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Abstract—A mechanical system with n degrees of freedom subjected to the action of positional
forces and a small smooth control is considered. It is assumed that in the absence of control, the
system may have a family of single-frequency oscillations. A universal control—a nonlinear force
that implements and simultaneously stabilizes a cycle in the system—is found. An illustrative
example is given. In the previous paper [5], the universal control was designed for a two-
dimensional manifold of the system.
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1. INTRODUCTION

Research into the relaxation modes of a regenerative receiver shows how oscillations can be
controlled. A triode embedded into a linear circuit allows obtaining a control force for the im-
plementation of an isolated stable oscillation in the system. The force is nonlinear, dissipative in
nature and is produced by the anode current of the triode. The model itself is described by the
well-known van der Pol equation

ẍ+ x = μ(1− x2)ẋ,

where μ denotes a small parameter.

Due to mechanical analogy, van der Pol’s can be applied to a nonlinear system as well. For in-
stance, a Hamiltonian system in the plane that may have a family of periodic motions was studied by
Pontryagin in the paper [1]. He obtained conditions to be imposed on perturbations that guarantee
the existence of a limit cycle in the perturbed system. In [2], the Duffing oscillator was considered,
and the nonlinear dissipation v|v|p−1, p = 1, 4, proportional to the velocity v was used for it. In
micromechanics, nonlinear dissipation is taken into account in Duffing-like models; for example,
see [3]. In the previous paper [4], van der Pol’s approach was applied to a holonomic mechanical
system subjected to the action of positional forces (potential and non-conservative positional forces)
with a possible occurrence of a single-frequency oscillation (periodic motion). A two-dimensional
manifold of periodic motions on which the dynamics are described by a single-degree-of-freedom
system was separated. A universal autonomous control that guarantees the existence of a cycle in
the controlled mechanical system and simultaneously stabilizes it was constructed. For a system
with an arbitrary number of degrees of freedom, the trajectories were attracted to the manifold
using linear dissipative forces.
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For a system with n > 1 degrees of freedom, the separation of the manifold of periodic motions
is an independent difficult problem. Therefore, a topical problem is to construct a control in the
2n-dimensional phase space, where the original system is defined. This problem will be solved
below. For a mechanical system with n degrees of freedom, a time-invariant control (without an
explicit dependence on time) is obtained; this control is used with a small gain. In the special case
n = 1, the resulting control coincides with the one designed in [4].

Note that in [5] the orbital stabilization problem for the periodic solutions of underactuated
nonlinear systems was solved. (In such systems, the number of independent actuators is one less
than the number of degrees of freedom of an uncontrolled conservative system.) The nonlinear
feedback controller constructed therein is time dependent.

2. FAMILY OF SYMMETRIC PERIODIC MOTIONS

Consider a holonomic scleronomic mechanical system with n degrees of freedom and stationary
geometric constraints

d

dt

∂T

∂q̇s
− ∂T

∂qs
= Qs(q), s = 1, . . . , n,

that is subjected to the action of positional forces Qs(q) (potential and non-conservative positional
forces). Here T denotes the kinetic energy of the system.

For this system, the kinetic energy T represents a positive definite form of velocities, and the
motion equations are invariant with respect to the change of variables

(q, q̇, t) → (q,−q̇,−t).
Therefore, the model belongs to the class of reversible mechanical systems [6], and the phase
portrait of the system is symmetric with respect to the stationary set M = {q, q̇ : q̇ = 0}. From the
symmetry of the phase portrait it follows that:

1) The periodic motion of the system is symmetric and intersects the stationary set M with the
zero velocity q̇.

2) The periodic motion of the system cannot be asymptotically stable.

The velocity q̇ = q̇(q01 , . . . , q
0
n, t) on a symmetric periodic motion (SPM) depends on the initial

point q0 ∈M only. Hence, the necessary and sufficient conditions for the existence of an SPM in
the form of a single-frequency oscillation with a period τ can be written as

q̇s(q
0
1 , . . . , q

0
n, τ/2) = 0, s = 1, . . . , n. (1)

For details, see [7].

These equalities (n in total) have n+ 1 unknown variables. Consequently, SPMs of a reversible
mechanical system always form families. Construct the matrix

A =

∥
∥
∥
∥
∥

∂q̇s(q
0
1, . . . , q

0
n, τ/2)

∂q0j

∥
∥
∥
∥
∥
,

where partial derivatives are calculated along the solution of the system (1). Then the definition
given in [4] can be used.

Definition 1. The case rankA = n is said to be nondegenerate for a symmetric periodic motion,
and the SPM itself is said to be nondegenerate as well.

The nondegenerate SPMs of a system always form two-dimensional manifolds on which the
period monotonically depends on one parameter; see [7]. A controlled mechanical system for such
a manifold was constructed in [4].
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3. EXISTENCE OF CYCLE IN SYSTEM

In accordance with Section 2, the cycle is not implemented if the additional forces acting on
the system preserve the symmetry of the phase space. Symmetry can be destroyed using an
appropriately designed control, which results in a controlled mechanical system. For making the
cycle of this system close to the oscillation of the original (uncontrolled) system, the control is
applied with a small gain. The necessary and (separately) sufficient conditions for the existence of
a cycle will be presented below. These conditions lead to the requirements to be imposed on the
requisite control.

Denote by Σ(h) the family of SPMs on which the coordinate has the formula q = ϕ(h, t + γ).
Here h is the family parameter, and γ is the initial point shift along the trajectory. The time when
the solution intersects the stationary set is assumed to be γ = 0. The period τ on the family Σ is
treated as a function of h, i.e., τ = τ(h).

Let the mechanical system under consideration be subjected to the control μR(q, q̇), where μ is
a small parameter. Then the solution of the controlled system depends on μ. The derivative of this
solution with respect to μ at the point μ = 0 satisfies a linear inhomogeneous system of differential
equations. For this system, the necessary and sufficient conditions for the existence of a τ∗-periodic
solution with zero initial conditions, τ∗ = τ(h∗), lead to the amplitude (bifurcation) equation

I(h) ≡
τ∗∫

0

R(ϕ(h, t), ϕ̇(h, t))ψ(h, t)dt = 0, (2)

where ψ denotes the periodic solution of the adjoint linear system.

As is well known [8, 9], a root h = h∗ of the amplitude equation such that dI(h∗)/dh �= 0 guar-
antees the existence of the function q(μ, q0, t) describing a cycle.

Thus, the force R is found using two conditions. They were adopted in [4] to construct a
control on a two-dimensional manifold of periodic motions. In this case, the control destroys the
family of oscillations; therefore, it must be an odd function of the velocity. Also, the control must be
applicable for all points of the family, including the limit point (equilibrium). Other considerations,
including the ease of control, suggest the choice of nonlinear dissipation control.

4. CONTROL DESIGN

The original control design conditions from [4] will be used below for the system with n degrees
of freedom. In addition, recall that the control must be an odd function of the vector velocity q̇.
Due to the universal form of control for the equilibrium and SPMs, the function R must have a
factor described by a quadratic form of the velocities. Another factor (a) in the function R, which
generally depends on the vectors q and q̇, characterizes the SPM with the parameter h. Therefore,
a contains some characteristic K, i.e., a function of h. In the case of equilibrium a = 1, and for the
cycle in the neighborhood of the SPM with h = h∗, the value of this characteristic is calculated:
K = K(h∗). Finally, the amplitude Eq. (2) must hold for R.

As a result, the function R = (R1, . . . , Rn) takes the form

Rs = [1−K(h∗)b(q, q̇)]
n∑

j=1

lsj q̇j, a = 1−K(h∗)b, b > 0, lsj = const, s = 1, . . . , n. (3)

The dependence K(h) acts as a characteristic of the family of SPMs. It can be found from the
identity

τ(h)∫

0

[1−K(h)b(ϕ(h, t), ϕ̇(h, t))]
n∑

s,j=1

lsjϕ̇j(h, t)ψs(h, t)dt ≡ 0. (4)
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Hence,

K(h) =

τ(h)∫

0
σ(h, t)dt

τ(h)∫

0
b(ϕ(h, t), ϕ̇(h, t))σ(h.t)dt

, σ =
n∑

s,j=1

lsjϕ̇j(h, t)ψs(h, t).

Taking into account the odd functions ϕ̇j in (4), differentiate this identity with respect to h.
Then the derivative of the integral with respect to the upper limit vanishes, and for τ = τ∗ the
other terms yield a constructively verifiable root simplicity criterion in the form

dI(h∗)
dh

= χν, χ =
dK(h∗)
dh

, ν =

τ∗∫

0

b(ϕ(h, t), ϕ̇(h, t))σ(h, t)dt. (5)

In accordance with (5), the sufficient existence conditions of a cycle are not satisfied at the points
from the family of SPMs for which dK = 0. Therefore, by analogy with the previous paper [4],
Definition 2 will be used below.

Definition 2. A point h from the family of SPMs of a mechanical system at which the derivative
of the function K(h) vanishes is called singular.

Thus, the following result is true.

Theorem 1. Assume that the mechanical system may have the h-family of SPMs with the charac-
teristic K(h). Then the controlled system subjected to the action of positional forces with the control
function (3) always has a cycle at each non-singular point h = h∗ with the characteristic K(h) under
the condition ν �= 0.

Remark 1. For the single-degree-of-freedom system, Theorem 1 was established in [4].

Remark 2. The characteristic K(h) can be constructively calculated using formula (4). For
example, K = 4/h2 for the van der Pol equation, and K(h) is monotonically decreasing for the
simple pendulum [4].

For the sake of definiteness, let the cycle period be equal to τ∗ = 2π.

5. STABILIZING CYCLE OF CONTROLLED MECHANICAL SYSTEM

Being subjected to the action of the control function (3), the mechanical system remains au-
tonomous; the cycle of the system is an isolated periodic solution. Find the control conditions
ensuring the orbital asymptotic stability of the cycle. As a result, the issue of cycle stabilization
will be solved simultaneously with obtaining the stability conditions. In this case, stabilization
involves no additional controls, thereby being natural. The characteristics of SPMs are divided
into the pairs ± λ and can be calculated from quadratic equations; for example, see [7]. In the
controlled mechanical system, the coefficients of the characteristic polynomial for calculating these
characteristics continuously depend on the parameter μ. Therefore, the characteristics of SPMs
belonging to the positive (negative) half-plane for μ = 0 will remain in the positive (negative) half-
plane for a sufficiently small μ > 0 as well. Consequently, the cycle of the perturbed mechanical
system can be orbitally stable if all characteristics of the reference SPM, for which h = h∗, have
zero real parts. In other words, for the controlled mechanical system a stable cycle is possible only
in the neighborhood of a stable SPM in the linear approximation.

The characteristic of a cycle of the controlled mechanical system is calculated using the following
procedure.

First, construct variational equations for the cycle. This yields a linear periodic system param-
eterized by μ. For μ = 0 the system is reversible and coincides with the variational equations for
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the SPMs. The last equations are reduced by an appropriate Lyapunov transformation to a system
with constant coefficients. Note that the requisite transformation must preserve reversibility. The
transformation of the system of variational equations for the cycle is described in the Appendix.
The symbols δq and δq̇ denote the variations of the coordinates and velocities, respectively.

This transformation yields the linear 2π-periodic system

ẋ = Py + μX(x, y, t), ẏ = Gx+ μY (x, y, t), (6)

in which

X = Σx(t)δR(δq, δq̇), Y = Σy(t)δR(δq, δq̇),

δRs(δq, δq̇) =
n∑

j=1

[(

∂Rs

∂qj

)

∗
δqj +

(

∂Rs

∂q̇j

)

∗
δq̇j

]

, s = 1, . . . , n.

Here Σx(t) and Σy(t) are 2π-periodic functions; star indicates that derivatives are calculated
along the solution q = q(h∗, t).

By definition, each characteristic λ+ μα of the system (6) corresponds to the solution

x = ζ(t) exp (λ+ μα)t, y = χ(t) exp (λ+ μα)t

with 2π-periodic functions ζ(t), χ(t). In view of this fact, apply the change of variables

x = w exp (λ+ μα)t, y = z exp (λ+ μα)t

to the system (6). This gives the system

ẇ = Pz − (λ+ μα)w + μX(w, z, t), ż = Gw − (λ+ μα)z + μY (w, z, t). (7)

The system (7) has at least one zero characteristic and a corresponding 2π-periodic solution. To
find it, represent the solution of the system (6) in the form

w = w0(t) + μw1(t) + o(μ), z + z0(t) + μz1(t) + o(μ).

As a result, the variables w0 and z0 satisfy the system of differential equations

ẇ0 = Pz0 − λw0, ż0 = Gw0 − λz0, (8)

which is split into k subsystems (by the number of paired characteristics of SPMs) with the variables
w0s and z0s.

Write the equations for the variables w1 and z1:

ẇ1 = Pz1 − λw1 − αw0 +X(w0, z0, t),

ż1 = Gw1 − λz1 − αz0 + Y (w0, z0, t).
(9)

Clearly, with the substitution w0j(t) = 0, z0j(t) = 0, j �= s, the system (9) contains the manifold Υs

corresponding to the sth subsystem in (8). Hence, the number α for the sth subsystem can be
calculated from the existence condition of a periodic solution on the manifold Υs. Now, considering
all possible manifolds Υs, find all characteristics of the system (7).

Three types of manifolds may exist in the system (9). The first type corresponds to a pair of
zero characteristics in a Jordan cell. In the system (8), λ = 0 and the corresponding subsystem
may have a unique periodic solution (up to a constant factor).

Note that a cycle of a perturbed mechanical system is always associated with one zero character-
istic. Therefore, a bifurcation of a Jordan cell occurs with the birth of a real-valued characteristic.
The corresponding value for α is obtained from (9).

On the manifolds corresponding to a pair of pure imaginary numbers λ or to a pair of simple zero
numbers λ, the subsystems in (8) may have two periodic solutions. Therefore, the two numbers α
are found from the existence conditions of periodic solutions in (9). Explicit formulas for calculat-
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ing α are obtained from the period-average values of the functions X0(t) = X(w0, z0, t) and Y0(t) =
Y (w0, z0, t).

In each of these cases of paired characteristics, the functions

X0(t) = Σx(t)δR(δq0, δq̇0), Y0(t) = Σy(t)δR(δq0, δq̇0) (10)

are obtained using the Lyapunov transformation. Denote by (δq0, δq̇0) the periodic solution of the
system (6) for μ = 0. As concerns the function δR, it contains a constant square matrix L = ||lsj ||
of dimensions n× n. In accordance with formulas (10), the average values X̄0(t) and Ȳ0(t) linearly
depend on the elements lsj (s, j = 1, n).

For an asymptotically orbitally stable cycle, all numbers α, except for the zero one, must be neg-
ative. From the system (9) it follows that the inequalities α < 0 lead to inequalities for the average
values X̄0(t) and Ȳ0(t). Therefore, the stability conditions hold if a system of linear inequalities
in lsj is consistent.

In the mechanical system with one degree of freedom, there is a single pair of zero characteristics
in a Jordan cell, the matrix consists of one element L, and the condition α < 0 is achieved by an
appropriately chosen sign of L. In the mechanical system with two degrees of freedom, the matrix L
consists of four elements, and the numbers α (which depend on four constants) must satisfy three
negativity conditions; in other words, the conditions are consistent. In the general case with n
degrees of freedom, the asymptotically orbital stability of a cycle is ensured by the 2n− 1 negativity
conditions for the numbers α, which depend on n2 constants. Obviously, n2 ≥ 2n− 1, and the
equality holds only if n = 1.

Thus, the system of inequalities for finding the negative numbers α is always consistent. As a
result, the functions Rs given by (3) ensure the asymptotical orbital stability of the cycle.

Theorem 2. Assume that the mechanical system may have the h-family of SPMs. Then a cycle
of the controlled system subjected to the action of positional forces with the control function (3) and
an appropriately chosen constant matrix L is asymptotically orbitally stable.

Remark 3. Under the hypotheses of Theorem 2, a cycle of the controlled mechanical system is
stabilized in a “natural” way, i.e., without additional controls.

Remark 4. The control μR is used to design a cycle and also a stable cycle regardless of the po-
sitional forces applied to the system (potential, non-conservative positional, jointly acting potential
and non-conservative positional ones). The conclusions on the existence of a cycle (Theorem 1) and
its stabilization (Theorem 2) are equally valid for any family of SPMs—the family of isochronous
oscillations (e.g., a linear oscillator) or the family of nondegenerate oscillations (e.g., a simple
pendulum). The control μR gives a solution of the cycle and asymptotically stable cycle design
problems irrespective of a specific mechanical system. Finally, the force μR has a rather simple
form and also a natural analog. Due to these reasons, the control function (3) is called universal.

6. EXAMPLE

Following [10], consider the system of equations

θ̈1 + sin θ1 + κ(1− 1/f)

(

c2

4
sin(θ1 − θ2)− c

2
cos θ1

)

= 0,

θ̈2 + sin θ2 + κ(1 − 1/f)

(

−c
2

4
sin(θ1 − θ2) +

c

2
cos θ2

)

= 0,

f2 = 1 +
c2

2
− c sin θ1 + c sin θ2 − c2

2
cos(θ2 − θ1),

(11)
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which describes the dynamics of two uncontrolled identical pendulums connected by a spring, the
suspension points of which lie on a horizontal line. Here θ1,2 denote the deviation angles of the
pendulums from the vertical; κ and c are positive constants. The system (11) admits of the integral
manifold Ξ̃

η̈1 + sin η1 = 0, η1 = (θ1 + θ2)/2, η2 = (θ1 − θ2)/2 ≡ 0,

which describes the dynamics of the two independent pendulums (the spring is unstrained).

Now consider the controlled mechanical system. On the manifold Ξ of this system that corre-
sponds to Ξ̃, the dynamics are described by the equation

η̈1 + sin η1 = μ[1−Kη21 ]η̇1. (12)

(For details, see [4].)

For μ = 0 the oscillations in (12) form a family η1 = η1(h, t) in the constant h of the energy
integral. In other words, K(h) is the characteristic of this family. As was demonstrated in [4],
the control with K = K(h∗) and η1 = η1(h, t) guarantees the existence and stabilization of a cycle
of the controlled system (12) in the neighborhood of an oscillation with the parameter h = h∗. In
addition, the trajectories of the controlled system are attracted to the manifold Ξ due to linear
dissipation.

Write variational equations for a cycle in the variable η2 :

δη̈2 + (1− 2c cos η1(h
∗, t))δη2 = 0. (13)

Clearly, Eq. (13) with c = 0 has a pair of pure imaginary characteristics equal to ± i. Equation (13)
is invariant with respect to the transformation: (η2, η̇2, t) → (η2,−η̇2,−t). Therefore, the character-
istics always form a pair ±λ, see [8], and the pure imaginary numbers ±λ exist at least for small c.
For these λ, dissipation is introduced using the term μδη̇2 added into the left-hand side of Eq. (13).

In view of the formulas of the variables ψ1,2, the controls μR1,2 with the functions

R1 =
[

1−K(θ1 + θ2)
2
]

(θ̇1 + θ̇2) +
[

1−K(θ1 − θ2)
2
]

(θ̇1 − θ̇2),

R2 =
[

1−K(θ1 + θ2)
2
]

(θ̇1 + θ̇2)−
[

1−K(θ1 − θ2)
2
]

(θ̇1 − θ̇2)

applied to the mechanical system (11) guarantee the existence of an orbitally asymptotically sta-
ble cycle in the neighborhood of its oscillation on the manifold Ξ̃ (Theorem 2). In the linear
approximation, the dissipative term has the form μ(η̇1 − η̇2).

This example illustrates well Theorem 2 and the connection between the results established
above and the earlier results of the paper [4].

7. CONCLUSIONS

Van der Pol gave an example of oscillation control by adding nonlinear dissipation into the
oscillator and performing further transition to a controlled system. His approach can be applied to
an arbitrary mechanical system subjected to positional forces.

This paper has found a universal small smooth control, i.e., a nonlinear force of the dissipation
type in the van der Pol equation, which guarantees the existence and stabilization of a cycle of
a controlled mechanical system with n degrees of freedom. In this case, the controlled mechan-
ical system behaves like a regenerative receiver in radio engineering, whose natural (relaxation)
oscillations are described by the van der Pol equation.
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APPENDIX

LYAPUNOV TRANSFORMATION FOR SYSTEM OF VARIATIONAL EQUATIONS

A cycle of the controlled mechanical system satisfies variational equations of the form

δq̈s =
n∑

j=1

psj(t)δqj +
n∑

j=1

rsj(t)δq̇j + μδRs(δq, δq̇), (A.1)

psj(t) = psj(−t), rsj(t) = −rsj(−t), psj(t+ 2π) = psj(t), rsj(t+ 2π) = rsj(t).

For μ = 0 the system (A.1) is a reversible linear periodic system described by

u̇ = A−(t)u+A+(t)v, v̇ = B+(t)u+B−(t)v, u, v ∈ Rn, (A.2)

with two stationary sets of the form

Mu = {u, v, t : v = 0, sin t = 0}, Mv = {u, v, t : u = 0, sin t = 0}.

Here the plus (minus) sign indicates the matrices and vectors containing the even (odd, respec-
tively) 2π-periodic functions.

The adjoint system for (A.2),

ξ̇ = −AT
−(t)ξ −BT

+(t)η, η̇ = −AT
+(t)ξ −BT

−(t)η, (A.3)

where T means transposition, is also reversible and admits of two stationary sets:

Mξ = {ξ, η, t : η = 0, sin t = 0}, Mη = {ξ, η, t : ξ = 0, sin t = 0}.

The solution (ξ(t), η(t)) of the system (A.3) is used to write the first integral

f = ξ1(t)u1 + . . .+ ξn(t)un + η1(t)v1 + . . .+ ηn(t)vn (A.4)

of the system (A.2). By the way, this result shows that the function ψ(t) in the amplitude Eq. (2)
is odd.

The system (A.2) is reduced to a system with constant coefficients using an appropriate Lya-
punov transformation. Recall that the system (A.2) contains n solutions symmetrical with respect
to Mξ, as well as the same number of solutions symmetrical with respect to Mη. Choose these 2n
solutions to obtain 2n integrals f for reducing the reversible system (A.2) to a system with constant
coefficients. Following [8], select the transformation

xs = p+s (t)u+ q−s (t)v, ys = p−s (t)u+ q+s (t)v, s = 1, . . . , n, (A.5)

with the 2π-periodic vector functions p±s (t) and q±s (t); the transformed system contains the sta-
tionary sets

Mx = {x, y, t : y = 0, t = 0}, My = {x, y, t : x = 0, t = 0}.

The system (A.1) is transformed simultaneously.

The reference SPM has characteristics with zero real parts. Therefore, consider the following
cases: (a) a pair of zero characteristics in a Jordan cell; (b) a pair ± iω, ω > 0, of pure imag-
inary characteristics; (c) a pair of simple zero characteristics. Write the integrals (A.4) and the
corresponding reduced equations in the three cases mentioned.

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 9 2020



STABILIZING THE OSCILLATIONS 1645

(a) A pair of zero characteristics in a Jordan cell. This pair corresponds to the first integrals

f1 = g−∗ = const, f2 = tg−∗ − g+∗ = const,

g±∗ = ξ±∗1(t)δq1 + . . .+ ξ±∗n(t)δqn + η∓∗1(t)δq̇1 + . . .+ η∓∗n(t)δq̇n.

Find the derivatives ḟ1 and ḟ2 along the trajectories of the system (A.1):

ḟ1 = μ
n∑

s=1

η+∗s(t)δRs(δq, δq̇), ḟ2 = −μ
n∑

s=1

η−∗s(t)δRs(δq, δq̇).

Denoting x∗ = g+∗ and y∗ = g−∗ , for μ = 0 obtain ẏ∗ = ḟ1 = 0, ẋ∗ = y∗ − ḟ2, and ḟ2 = 0. For μ �= 0,
from (A.1) it follows that

ẋ∗ = y∗ + μ
n∑

s=1

η−∗s(t)δus, ẏ∗ = μ
n∑

s=1

η+∗s(t)δus.

(b) A pair ± iω of pure imaginary characteristics. In this case, the first integrals have the
complex representation

f± = exp (± iωt)g±ω (δq, δq̇),

g±ω = ξ±ω1(t)δq1 + . . .+ ξ±ωn(t)δqn + η∓ω1(t)δq̇ + . . .+ η∓ωn(t)δq̇n.

Calculate the total derivatives of the functions f± along the trajectories of the system (A.1):

ḟ± = μ exp (± iωt)
n∑

s=1

η∓ωs(t)δRs(δq, δq̇).

Next, find

ġ±ω = ḟ± exp (∓ iωt)± iωf± exp (∓ iωt).

Then the variables xω = g+ω and yω = ig−ω satisfy the equations

ẋω = ωyω + μ
n∑

s=1

η−ωs(t)δus, ẏω = −ωxω + μ
n∑

s=1

η+ωs(t)δus.

Finally, transition to the real variables yields two equations for the system (7).

(c) A pair of simple zero characteristics. Here the first integrals are given by

f1,2 = g± = ξ±1 (t)δq1 + . . .+ ξ±n (t)δqn + η∓1 (t)δq̇1 + . . . + ηn(t)
∓δq̇n.

The corresponding equations of the system (A.1) take the form

ẋ+ = μ
n∑

s=1

η−s (t)δRs, ẏ− = μ
n∑

s=1

η+s (t)δRs.

Thus, the groups of variables (x∗, y∗), (xω, yω) and (x+, y−) can be adopted for reducing the
system (A.1) to a convenient form for further calculation of characteristics. For this purpose, apply
the transformation (A.5) in which u = δq, v = δq̇, the vector x(y) consists of the vectors x∗, xω, x+
(y∗, yω, y+, respectively), and the functions δR(δq, δq̇) and the vectors δq and δq̇ are replaced by
the vectors x and y using the inverse of (A.5).
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