t) >

t∫
0

e−λ(t−τ)ω (τ)ωT (τ) dτ

=

t∫
t−T

e−λ(t−τ)ω (τ)ωT (τ) dτ +

t−T∫
0

e−λ(t−τ)ω (τ)ωT (τ) dτ.

(A.6)

Now we obtain upper bounds for each of the two integrals on the right-hand side in (A.6) by
the mean value theorem. To this end, we rewrite the persistent excitation condition (2.13) in the
equivalent form

t∫
t−T

ω (τ)ωT (τ) dτ > αI. (A.7)

Then, in view of the expression (A.7), the lower bound for the first integral has the form

t∫
t−T

e−λ(t−τ)ω (τ)ωT (τ) dτ > e−λT
t∫

t−T

ω (τ)ωT (τ) dτ > e−λTαI. (A.8)

In a similar manner, we produce a lower bound for the second integral,

t−T∫
0

e−λ(t−τ)ω (τ)ωT (τ) dτ > e−λT
t−T∫
0

ω (τ)ωT (τ) dτ > 0. (A.9)

Adding (A.8) and (A.9), we obtain a lower bound for the entire matrix Γ−1,

Γ−1 (t) > e−λTαI. (A.10)

Now we obtain a lower bound for the matrix Γ−1 ∀t 6 T ,

Γ−1 (t) > Γ−1 (0) e−λT > λmin

(
Γ−1 (0)

)
e−λT I. (A.11)

Then, in view of the estimates (A.10) and (A.11), the lower bound for the matrix Γ−1 for all t > 0
has the form

Γ−1 (t) > min
{
λmin

(
Γ−1 (0)

)
, α
}
e−λT I. (A.12)

Since ω ∈ L∞ by what has been proved, it follows that the expression ωωT satisfies the inequality

λmin

(
ωωT

)
6 ωωT 6 λmax

(
ωωT

)
. (A.13)

Taking into account inequality (A.13), we obtain an upper bound for the matrix Γ−1,

Γ−1 (t) 6 Γ−1 (0) + λmax

(
ωωT

) t∫
0

e−λ(t−τ) dτI 6 λmax

(
Γ−1 (0)

)
I +

λmax (ωωT)

λ
I. (A.14)
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By combining the expressions (A.12) and (A.14), we obtain inequalities for Γ and Γ−1,

min
{
λmin

(
Γ−1 (0)

)
, α
}
e−λT I 6 Γ−1 (t) 6 λmax

(
Γ−1 (0)

)
I +

λmax (ωωT)

λ
I,(

λmax

(
Γ−1 (0)

)
+
λmax (ωωT)

λ

)−1

I 6 Γ (t) 6 max
{
λ−1

min

(
Γ−1 (0)

)
, α−1

}
eλT I.

(A.15)

It clearly follows from the expressions (A.15) that Γ ∈ L∞, Γ−1 ∈ L∞, and hence V̈ ∈ L∞.
Then the derivative (A.3) of the Lyapunov function (A.2) is uniformly continuous, and V̇ → 0 by
Barbalat’s lemma. Accordingly, we achieve the convergence θ̃ → 0 as t→∞.

To find an estimate for the convergence rate of the error θ̃ to zero, we obtain an upper bound
for the derivative (A.3) with allowance for inequality (A.13),

V̇ = −θ̃TωωTθ̃ − λθ̃TΓ−1θ̃ 6 −λmin

(
ωωT

) ∥∥∥θ̃∥∥∥2

− λλmin

(
Γ−1

) ∥∥∥θ̃∥∥∥2

. (A.16)

Further, to determine the minimum convergence rate, we proceed from the lower and upper
bounds (A.15) for the matrix Γ−1 to an expression for the lower and upper bounds for its norm,∥∥Γ−1

∥∥ > √n+ 1
[
min

{
λmin

(
Γ−1 (0)

)
, α
}
e−λT

]︸ ︷︷ ︸
λmin(Γ−1)

,

∥∥Γ−1
∥∥ 6 √n+ 1

[
λmax

(
Γ−1 (0)

)
+
λmax (ωωT)

λ

]
︸ ︷︷ ︸

λmax(Γ−1)

.
(A.17)

Taking into account the expression (A.17), we rewrite the upper bound (A.16) as

V̇ 6 −λmin

(
ωωT

) ∥∥∥θ̃∥∥∥2

− λ
√
n+ 1

[
min

{
λmin

(
Γ−1 (0)

)
, α
}
e−λT

] ∥∥∥θ̃∥∥∥2

6 −

[
λλmin (ωωT) + λ2

√
n+ 1

[
min {λmin(Γ−1(0)), α} e−λT

]
√
n+ 1 [λλmax (Γ−1 (0)) + λmax (ωωT)]

]
λmax(Γ−1)

∥∥∥θ̃∥∥∥2

6 −κV.

Let us solve the resulting differential inequality substituting the lower bound∥∥∥θ̃∥∥∥ 6√λ−1
min (Γ−1) e−κ·tV (0) (A.18)

for the Lyapunov function into the left-hand side of the solution.
It follows from the expression (A.18) that the error θ̃ decays exponentially at a rate faster than κ,

which is exactly what is claimed in the second part of Theorem 1. �

Proof of Theorem 2. A candidate for the Lyapunov function in the study of the stability of
the closed-loop system (2.12) can be selected in the form of the sum of two quadratic forms,

V = ξTHξ = eT
ref Peref + θ̃TΓ−1θ̃,

H = blockdiag
{
P Γ−1

}
,

λmin (H) ‖ξ‖2 6 V 6 λmax (H) ‖ξ‖2.

(A.19)
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In view of the relation ˙̃
θ =

˙̂
θ and Eq. (3.3), the derivative of the quadratic form (A.19) according

to the deviation equation (2.12) and the adaptation loop equations (4.1) acquire the form

V̇ = ėT
ref Peref + eT

ref P ėref + 2θ̃TΓ−1 ˙̃
θ + θ̃TΓ̇−1θ̃

= eT
ref

[
AT

ref P + PAref

]
eref + 2eT

ref PBref θ̃
Tω − 2θ̃Tω

[
B†ref ε+BT

ref Peref

]T
+ θ̃TΓ̇−1θ̃

= −eT
ref Qeref − 2θ̃TωωTθ̃ + θ̃T

[
2ωωT − λΓ−1

]
θ̃

= −eT
ref Qeref − λθ̃TΓ−1θ̃ 6 −λmin (Q) ‖eref ‖2 − λλmin

(
Γ−1

) ∥∥∥θ̃∥∥∥2

.

(A.20)

The derivative (A.20) of the positive definite quadratic form (A.19) is a negative semidefinite
function; therefore, the error is ξ ∈L∞, and Eq. (A.19) is a Lyapunov function for system (2.12).
At the same time, the Lyapunov function (A.19) has a finite limit as t→∞,

V
(
θ̃ (t→∞)

)
= V

(
θ̃ (t0)

)
+

∞∫
t0

V̇ dt = V
(
θ̃ (t0)

)
−
∞∫
t0

[
eT

ref Qeref + λ
(
θ̃TΓ−1θ̃

)]
dt

⇒
∞∫
t0

[
λmin (Q) ‖eref ‖2 + λλmin

(
Γ−1

) ∥∥∥θ̃∥∥∥2
]
dt = V

(
θ̃ (t0)

)
− V

(
θ̃ (t→∞)

)
<∞,

and then ξ ∈ L2 ∩ L∞ and ω ∈ L∞ (because eref ∈ L2 ∩ L∞).
We have thus proved the first part of Theorem 2. To prove the second part of Theorem 2, we

find the second derivative of the Lyapunov function (A.19) taking into account Eq. (3.3),

V̈ = −ėT
ref Qeref − eT

ref Qėref − λ
(
θ̃TΓ̇−1θ̃ + 2θ̃TΓ−1 ˙̃

θ
)

= −2eT
ref Q

[
Aref eref +Bref θ̃

Tω
]

+ 2λθ̃Tω
[
B†ref ε+BT

ref Peref

]T
− λ

(
θ̃T
[
2ωωT − λΓ−1

]
θ̃
)

= −2eT
ref Q

[
Aref eref +Bref θ̃

Tω
]

+ 2λθ̃TωeT
ref PBref + λ2

(
θ̃TΓ−1θ̃

)
.

Since it has been proved that θ̃ ∈ L2 ∩ L∞, eref ∈ L2 ∩ L∞, and ω ∈ L∞, it follows under the
persistent excitation condition that Γ ∈ L∞ and Γ−1 ∈ L∞ (the proof is similar to (A.6)–(A.15)
in the proof of Theorem 1) and hence V̈ ∈ L∞ as well. In this case, the derivative (A.20) of the
Lyapunov function (A.19) is uniformly continuous, and V̇ → 0 by Barbalat’s lemma; accordingly,
the convergence ξ → 0 as t→∞ is achieved.

To determine an estimate for the rate of convergence of the error ξ to zero, we rewrite the upper
bound for the derivative (A.20) as

V̇ 6 −λmin (Q)

λmax (P )
λmax (P ) ‖eref ‖2 −

λλmin (Γ−1)

λmax (Γ−1)
λmax

(
Γ−1

) ∥∥∥θ̃∥∥∥2

. (A.21)

Further, to determine the minimum convergence rate using the results obtained when proving
Theorem 1, we write the lower and upper bounds for the norm Γ−1 for the adjustment law Γ in the
adaptation loop (4.1), ∥∥Γ−1

∥∥ > √n+ 1
[
min

{
λmin

(
Γ−1 (0)

)
, 2α
}
e−λT

]
︸ ︷︷ ︸

λmin(Γ−1)

,

∥∥Γ−1
∥∥ 6 √n+ 1

[
λmax

(
Γ−1 (0)

)
+

2λmax (ωωT)

λ

]
︸ ︷︷ ︸

λmax(Γ−1)

.
(A.22)

AUTOMATION AND REMOTE CONTROL Vol. 82 No. 4 2021



632 GLUSHCHENKO et al.

Taking into account (A.22), we rewrite the upper bound for the derivative (A.21) as

V̇ 6 −λmin(Q)

λmax(P )
λmax(P ) ‖eref ‖2

− λ2 min {λmin (Γ−1(0)) , 2α} e−λT

λλmax (Γ−1(0)) + 2λmax (ωωT)
λmax

(
Γ−1

) ∥∥∥θ̃∥∥∥2

6 −ηminV,

ηmin = min

{
λmin (Q)

λmax (P )
;
λ2min {λmin (Γ−1 (0)) , 2α} e−λT

λλmax (Γ−1 (0)) + 2λmax (ωωT)

}
.

(A.23)

Let us solve the resulting differential inequality while substituting the lower bound for the Lya-
punov function into the left-hand side of the solution,

‖ξ‖ 6
√
λ−1

min (H) e−ηmin·tV (0). (A.24)

It follows from the majorant (A.24) that the error ξ decays exponentially at a rate faster than ηmin;
this is exactly what is claimed in the second part of Theorem 2.

To prove the third part of Theorem 2, we write a lower bound for the derivative (A.20),

V̇ > −λmax (Q)

λmax (P )
λmax (P ) ‖eref ‖2 − λλmax

(
Γ−1

) ∥∥∥θ̃∥∥∥2

> −ηmaxV,

ηmax = max

{
λmax (Q)

λmax (P )
;λ

}
.

(A.25)

We solve the differential inequality (A.25) while substituting the upper bound for the Lyapunov
function into the left-hand side of the solution,

‖ξ‖ >
√
λ−1

max (H) e−ηmax·tV (0). (A.26)

It follows from the definition of ηmax in (A.25) and the minorant (A.26) that by increasing the
parameter λ, one can make the maximum rate of convergence of the error ξ arbitrarily large; this
is what is claimed in the third part of Theorem 2. �

Remark . As λ → ∞, the maximum convergence rate satisfies ηmax → ∞, but the minimum
convergence rate satisfies ηmin → 0. Since λT → ∞ in (A.23), this leads to a considerable in-
crease in the distance between the majorant (A.24) and the minorant (A.26); this, in turn, leads
to oscillations with respect to ξ. Therefore, in practice, it makes little sense to use values of λ
exceeding λmax = T−1.
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