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Abstract—This paper considers an optimal control problem for a discrete-time stochastic sys-
tem with the probability of first reaching the boundaries of a given domain as the optimality
criterion. Dynamic programming-based sufficient conditions of optimality are formulated and
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estimates of the right-hand side of the dynamic programming equation, two-sided estimates of
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criterion. A suboptimal control design method is proposed. The conditions of equivalence to an
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1. INTRODUCTION

One of the most important fields of research into stochastic optimal control is the problems with
a non-fixed terminal time. Among them, note the stochastic time-optimal control problem [1, 2],
the stochastic optimal control problem with infinite horizon [3–6], the problem of optimizing the
duration of stay of a stochastic system in a given tube of trajectories [1, 7], and the stochastic
problem of optimizing the time of first reaching the boundaries of a given domain [1, 8, 9]. Control
models with a non-fixed terminal time are widely used in the aerospace [10], economic [11], biologi-
cal, robotic, and energy [1] applications. In the case of continuous-time systems, the methods using
dynamic programming-based sufficient conditions of optimality have become widespread, which
yield optimal feedback control laws. Interestingly, just the use of the probabilistic criterion [1, 7]
leads to a constructive statement of the control problems with a non-fixed terminal time for which
the Bellman equation can be written. Nevertheless, there are still a number of fundamental prob-
lems in the numerical calculation of optimal control, and analytical solutions have been obtained
only for some model problems [1]. This circumstance is due to the following difficulties. First, the
solution of the Bellman equation may be nonunique. Second, even if a solution of the Bellman
equation exists in the class of smooth functions, it may be inadmissible (for example, because
the Itô equation of the closed loop stochastic system with this control has no strong solution).
Third, the class of admissible controls does not always include the one for which the supremum
(or infimum) of the criterion is achieved. And fourth, Bellman’s equation is related to the curse of
dimensionality.

In the case of discrete time, a qualitative theory of such problems was presented in [3]. Also, so-
lutions of particular economic problems [11] and model examples [9] are known. In [9], the problem
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of optimizing the probability of first reaching the neighborhood of the origin by the trajectories of
a linear stochastic system was considered in the Brunovsky canonical form of controllability. Its
analytical solution was found through the reduction to the problem with a probabilistic terminal
criterion and further use of the dynamic programming method in the form [12].

This paper studies an optimal control problem for a discrete-time stochastic system with the
probability of first reaching a given tube as the optimality criterion. Sufficient conditions of opti-
mality similar to [12] are established, and the properties of the two-sided estimates of the Bellman
function [13, 14] are examined. The conditions of equivalence to the optimal control problem with
the probabilistic terminal criterion [12] are obtained. As an illustrative example the problem of
investment portfolio management is considered.

2. PROBLEM STATEMENT

Consider a discrete-time stochastic controlled system of the form{
xk+1 = fk (xk, uk, ξk)

x0 = X,
k = 0, N, (1)

with the following notations: xk ∈ R
n as the state vector; uk ∈ Uk ⊂ R

m as the control vector; Uk

as the set of control constraints; ξk as the vector of random perturbations with the codomain R
s

and a given distribution Pξk ; fk : Rn ×R
m × R

s → R
n as the transition function (system function);

finally, N ∈ {0} ∪ N as the control horizon.

Introduce several assumptions regarding the system (1) as follows.

1. The complete information on the state vector xk is known. (Due to this fact, an appropriate
control can be constructed in the class of functions uk = γk (xk), where γk (·) is some measur-
able function.) In this case, it is said that “control is found in the class of full state feedback
controls.”

2. The initial state x0 = X is a deterministic from R
n.

3. The system function fk (xk, uk, ξk) is continuous for all k.
4. The control vector uk is generated in the form uk = γk (xk), where γk : Rn → R

m is a measur-
able function with bounded values uk ∈ Uk, Uk being a compact set.

5. The state vector xk+1 is generated in the following way: in step k the vector xk is realized;
then the control vector uk = γk (xk) is formed; at last the random perturbation ξk is realized.

6. The control is the set of functions u (·) = (γ0 (·) , . . . , γN (·)) ∈ U ; the class of admissible con-
trols is the set U = U0 × . . .× UN , where Uk denotes the set of Borel functions γk (·) with
values bounded on Uk.

7. The random vector ξk is continuous, has the codomain R
s and a known distribution Pξk ;

moreover, the components of the vector ζ = (X, ξ0, . . . , ξN ) are independent.

Note that the system (1) is Markovian, i.e., its future behavior does not depend on the past
states (history) and is completely defined by the current state.

On the trajectories of the system (1) define the probabilistic functional

P (u (·)) = P

(
N⋃
k=0

{xk+1 ∈ Fk+1}
)
,

in which the sets Fk have the form{
Fk = {x ∈ R

n : Φk (x) � ϕ} , k = 1, N + 1

F0 = R
n,
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where ϕ ∈ R is a given scalar; Φk : R
n → R are continuous functions, k = 1, . . . , N + 1, and ΦN+1 (x)

is bounded below.

Consider the optimization problem

P (u (·)) → max
u(·)∈U

, (2)

where U = U0 × . . .× UN .

Physically, problem (2) is to find a control maximizing the probability of first reaching the tube
of trajectories described by the sequence of given sets {Fk+1}Nk=0 .

Note that the dynamic programming method in the form [12], introduced for optimal control
problems with the probabilistic terminal criterion, is not generally applicable to problem (2). The
dynamic programming-based sufficient conditions of optimality, similar to [12], will be established
in Section 3.

3. DYNAMIC PROGRAMMING AND TWO-SIDED ESTIMATES OF BELLMAN FUNCTION

Define the Bellman function Bk : Rn → [0, 1] in problem (2) as

Bk (x) = sup
γk(·)∈Uk,...,γN (·)∈UN

P

(
min
i=k,N

Φi+1 (xi+1) � ϕ
∣∣∣xk = x

)
.

In view of the assumptions accepted in Section 2, formulate a theorem on the Bellman equation
for problem (2) in the n-dimensional state space.

Theorem 1. Let the following conditions be satisfied :

1) The functions fk (xk, uk, ξk) are continuous for all k = 0, N .

2) The functions Φk (xk) are continuous for all k = 1, N + 1.

3) The function ΦN+1 (xN+1) is bounded below.

4) The random vectors X, ξ0, . . . , ξN are independent.

5) The sets U0, . . . , UN are compact.

Then the optimal control in problem (2) exists in the class of measurable functions u∗ (·) ∈ U
and is determined by solving the following problems:

γ∗k (x) = arg max
u∈Uk

Mξk [IFk
(x) + (1− IFk

(x))Bk+1 (fk (x, u, ξk))] , (3)

Bk (x) = max
u∈Uk

Mξk [IFk
(x) + (1− IFk

(x))Bk+1 (fk (x, u, ξk))] , k = 0, N, (4)

BN+1 (x) = IFN+1
(x) . (5)

The proof of Theorem 1, as well as the proofs of all other theorems, propositions and lemma
below, are postponed to the Appendix.

In Theorem 1, Mξk [·] denotes the expectation operator in the distribution Pξk of the random
vector ξk, and IFk

(x) is the indicator function of the set Fk. Note that Eqs. (3)–(5) differ from
the classical Bellman equation [12] for the problem with the probabilistic terminal criterion by the
additional term IFk

(x) and the factor 1− IFk
(x) under the expectation operator, which figure in

the right-hand side.

As is known, the direct integration of the Bellman equation causes the difficulties of calculating
multiple integrals and solving stochastic programming problems in its right-hand side. These
difficulties have repeatedly occurred even for systems of the simplest type, e.g., for the investment
portfolio management system [15–17] and for the stationary satellite control system [12]. As a
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result, for almost twenty years, optimal control problems with a probabilistic criterion have been
considered in the one-step (N = 0) and two-step (N = 1) statements; see [15–17]. In [13, 14],
two-sided estimates of the Bellman function were found using the isobells of levels 1 and 0, which
allowed solving particular optimal control problems with a probabilistic criterion for an arbitrary
time step N.

By analogy with [13, 14], investigate the properties of the Bellman function for problem (2)
using the isobells of levels 1 and 0 of the Bellman function.

4. TWO-SIDED ESTIMATES OF BELLMAN FUNCTION

Introduce the isobells of levels 1 and 0 of the Bellman function, defined as

Ik = {x ∈ R
n : Bk (x) = 1} , Ok = {x ∈ R

n : Bk (x) = 0} ,
and the set Bk = R

n \ {Ik ∪ Ok}. For the sake of convenience, also introduce the notation Fk =
R
n \ Fk. Clearly, by the definition of these sets,

Ik ∪ Bk ∪ Ok = R
n,

⎧⎪⎪⎨
⎪⎪⎩
Bk (x) = 1, x ∈ Ik
Bk (x) ∈ (0, 1) , x ∈ Bk

Bk (x) = 0, x ∈ Ok.

Theorem 2. The following statements hold :

1. The sets Ik, k = 0, N, satisfy the recurrent relations in backward time

Ik = Fk ∪ {x ∈ R
n : ∃u ∈ Uk : Pξk (fk (x, u, ξk) ∈ Ik+1) = 1} , k = 0, N,

IN+1 = FN+1.

2. The sets Ok, k = 0, N, satisfy the recurrent relations in backward time

Ok = Fk ∩ {x ∈ R
n : ∀u ∈ Uk : Pξk (fk (x, u, ξk) ∈ Ok+1) = 1} , k = 0, N,

ON+1 = FN+1.

3. For x ∈ Ik, the function γ∗k(x) takes any value from the set

UI
k (x) = {u ∈ Uk : Pξk (fk (x, u, ξk) ∈ Ik+1) = 1} . (6)

4. For x ∈ Ok, the function γ∗k (x) takes any value from the set Uk.

5. The Bellman equation in the domain of all x ∈ Bk admits of the representation

Bk (x) = max
u∈Uk

{
Pξk (fk (x, u, ξk) ∈ Ik+1)

+Pξk (fk (x, u, ξk) ∈ Bk+1)Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣∣ fk (x, u, ξk) ∈ Bk+1

] }
. (7)

6. For x ∈ Bk and u ∈ Uk,

Pξk (fk (x, u, ξk) ∈ Fk+1) � Pξk (fk (x, u, ξk) ∈ Ik+1)

� Mξk [Bk+1 (fk (x, u, ξk))] � 1−Pξk (fk (x, u, ξk) ∈ Ok+1) .
(8)

7. For x ∈ Bk, the Bellman equation satisfies the two-sided inequality

Ψk (x) � Bk (x) � Bk (x) � Bk (x) , (9)
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where

Ψk (x) = sup
u∈Uk

Pξk (fk (x, u, ξk) ∈ Fk+1) , (10)

Bk (x) and Bk (x) are lower and upper bounds on the Bellman function, i.e.,

Bk (x) = sup
u∈Uk

Pξk (fk (x, u, ξk) ∈ Ik+1) ,

Bk (x) = sup
u∈Uk

{1−Pξk (fk (x, u, ξk) ∈ Ok+1)} ,

moreover BN (x) = BN (x) = BN (x) .

The difference between the right-hand side of the relations in item 1 of Theorem 2 from the
relations for the isobell of level 1 of the Bellman function in the problem with the terminal prob-
abilistic criterion [18] is the union operation with the set Fk. For the isobell of level 0 of the
Bellman function, the difference lies in the intersection operation with the set Fk. Items 3 and 4
establish the simplest (with respect to (3)) expressions for determining the optimal control for
xk ∈ Ik ∪Ok, which coincide, up to the structures of the sets Ik, with those in the problem with
the terminal probabilistic criterion. Items 6 and 7 of Theorem 2 establish two-sided estimates for
the right-hand side of the dynamic programming equation and the Bellman function, respectively.
Moreover, the expressions for the lower and upper bounds, up to the structures of the sets Ik
and Ok, coincide with those in the problem with the terminal criterion [13, 18]. The difference
is the presence of an additional inequality in the left-hand side of (8) and, as a consequence, the
inequality Ψk (x) � Bk (x) .

Next, explore in detail the properties of the control maximizing at each step the lower bound
on the right-hand side of the dynamic programming equation.

5. SUBOPTIMAL CONTROL

Consider a control u (·) =
(
γ
0
(·) , . . . , γ

N
(·)
)
, where

γ
k
(x) = arg max

u∈Uk

Pξk (fk (x, u, ξk) ∈ Ik+1) , k = 0, N. (11)

This control has the following properties:

• For x ∈ Ik ∪ Ok and for all k = 0, N, γ
k
(x) = γ∗k (x) .

• For k = N, γ
k
(x) = γ∗k (x) .

• From Fk = Ikholding for all k = 0, N it follows thatγ
k
(x) = γ∗k (x) .

Theorem 3. Assume that the control u (·) exists in the class U . Then the following statements
hold :

1. The value of the probabilistic criterion under the control u (·) is given by

P (u (·)) = F (ϕ,N,X)

+
N−1∑
l=1

P

(
l⋂

k=1

{xk /∈ Ik}
)
P

(
l⋃

k=0

{xk+1 ∈ Ik+1}
∣∣∣∣∣

l⋂
k=1

{xk /∈ Ik}
)

+P

(
N⋂
k=1

{xk /∈ Ik}
)
P

(
N⋃
k=0

{xk+1 ∈ Fk+1}
∣∣∣∣∣

N⋂
k=1

{xk /∈ Ik}
)
,

(12)
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where xk is the trajectory of the closed loop system with the control (11),⎧⎨
⎩
xk+1 = fk (xk, uk, ξk)

x0 = X,
k = 0, N,

in which uk = γ
k
(xk).

2. The optimal-value function of the probabilistic criterion has the form

P (u∗ (·)) = F (ϕ,N,X)

+
N−1∑
l=1

P

(
l⋂

k=1

{x∗k /∈ Ik}
)
P

(
l⋃

k=0

{
x∗k+1 ∈ Ik+1

} ∣∣∣∣∣
l⋂

k=1

{x∗k /∈ Ik}
)

+P

(
N⋂
k=1

{x∗k /∈ Ik}
)
P

(
N⋃
k=0

{
x∗k+1 ∈ Fk+1

} ∣∣∣∣∣
N⋂
k=1

{x∗k /∈ Ik}
)
,

(13)

where x∗k is the trajectory of the closed loop system with the optimal control,

{
x∗k+1 = fk (x

∗
k, u

∗
k, ξk)

x∗0 = X,
k = 0, N,

in which u∗k = γ∗k (x
∗
k).

3. For any ϕ ∈ R, N ∈ N, and X ∈ R
n,

FF (ϕ,N,X) � F (ϕ,N,X) � P (u (·)) � P (u∗ (·)) � F (ϕ,N,X) , (14)

where the functions

FF : R× N× R
n → [0, 1] , F : R× N× R

n → [0, 1] , F : R× N× R
n → [0, 1]

have the form

FF (ϕ,N,X) = Ψ0 (X) , F (ϕ,N,X) = B0 (X) , F (ϕ,N,X) = B0 (X) .

According to Theorem 3, for the suboptimal control u (·) (11) the accuracy can be estimated as

P (u∗ (·))− P (u (·)) � Δ(ϕ,N,X)

which holds for all

ϕ ∈ R, N ∈ {0} ∪ N, X ∈ R
n,

where the function Δ : R× N× R
n → [0, 1] has the form

Δ (ϕ,N,X) = F (ϕ,N,X) − F (ϕ,N,X)

−
N−1∑
l=1

P

(
l⋂

k=1

{xk /∈ Ik}
)
P

(
l⋃

k=0

{xk+1 ∈ Ik+1}
∣∣∣∣∣

l⋂
k=1

{xk /∈ Ik}
)

−P

(
N⋂
k=1

{xk /∈ Ik}
)
P

(
N⋃
k=0

{xk+1 ∈ Fk+1}
∣∣∣∣∣

N⋂
k=1

{xk /∈ Ik}
)
.

(15)

Now study the conditions under which problem (2) is equivalent to the optimal control problem
with the probabilistic terminal criterion.
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6. EQUIVALENCE TO OPTIMAL CONTROL PROBLEM
WITH PROBABILISTIC TERMINAL CRITERION

On the trajectories of the system (1) define the probabilistic terminal criterion

Pϕ (u (·)) = P (xN+1 ∈ FN+1) = P (ΦN+1 (xN+1) � ϕ) , (16)

and consider the optimal control problem

Pϕ (u (·)) → max
u(·)∈U

. (17)

As was demonstrated in [12], the solution of problem (17) exists in the class U and is determined
by solving the dynamic programming equations

γϕk (x) = arg max
u∈Uk

Mξk

[
Bϕ
k+1 (fk (x, u, ξk))

]
, (18)

Bϕ
k (x) = max

u∈Uk

Mξk

[
Bϕ
k+1 (fk (x, u, ξk))

]
, k = 0, N, (19)

Bϕ
N+1 (x) = IFN+1

(x) , (20)

where Bϕ
k (x) is the Bellman function in problem (17).

The result below establishes the equivalence of problems (2) and (17).

Lemma. Assume that for all k = 0, N, Fk ⊆ ΔIk, where
ΔIk = {x ∈ R

n : ∃u ∈ Uk : P (fk (x, u, ξk) ∈ Ik+1) = 1} . (21)

Then problem (3) is equivalent to the optimal control problem with the probabilistic terminal cri-
terion (17) in the sense of the same optimal controls u∗ (·) = uϕ (·), the same optimal values
of the criteria P (u∗ (·)) = Pϕ (uϕ (·)), and the same Bellman functions Bk (x) = Bϕ

k (x) for all
k = 0, N + 1 and x ∈ R

n.

Note that more specific conditions for the equivalence of problems (2) and (17) can be obtained
from Lemma for a narrow class of systems, but this goes beyond the scope of the paper.

In the next section, the results obtained will be applied to examine additional properties of the
optimal investment portfolio management problem with a probabilistic criterion.

7. OPTIMAL INVESTMENT PORTFOLIO MANAGEMENT
WITH NON-FIXED TERMINAL TIME

Following [13, 19], consider a discrete-time stochastic control system of the form⎧⎪⎪⎨
⎪⎪⎩
xk+1 = xk

⎛
⎝1 + bu1k +

m∑
j=2

ujkξ
j−1
k

⎞
⎠

x0 = X,

k = 0, N, (22)

where n = 1, m, and s = m− 1 specify the dimensions of the state vector, control vector and
random perturbations, respectively; X > 0, b > −1, and ϕ < 0 are deterministic scalars; ξk =(
ξ1k, . . . , ξ

m−1
k

)T
mean random vectors with independent components, among which ξk+1 and ξk

are independent for all k = 0, N − 1. Let the control constraints be given by

Uk = U =

⎧⎨
⎩u ∈ R

m :
m∑
j=1

uj = 1, uj � 0, ∀j = 1,m

⎫⎬
⎭ , k = 0, N.
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Assume that the distribution of the random vectors ξk has the support suppρξ (t) =
m−1⊗
j=1

[
εj, εj

]
,

and moreover the inequality −1 � εj � b � εj holds for all j = 1,m− 1.

Consider an optimal control problem with a non-fixed terminal time of the form

P

(
min
k=0,N

{−xk+1} � ϕ

)
→ sup

u(·)∈U
(23)

and a problem with a probabilistic terminal criterion of the form

P (−xN+1 � ϕ) → sup
u(·)∈U

. (24)

In the notations accepted in this paper,

Fk = F = [−ϕ,+∞) , Φk (x) = −x, fk (x, u, ξ) = x

⎛
⎝1 + bu1 +

m∑
j=2

ujξj−1

⎞
⎠ .

Let X be the amount of initial capital, xk be the amount of capital at the beginning of the kth
year, u1k be the share of xk invested in a risk-free asset (for example, a reliable bank) with a rate

of return b, and ujk be the shares of xk invested in risky assets characterized by rates of return

ξj−1
k , j = 2,m. In this case, problem (23) is to maximize the probability of reaching the amount
of capital (−ϕ) in time steps bounded above by the value N + 1 through investing in some assets.
And problem (24) is to maximize the probability of reaching the amount of capital (−ϕ) in time
steps N + 1 through investing in some assets.

Problem (24) was considered in the two-step statement (N = 1) for the case of one risky asset
(m = 2) in [15, 16]. In [13], a whole class of asymptotically optimal controls (as N → ∞) was
found. Problem (23) is studied for the first time.

Using the results of this paper, check the equivalence of problems (23) and (24).

Proposition 1. For all k = 0, N,

Ik = ΔIk =
[
ϕI
k ,+∞

)
, Bk =

(
ϕO
k , ϕ

I
k

)
, Ok =

(
−∞, ϕO

k

]
,

where the scalars ϕI
k and ϕO

k are given by

ϕI
k = −ϕ

(
1 + max

{
b, max

j=1,m−1
εj

})k−N−1

,

ϕO
k = −ϕ

(
1 + max

{
b, max

j=1,m−1
εj

})k−N−1

.

Due to Proposition 1, the condition of Lemma holds, F ⊆ ΔIk, and consequently problems (23)
and (24) are equivalent. From Proposition 1 it follows that the optimal control in terms of the
probabilistic terminal criterion will maximize the probability of first reaching the amount (−ϕ) by
the capital xk in time steps bounded above by the value N.

Now apply the two-sided estimates of the optimal-value function of the probabilistic criterion
to estimate a time step N∗ ∈ N such that

P

(
max

k∈{0,...,N∗}
x∗k � ϕ

)
= 1,
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Table 1. Values of system parameters

Experiment N ϕ X b ε1 ε1
a 200 100 15 0.01 –1 0.02

b 200 100 20 0.01 –1 0.02

c 200 100 25 0.01 –1 0.02

Table 2. Values of system parameters

Experiment a b c

N 189 160 138

N∗ 189 160 139

where {x∗k}Nk=0 are the trajectories of the closed loop system (22) with the optimal control u∗ (·) .
Interestingly, the two-sided estimates of the optimal-value function of the probabilistic criterion
(see Theorem 3) can be used to obtain such an estimate without finding the optimal control.

Proposition 2. Let {xk}Nk=0 be the trajectories of the closed loop system (22) with the con-
trol (11), where

γ
k
(x) = argmax

u∈U
P

⎛
⎝x

⎛
⎝1 + bu1 +

m∑
j=2

ujξj−1
k

⎞
⎠ � ϕI

k+1

⎞
⎠ , k = 0, N. (25)

Then there exists a time step N ∈ N such that

P

(
max

k={0,...,N}
xk+1 � ϕ

)
= 1,

and moreover for any X > 0 and b > −1, N∗ � N and

N =

⎡
⎢⎢⎢⎢⎣

ln (−ϕ)− ln (X)

ln

(
1 + max

{
b, max

j=1,m−1
εj

}) − 1

⎤
⎥⎥⎥⎥⎦ . (26)

Perform a series of three numerical experiments to check the adequacy of the estimate (26).
Consider the case of one risky asset, for which the control (25) was found in [13]:

γ
k
(x) =

{
(1, 0)T , x � −ϕ (1 + b)k−N−1

(0, 1)T , x < −ϕ (1 + b)k−N−1 .

The values of the system parameters are given in Table 1.

To simulate the value N∗, the Monte Carlo method of 50 000 observations was used. The
simulation results are presented in Table 2.

According to Table 2, N is a rather accurate estimate of the value N∗.

8. CONCLUSIONS

This paper has considered the optimal control problem for a discrete-time stochastic system with
the probability of first reaching a given tube of trajectories as the optimality criterion. Dynamic
programming-based sufficient conditions of optimality have been established. Two-sided estimates
of the right-hand side of the dynamic programming equation, two-sided estimates of the Bellman
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function, and two-sided estimates of the optimal-value function of the probabilistic criterion have
been found. A suboptimal control has been designed in analytical form, and its accuracy has
been estimated. The conditions under which this problem is equivalent to the optimal control
problem with a probabilistic terminal criterion have been proved. These conditions were tested on
an optimal management problem for an investment portfolio.

APPENDIX

Proof of Theorem 1. Introduce a function Φ0 : R
n → R such that Φ0 (x) = Φ1 (x). Augment the

state vector of the system by adding a new variable yk = mini=0,k Φi (xi). The augmented control
system has the form ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1 = fk (xk, ũk, ξk)

yk+1 = min {yk, Φk (xk)}
x0 = X

y0 = Φ0 (X) ,

k = 0, N,

where ũk = γ̃k (xk, yk). Consider the right-hand side f̃ : Rn+1×R
m×R

s → R
n+1 of the augmented

system:

f̃k (x, y, u, ξ) = (fk (x, u, ξ) ,min {y, Φk (x)})T .
Then the equivalent optimal control problem can be written as

P (min {yN+1, ΦN+1 (xN+1)} � ϕ) → sup
u(·)∈Ũ

, k = 0, N,

where Ũ = Ũ0 × . . .× ŨN and

Ũk =
{
γ̃ : Rn+1 → R

m| γ̃ is Borel measurable, ∀x ∈ R
n+1 : γ̃ (x) ∈ Uk

}
.

Here the equivalence is understood in the sense of the same criteria

P (u (·)) = P

(
min
k=0,N

Φk+1 (x) � ϕ

)
= P (min {yN+1, ΦN+1 (xN+1)} � ϕ) .

The Bellman equation for the equivalent problem [12] has the form

γ̃∗k (x, y) = arg max
u∈Uk

Mξk

[
B̃k+1

(
f̃k (x, y, u, ξk)

)]
, (A.1)

B̃k (x, y) = max
u∈Uk

Mξk

[
B̃k+1

(
f̃k (x, y, uk, ξk)

)]
, (A.2)

B̃N+1 (x, y) = I{min{y, ΦN+1(x)}�ϕ} (x, y) , k = 0, N. (A.3)

The following result was established in [12]. Assume that:

1) The functions f̃k are continuous for all k = 0, N.

2) The function min {y, ΦN+1 (x)} is continuous and bounded below.

3) The random vectors X, ξ0, . . . , ξN are independent.

4) The sets U0, . . . , UN are compact.
Then the optimal control exists in the class of measurable functions and is determined by solving
problems (A.1)–(A.3).
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At step k = N the Bellman equation takes the form

B̃N (x, y) = max
u∈UN

MξN

[
I{min{y, ΦN (x), ΦN+1(f(x,u,ξk))}�ϕ} (x, y)

]
= max

u∈UN

MξN

[
I{min{y, ΦN (x)}�ϕ} (x, y) +

(
1− I{min{y, ΦN (x)}�ϕ} (x, y)

)
× I{ΦN+1(f(x,u,ξk))�ϕ} (x)

]
= max

u∈UN

MξN

[
I{min{y, ΦN (x)}�ϕ} (x, y) +

(
1− I{min{y, ΦN (x)}�ϕ} (x, y)

)
× BN+1 (fN (x, u, ξN ))

]
. (A.4)

Hence, for any k = 0, N, Eq. (A.2) can be written as

B̃k (x, y) = max
u∈Uk

Mξk

[
I{min{y, Φk(x)}�ϕ} (x, y)

+
(
1− I{min{y, Φk(x)}�ϕ} (x, y)

)
Bk+1 (fk (x, u, ξk))

]
. (A.5)

Therefore, the Bellman function in the equivalent problem admits of the representation

B̃k(x, y) =

⎧⎨
⎩
1, y � ϕ

max
u∈Uk

Mξk

{
IFk

(x) + (1− IFk
(x))Bk+1(fk(x, u, ξk))

}
, y > ϕ.

(A.6)

As a result, the optimal control is given by

γ̃∗k(x, y) =

⎧⎨
⎩
any element from Uk, y � ϕ

arg max
u∈Uk

Mξk

{
IFk

(x) + (1− IFk
(x))Bk+1(fk(x, u, ξk))

}
, y > ϕ.

(A.7)

Conditions 1–5 of Theorem 1 follow from the existence conditions of an optimal control in the
problem with the terminal criterion. Note that items 2 and 3 are immediate from the continuity
and boundedness (from below) of the function min {y, ΦN+1 (x)} .

The proof of Theorem 1 is complete.

Proof of Theorem 2. 1. Consider the Bellman equation at some step k. For the isobell of level 1,

Ik =

{
x ∈ R

n
∣∣ max

u∈Uk

Mξk [IFk
(x) + (1− IFk

(x))Bk+1 (fk (x, u, ξk))] = 1

}

= Fk ∪
{
x ∈ R

n
∣∣ max

u∈Uk

Mξk [Bk+1 (fk (x, u, ξk))] = 1

}
.

Using the total mathematical expectation formula, write

Ik = Fk ∪
{
x ∈ R

n
∣∣ max
u∈Uk

{
Pξk (fk (x, u, ξk)∈Ik+1)Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk)∈ Ik+1

]

+ (1−Pξk (fk (x, u, ξk) ∈ Ik+1))Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) /∈ Ik+1

] }
= 1

}
.

From the equalities

Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) ∈ Ik+1

]
= 1,

Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) /∈ Ik+1

]
< 1,
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it follows that

Ik = Fk ∪
{
x ∈ R

n
∣∣ max

u∈Uk

{
Pξk (fk (x, u, ξk) ∈ Ik+1) + (1−Pξk (fk (x, u, ξk) ∈ Ik+1))

×Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) /∈ Ik+1

] }
= 1

}

= Fk ∪
{
x ∈ R

n
∣∣ max

u∈Uk

Pξk (fk (x, u, ξk) ∈ Ik+1) = 1

}
.

Item 1 of this theorem is established.

2. By analogy with item 1, the isobell of level 0 of the Bellman function can be written as

Ok =

{
x ∈ R

n
∣∣ max

u∈Uk

Mξk [IFk
(x) + (1− IFk

(x))Bk+1 (fk (x, u, ξk))] = 0

}

= Fk ∩
{
x ∈ R

n
∣∣ max

u∈Uk

Mξk [Bk+1 (fk (x, u, ξk))] = 1

}
.

Using the total mathematical expectation formula, transform the right-hand side of this expression:

Ok =Fk ∩
{
x∈R

n
∣∣ max
u∈Uk

{
Pξk(fk(x, u, ξk)∈Ik+1)Mξk

[
Bk+1(fk(x, u, ξk))

∣∣ fk(x, u, ξk)∈ Ik+1

]
+Pξk (fk (x, u, ξk) ∈ Bk+1)Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) ∈ Bk+1

]
+Pξk (fk (x, u, ξk) ∈ Ok+1)Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) ∈ Ok+1

] }
= 0

}
.

From the equalities

Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) ∈ Ik+1

]
= 1,

Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) ∈ Bk+1

] ∈ (0, 1) ,

Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) ∈ Ok+1

]
= 0

it follows that

Ok = Fk ∩
{
x ∈ R

n
∣∣ max
u∈Uk

{
Pξk (fk (x, u, ξk) ∈ Ik+1)

+Pξk (fk (x, u, ξk) ∈ Bk+1)Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) ∈ Bk+1

] }
= 0

}

= Fk ∩
{
x ∈ R

n
∣∣ ∀u ∈ Uk : Pξk (fk (x, u, ξk) ∈ Ik+1) = 0, Pξk (fk (x, u, ξk) ∈ Bk+1) = 0

}
= Fk ∩ {x ∈ R

n
∣∣ ∀u ∈ Uk : Pξk (fk (x, u, ξk) ∈ Ok+1) = 1

}
.

Item 2 of this theorem is established.

3. Item 3 of this theorem follows from its item 1.

4. Item 4 of this theorem holds, since Bk (x) = 0 for x ∈ Ok.

5. Item 5 of this theorem follows its item 1.

6. For x ∈ Bk, the right-hand side of the dynamic programming equation can be represented as

Mξk [Bk+1 (fk (x, u, ξk))] = Pξk (fk (x, u, ξk) ∈ Ik+1)

× (
1−Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) ∈ Bk+1

])
+(1−Pξk (fk (x, u, ξk) ∈ Ok+1))Mξk

[
Bk+1 (fk (x, u, ξk))

∣∣ fk (x, u, ξk) ∈ Bk+1

]
.
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Due to the two-sided inequality for a convex combination, this yields

min
{
Pξk (fk (x, u, ξk) ∈ Ik+1) , (1−Pξk (fk (x, u, ξk) ∈ Ok+1))

}
Mξk [Bk+1 (fk (x, u, ξk))]

� max
{
Pξk (fk (x, u, ξk) ∈ Ik+1) , (1−Pξk (fk (x, u, ξk) ∈ Ok+1))

}
.

The relations 1−Pξk(fk(x, u, ξk) ∈ Ok+1) = Pξk(fk(x, u, ξk) ∈ Ik+1) +Pξk(fk(x, u, ξk) ∈ Bk+1) and
Fk ⊆ Ik finally establish item 6 of this theorem.

7. Item 7 of this theorem is immediate from its item 6 by taking the supremum in all sides of
inequality (8).

Proof of Theorem 3. 1. Introduce a system of hypotheses forming a complete group of
incompatible events:

{
N⋃
k=1

{xk ∈ Ik}
}
,

{
N⋂
k=1

{xk /∈ Ik}
}
.

Then the total probability formula gives the chain of equalities

P (u (·)) = P

(
N⋃
k=0

{xk+1 ∈ Fk+1}
)

= P

(
N⋃
k=1

{xk ∈ Ik}
)
P

(
N⋃
k=0

{xk+1 ∈ Fk+1}
∣∣∣∣∣

N⋃
k=1

{xk ∈ Ik}
)

+P

(
N⋂
k=1

{xk /∈ Ik}
)
P

(
N⋃
k=0

{xk+1 ∈ Fk+1}
∣∣∣∣∣

N⋂
k=1

{xk /∈ Ik}
)
.

(A.8)

Analyze the second factor in the first term of the right-hand side of this expression. From the chain
of equalities

P
(
xN+1 ∈ FN+1

∣∣∣ xN ∈ IN
)
= P

(
xN+1 ∈ IN+1

∣∣∣ xN ∈ IN
)
= 1

it follows that

P

(
N⋃
k=0

{xk+1 ∈ Fk+1}
∣∣∣∣∣

N⋃
k=1

{xk ∈ Ik}
)

= 1.

In view of this equality, the expression (A.8) takes the form

P (u (·)) = P

(
N⋃
k=1

{xk ∈ Ik}
)

+P

(
N⋂
k=1

{xk /∈ Ik}
)
P

(
N⋃
k=0

{xk+1 ∈ Fk+1}
∣∣∣∣∣

N⋂
k=1

{xk /∈ Ik}
)
.

(A.9)

Now introduce another system of hypotheses forming a complete group of incompatible events:

{
N−1⋃
k=1

{xk ∈ Ik}
}
,

{
N−1⋂
k=1

{xk /∈ Ik}
}
.
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Apply the total probability formula for the first term in the right-hand side of (A.9):

P

(
N⋃
k=1

{xk ∈ Ik}
)

= P

(
N−1⋃
k=1

{xk ∈ Ik}
)
P

(
N⋃
k=1

{xk ∈ Ik}
∣∣∣∣∣
N−1⋃
k=1

{xk ∈ Ik}
)

+P

(
N−1⋂
k=1

{xk /∈ Ik}
)
P

(
N⋃
k=1

{xk ∈ Ik}
∣∣∣∣∣
N−1⋂
k=1

{xk /∈ Ik}
)
.

(A.10)

Similar to (A.9), transform the right-hand side of (A.10) to obtain

P

(
N⋃
k=1

{xk ∈ Ik}
)

= P

(
N−1⋃
k=1

{xk ∈ Ik}
)

+P

(
N−1⋂
k=1

{xk /∈ Ik}
)
P

(
N⋃
k=1

{xk ∈ Ik}
∣∣∣∣∣
N−1⋂
k=1

{xk /∈ Ik}
)
.

(A.11)

Substituting (A.10) into (A.9) yields

P (u (·)) = P

(
N−1⋃
k=1

{xk ∈ Ik}
)

+P

(
N−1⋂
k=1

{xk /∈ Ik}
)
P

(
N⋃
k=1

{xk ∈ Ik}
∣∣∣∣∣
N−1⋂
k=1

{xk /∈ Ik}
)

+P

(
N⋂
k=1

{xk /∈ Ik}
)
P

(
N⋃
k=0

{xk+1 ∈ Fk+1}
∣∣∣∣∣

N⋂
k=1

{xk /∈ Ik}
)
.

(A.12)

Perform the analogous transformations for the first term in (A.12), introducing the systems of
hypotheses

{
l⋃

k=1

{xk ∈ Ik}
}
,

{
l⋂

k=1

{xk /∈ Ik}
}
, l = 1, . . . , N − 2,

to obtain the following expression for the value of the probabilistic criterion under the control u (·) :

P (u (·)) = P (x1 ∈ I1)

+
N−1∑
l=1

P

(
l⋂

k=1

{xk /∈ Ik}
)
P

(
l+1⋃
k=1

{xk ∈ Ik}
∣∣∣∣∣

l⋂
k=1

{xk /∈ Ik}
)

+P

(
N⋂
k=1

{xk /∈ Ik}
)
P

(
N⋃
k=0

{xk+1 ∈ Fk+1}
∣∣∣∣∣

N⋂
k=1

{xk /∈ Ik}
)
.

(A.13)

Note that the first term in (A.13) satisfies the chain of equalities

P (x1 ∈ I1) = P (f0 (X,u0, ξ0) ∈ I1) = B0 (X) = F (ϕ,N,X) ,

which implies the expression (14).

Item 1 of Theorem 3 is established.
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2. For establishing item 2 of Theorem 3, it suffices to observe that for xk ∈ Ik, u∗k = uk for
all k = 0, N. Following the same procedure as above, this equality can be used for deriving the
expression (14) for the optimal-value function of the probabilistic criterion on the trajectories
{x∗k}N+1

k=1 of the closed loop system with the optimal control u∗ (·) .
Item 2 of Theorem 3 is established.

3. Item 3 of Theorem 3 directly follows from item 7 of Theorem 2 and item 1 of Theorem 3.

The proof of Theorem 3 is complete.

Proof of Lemma. Consider the dynamic programming relations (3)–(5) and (18)–(20) for prob-
lems (2) and (17), respectively. In (19), the equality

Bϕ
k (x) = max

u∈Uk

M
[
IIϕ

k
(x) +

(
1− IIϕ

k
(x)

)
Bϕ
k+1 (fk (x, u, ξk))

]
, k = 0, N,

where Iϕ
k is the isobell of level 1 of the Bellman function Bϕ

k (x) , holds for all x ∈ R
n. Hence, the

equivalence conditions are true if the isobells of level 1 of the Bellman functions in problems (2)
and (17) are the same, Ik = Iϕ

k . Due to the recurrent formula for Ik (see item 1 of Theorem 2),
this is the case if and only if

Fk ⊆ {x ∈ R
n : ∃u ∈ Uk : P (fk (x, u, ξk) ∈ Ik+1) = 1} , k = 0, N. (A.14)

The proof of Lemma is complete.

Proof of Proposition 1. In accordance with item 1 of Theorem 2, write the equations for the
isobells of levels 1 and 0 of the Bellman function at step k = N :

IN = F ∪
{
x ∈ R : ∃u ∈ U : P

(
x

(
1 + u1b+

m∑
i=2

uiξiN

)
� −ϕ

)
= 1

}
,

ON = F ∩
{
x ∈ R : ∀u ∈ U : P

(
x

(
1 + u1b+

m∑
i=2

uiξiN

)
< −ϕ

)
= 1

}
.

The solutions of these equations were obtained in [13]. Using those results and the notations for
the boundaries of the sets Ik and Ok (see Section 6), write:

IN = [ϕ,+∞) ∪
⎡
⎣ϕ

(
1 + max

{
b, max

j=2,m
bj
})−1

,+∞
⎞
⎠ =

[
ϕI
N ,+∞

)
,

ON = (−∞, ϕ] ∩
⎛
⎝−∞, ϕ

(
1 + max

{
b, max

j=2,m
b
j

})−1
⎤
⎦ =

(
−∞, ϕO

N

]
.

This implies IN = ΔIN . Due to item 1 of Theorem 2, at step k = N − 1 the equations for the
isobells take the form

IN−1 = F ∪
{
x ∈ R : ∃u ∈ U : P

(
x

(
1 + u1b+

m∑
i=2

uiξiN−1

)
� ϕI

N

)
= 1

}
,

ON−1 = F ∩
{
x ∈ R : ∀u ∈ U : P

(
x

(
1 + u1b+

m∑
i=2

ui ξiN−1

)
< ϕO

N

)
= 1

}
.

By analogy with step k = N, it follows that

IN−1 = ΔIN−1 =
[
ϕI
N−1,+∞

)
, ON−1 =

(
−∞, ϕO

N−1

]
.
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Mathematical induction on k finally leads to the conclusion that, for all k = 0, N,

Ik = ΔIk =
[
ϕI
k ,+∞

)
, Ok =

(
−∞, ϕO

k

]
.

The proof of Proposition 1 is complete.

Proof of Proposition 2. Consider the control (11), which takes the form (25); see Proposition 1.
From item 3 of Theorem 3 it follows that

P (u (·)) = P

(
max

k∈{0,...,N}
xk+1 � −ϕ

)
� F (ϕ,N,X) , (A.15)

where the function F is given by

F (ϕ,N,X) = max
u∈U

P

⎛
⎜⎜⎜⎜⎜⎝X

⎛
⎝1 + bu1 +

m∑
j=2

ujξj−1
0

⎞
⎠ � − ϕ(

1 +max

{
b, max

j=1,m−1
εj

})N

⎞
⎟⎟⎟⎟⎟⎠ (A.16)

due to

ϕI
1 = −ϕ

(
1 + max

{
b, max

j=1,m−1
εj

})−N

.

Clearly, the value N ∈ N can be determined as a root of the equation F (ϕ,N,X) = 1. But there
exist infinitely many such roots, and the estimate N will be therefore found in the form

N = min {N ∈ N : F (ϕ,N,X) = 1} . (A.17)

The expressions (A.15) and (A.17) imply

P

(
max

k∈{0,...,N}
xk+1 � −ϕ

)
= 1.

From the definition of the isobell of level 1 of the Bellman function and the definition of the
function F it follows that the equation F (ϕ,N,X) = 1 is equivalent to the inclusion X ∈ I0, which
is in turn equivalent to

X � − ϕ(
1 + max

{
b, max

j=1,m−1
εj

})N+1
.

Taking the logarithm gives the inequality

N � ln (−ϕ)− ln (X)

ln

(
1 +max

{
b, max

j=1,m−1
εj

}) − 1.

In view of (A.17), this finally leads to (26).

The proof of Proposition 2 is complete.
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