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1. INTRODUCTION

In modern control theory, switched systems are often understood as a class of models of dynamic
systems consisting of a finite number of subsystems, of which only one is currently functioning,
called the active subsystem, and the choice of the active subsystem is determined by some logical
rule. The simplest example is a multi-mode system, in which subsystems are interpreted as sep-
arate modes of this system. Subsystems are usually described by an indexed set of differential or
difference equations. The class of switched systems has been intensively studied in recent decades
and continues to be actively developed nowadays, which is motivated by numerous applications in
engineering, physics, biology, economics, and other fields, as well as by theoretical problems still
open in this field of research. Like for other classes of control systems, the theory of stability and
stabilization is of top priority, where a number of interesting and important results have been estab-
lished. For an initial acquaintance with these results, in the first place the reader is recommended
the monograph [1], the surveys [2, 3], and the recent books [4, 5].

Since the 1960s the theory of the so-called 2D systems began to develop actively. Its appearance
was motivated by the problems of image processing and multidimensional electrical circuits, where
the Roesser and Fornasini–Marchesini models [6] were constructed and subsequently became the
classical 2D models; also, see a rich bibliography in the book [6]. A significant upsurge in the
development of the theory of 2D systems was connected with the work of Arimoto [7], who first
presented a theoretical justification of iterative learning control (ILC) algorithms for robots per-
forming repetitive operations and revealed the natural 2D nature of the control process. (It includes
a dynamic process on each separate repetition, also called pass or trial, and a dynamic process of
transition from pass to pass.) 2D models in the form of repetitive processes [6, 8] serve as a natural
description of ILC processes. The theory of repetitive processes was successfully applied to the
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design of ILC algorithms in [9, 10], where experimental results were also obtained. At present,
the theory and applications of ILC continue to develop intensively, and numerous publications are
devoted to this field of research. For an initial acquaintance, the reader is recommended the sur-
veys [11, 12]. Among the recent works, note [13], where ILC was used for high-precision laser metal
deposition and the results of experimental validation were presented. A very important application
of ILC algorithms is robotic-assisted stroke rehabilitation. Well-known developments in this area
were clinically tested [14, 15].

Switched repetitive processes were considered in [16, 17]. These works were motivated by metal
rolling: a metal strip of a finite length is shaped by passing through a set of rolls, so that the
output of a previous roll is the input for a next one. In [16], such systems were modeled by
linear repetitive processes with switched dynamics. In both papers cited above, special switching
rules were analyzed. The final results of these studies were ILC design procedures that can be
implemented using calculations based on linear matrix inequalities (LMIs).

Finally, note a number of very recent works [18–21]. The paper [18] dealt with a class of
discrete-time switched systems consisting of a linear part and a static nonlinearity satisfying special
constraints. More specifically, the definitions of exponential stability and average dwell time were
introduced, and sufficient conditions for exponential stability were established using the methods
of the general and multiple 2D Lyapunov functions, respectively. The theoretical results obtained
therein were applied to ILC design. Next, the authors [19] proposed high-order ILC for linear
discrete-time switched systems under different initial conditions on repetitions and the action of
disturbances bounded by norm. Linear discrete-time switched systems were also considered in [20],
where the initial conditions on repetitions were assumed to be the same. The ILC algorithm
constructed therein assumes the availability of the full state vector for the controller and ensures
the monotonic convergence of the learning error. In [21], the systems consisting of a continuous
linear part with mode switching and a Lipschitz nonlinearity were studied. An adaptive ILC
algorithm assuming the availability of the full state vector for the controller was proposed. In all
the publications listed, the technique of linear matrix inequalities was effectively used.

In this paper, linear discrete-time switched systems are considered. In contrast to the cited
and other known works, only the output vector is assumed to be available for the controller and
the ILC algorithm is formed using the error and an estimate of the state vector. The approach
proposed below actually extends the earlier results of the authors (see [22–25]) to the class of
switched systems. Unlike the well-known counterparts, this approach effectively utilizes the state
estimates for improving the performance characteristics of the learning process and opens up the
capabilities of nonlinear ILC design with mode switching depending on the accuracy achieved.
An illustrative example of a dynamic model of a flexible rotating link operating in a repetitive
mode [26] is presented. Switched and non-switched ILC algorithms are obtained and compared
with one another.

2. PROBLEM STATEMENT

Consider a discrete-time system in repetitive mode described by the linear state-space model
with switching

xk(p + 1) = A(k)xk(p) + B(k)uk(p), (A(k), B(k)) ∈ F ,

yk(p) = Cxk(p), p ∈ [0, T − 1], k = 0, 1, . . . , (2.1)

where an integer T denotes the number of samples over the pass length; on pass k, xk(p) ∈ R
nx

is the state vector, yk(p) ∈ R
ny is the pass profile vector (output), and uk(p) ∈ R

nu is the control
input; F = {(A1, B1), (A2, B2), . . . , (AN , BN )} is the set of matrix pairs of compatible dimensions.
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Following the standard notation of switched systems theory [1], consider a piecewise constant
mapping of the set of nonnegative integers Z

+ → F . Such a mapping is defined by a piecewise
constant function σ : Z

+ → N = {1, . . . , N} so that A(k) = Aσ(k) and B(k) = Bσ(k), k = 0, 1, 2 . . . .

The function σ can be treated as the switching signal in pass direction. Assume that switchings
occur at the beginning of each pass. Define the switching times in pass direction as the pass numbers
k1, k2, . . . on which the pass profile vector of system (2.1) changes mode. Thus, for each pass k
the switching signal specifies the index σ(k) = i ∈ N of the active subsystem whose dynamics are
described by the equations

xk(p + 1) = Aixk(p) + Biuk(p), i ∈ N ,

yk(p) = Cxk(p), p ∈ [0, T − 1], k = 0, 1, . . . . (2.2)

Assume that the switching times are observable and there are no impulse effects: at a switching
instant the value of the state vector does not change in jumps and remains constant.

On each pass the output of system (2.1) must track a reference trajectory yref(p), 0 � p � T − 1.
This goal can be achieved using iterative learning control. Denote by ek(p) the tracking error of
the reference trajectory (the learning error) on pass k:

ek(p) = yref(p) − yk(p), 0 � p � T − 1. (2.3)

If the initial conditions on each pass are the same, feedback control will give the same tracking
error of the reference trajectory on all passes; moreover, this error may not match the existing
accuracy requirements. The problem is to find a sequence of control inputs uk(p), k = 0, 1, . . . ,
that will ensure the achievement of a specified tracking accuracy of the reference pass profile in a
finite number of passes kfin with preserving this accuracy for all subsequent passes, i.e.,

|ek(p)| � e∗, k � kfin, 0 � p � T − 1. (2.4)

This problem will be solved using iterative learning control. In accordance with this approach, the
control input on a current pass is given by

uk+1(p) = uk(p) + Δuk+1(p), (2.5)

where Δuk+1(t) is a control update to be designed. The problem stated above will be solved if the
control input sequence satisfies the conditions

lim
k→∞

|ek(p)| = 0, lim
k→∞

|uk(p) − u∞(p)| = 0, 0 � p � T − 1, (2.6)

where u∞(p) is a bounded variable, often called the learned control.

3. DISCRETE 2D MODEL

Following [25], the control update law will be designed using the learning error and a state
estimate x̂k(p) obtained by a full-order observer:

x̂k(p + 1) = Aix̂k(p) + Biuk(p) + Fi(yk(p) − Cx̂k(p)), i ∈ N . (3.1)

Introduce the estimation error and also the increments of the state estimate and estimation error:

x̃k(p) = xk(p) − x̂k(p),

ξ̂k+1(p + 1) = x̂k+1(p) − x̂k(p),

ξ̃k+1(p + 1) = x̃k+1(p) − x̃k(p).

(3.2)
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Then the system’s dynamics with this observer can be described by the equations in the increments

ξ̃k+1(p + 1) = (Ai − FiC)ξ̃k+1(p),

ξ̂k+1(p + 1) = FiCξ̃k+1(p) + Aiξ̂k+1(p) + Bivk+1(p),

ek+1(p) = −CAiξ̃k+1(p) − CAiξ̂k+1(p) + ek(p) − CBivk+1(p), i ∈ N ,

(3.3)

where

vk+1(p) = Δuk+1(p− 1).

Denote

ηk(p) = [ξ̃k(p)T ξ̂k(p)T]T, Ai11 =

[
Ai − FiC 0

FiC Ai

]
, Bi1 =

[
0

Bi

]
, Ai12 =

[
0

0

]
,

Ai21 = [−CAi − CAi], A22 = I, Bi2 = −CiB,

and write (3.3) as the standard discrete repetitive process model [6]:

ηk+1(p + 1) = Ai11ηk+1(p) + Ai12ek(p) + Bi1vk+1(p),

ek+1(p) = Ai12ηk+1(p) + Ai22ek(p) + Bi2vk+1(p), i ∈ N . (3.4)

Find the control update law as a feedback in the increments:

Δuk+1(p− 1) = vk+1(p) = ϕ(ηk+1(p), ek(p)), ϕ(0, 0) = 0. (3.5)

If for all 0 � p � T − 1, |ek(p)| → 0 as k → ∞, then there exists a number kfin for which condi-
tions (2.4) will be satisfied. Therefore, the problem will be solved if there exists a sequence vk(p)
such that

lim
k→∞

|ek(p)| = 0, |u∞(p)| < ∞, 0 � p � T − 1, (3.6)

provided that the norm of the estimation error is bounded above by a monotonically decreasing
function, where u∞(p) = limk→∞ uk(p). Obviously, in this case there exists a number kfin starting
from which condition (2.4) will hold.

4. MAIN RESULTS

4.1. Stability Conditions

Denote by Nσ(kf , ks) the number of switchings of the signal σ on an interval (ks, kf ) and define
the average dwell time as follows.

Definition 1. A positive number κa ∈ Z
+ is called the average dwell time under the switching

signal in pass direction σ if, for some N0 � 0,

Nσ(kf , ks) � N0 +
kf − ks

κa
, kf � ks � 0. (4.1)

Inequality (4.1) means that on this interval the average number of passes between any two sequential
switchings is not smaller than κa.

The solution will be obtained using the theory of stability and dissipativity of repetitive pro-
cesses [22].
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Definition 2 [22]. A discrete repetitive process (3.4), (3.5) is said to be exponentially stable if
there exist real numbers κ > 0 and 0 < � < 1 such that

|ηk(p)|2 + |ek(p)|2 � κ�k+p, (4.2)

where � does not depend on T.

Note that under condition (4.2) the error norm (see the previous section) is bounded above by
a monotonically decreasing function, which in turn ensures the achievement of the given accuracy.

The switched system (3.4), (3.5) is generally nonlinear. A universal stability analysis method
for nonlinear systems (Lyapunov’s second method) involves Lyapunov functions. However, the
system equations under consideration are not resolved with respect to the total increments of
the state variables, and this method becomes inapplicable here. To overcome this difficulty, the
authors developed the so-called divergent method of vector Lyapunov functions, in which, unlike
the classical version, stability is established based on the properties of the divergence operator
(or its discrete counterpart) of these vector functions. In the case under study, introduce a vector
Lyapunov function of the form

Vi(ηk+1(p), ek(p)) =

[
V1(ηk+1(p))

V2i(ek(p))

]
, i ∈ N , (4.3)

where V1(xk+1(p)) > 0, xk+1(t) �= 0, V2i(ek(p)) > 0, yk(p) �= 0, V1(0) = 0, and V2i(0) = 0, i ∈ N .
Define a counterpart of the divergence operator as

DV (ηk+1(p), yk(p)) = ΔpV1(ηk+1(p)) + ΔkV2(ek(p)), (4.4)

where ΔpV1(ηk+1(p)) = V1(ηk+1(p + 1)) − V1(ηk+1(p)), ΔkV2(ek(p)) = V2(ek+1(p)) − V2(ek(p)).

Theorem 1. A discrete repetitive process (3.4), (3.5) is exponentially stable under any switching
signal in pass direction σ with an average dwell time

κa > ln

(
c1
c2

)(
ln

(
1 − c3

c1

))−1

(4.5)

and an arbitrary number N0 if there exist a vector function (4.3) and positive scalars c1, c2, and c3
such that

c1|η|2 � V1(η) � c2|η|2, (4.6)

c1|e|2 � V2i(e) � c2|e|2, (4.7)

DVi(ηk+1(p), ek(p)) � −c3
(
|ηk+1(p)|2 + |ek(p)|2

)
. (4.8)

Proof. Consider an interval (0, kf ), and let Nσ = Nσ(kf , 0) be the number of switchings on this
interval. From inequality (4.8) it follows that

DVσ(k)(ηk+1(p), ek(p)) � −c3
(
|ηk+1(p)|2 + |ek(p)|2

)
. (4.9)

Using (4.6), (4.7), and (4.8), rewrite inequality (4.9) as

V1(ηk+1(p + 1)) − V1(ηk+1(p)) + V2σ(k+1)(ek+1(p)) − V2σ(k)(ek(p))

� −c3
(
|ηk+1(p)|2 + |ek(p)|2

)
� −c3

c2
(V1(ηk+1(p) + V2σ(k)(ek(p)))),

(4.10)
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which is equivalent to

V1(ηk+1(p + 1)) + V2σ(k+1)(ek+1(p)) �
(

1 − c3
c2

)(
V1(ηk+1(p)) + V2σ(k)(ek(p))

)
. (4.11)

The left-hand side of (4.11) is positive definite. Hence, 0 < 1 − c3
c2

< 1. Denoting λ = 1 − c3
c2
,

rewrite (4.11) as

V1(ηk+1(p + 1)) � λV1(ηk+1(p)) + λV2σ(k)(ek(p)) − V2σ(k+1)(ek+1(p)). (4.12)

Solving inequality (4.12) in V1(xk+1(p)) gives

V1(ηk+1(p)) � V1(ηk+1(0))λp +
p−1∑
h=0

[
λV2σ(k)(ek(h)) − V2σ(k+1)(ek+1(h))

]
λp−1−h. (4.13)

Introduce

Hk,σ(k)(p) =
p−1∑
h=0

V2,σ(k)(ek(p))λp−1−h.

Then inequality (4.13) implies

Hk+1,σ(k+1)(p) � λHk,σ(k)(p) + λpV1(ηk+1(0)) − V1(ηk+1(p)). (4.14)

Assume that on some pass kn the active mode i is switched to mode j. From condition (4.7) it
follows that

V2j(e) � μV2i(e), i, j ∈ N , (4.15)

where μ = c2
c1

� 1. Solving inequality (4.14) with using (4.15) yields

Hk,σ(k)(p) � μNσλkH0,σ(0)(p) + μNσ

k−1∑
n=0

λk−1−n
(
λpV1(ηn+1(0)) − V1(ηn+1(p))

)
, (4.16)

which is equivalent to

k−1∑
n=0

λk−1−nV1(ηn+1(p)) +
p−1∑
h=0

λp−1−hV2σ(k)(ek(h))

� μNσ

k−1∑
n=0

λk−1−nV1(ηn+1(p)) +
p−1∑
h=0

λp−1−hV2σ(k)(ek(h))

� μNσ

(
λp

k−1∑
n=0

λk−1−nV1(ηn+1(0)) + λk
p−1∑
h=0

λp−1−hV2,σ(0)(e0(h))

⎞
⎠ .

(4.17)

Inequality (4.17) implies

λ−(p−1)
k−1∑
n=0

λ−nV1(ηn+1(p)) + λ−(k−1)
p−1∑
h=0

λ−hV2σ(k)(ek(h))

� μNσ

⎛
⎝λ−(k−1)

k−1∑
n=0

λk−1−nV1(ηn+1(0)) + λ−(p−1)
p−1∑
h=0

λp−1−hV2,σ(0)(e0(h))

⎞
⎠ .

(4.18)
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Recall that all passes have the same initial conditions; therefore, V1(ηn+1(0)) = 0. In addition,
since yref (p) is bounded for all p, |eo(p)|2 = f(p) � Mf . Then the left-hand side of (4.18) can be
estimated as

μNσ

⎛
⎝λ−(k−1)

k−1∑
n=0

λk−1−nV1(ηn+1(0)) + λ−(p−1)
p−1∑
h=0

λp−1−hV2,σ(0)(e0(h))

⎞
⎠

� μNσc2Mf

T∑
h=0

λ−h � μNσ
c2Mf (λ−T − 1)

λ−1 − 1
= Cfμ

Nσ

(4.19)

for all k � kf and p ∈ [0, T ]. Due to (4.19), from (4.18) it follows that

Cfμ
Nσ � λ−(p−1)

p−1∑
h=0

λp−1−hV2(y0(p)) � c1λ
−(k−1)λ−(p−1)|ηk(p)|2, (4.20)

Cfμ
Nσ � λ−(p−1)

p−1∑
h=0

λp−1−hV2(y0(h)) � c1λ
−(k−1)λ−(p−1)|ek(p− 1)|2 (4.21)

for all k � kf and p ∈ [0, T ]. For k = kf and (4.5), inequalities (4.18)–(4.21) finally give

|ηkf (p)|2 + |ekf (p)|2 � CμN0

c1λ
λ
kf+p
0

for any kf and p ∈ [0, T ], where λ0 = μκ−1
a = (c2/c1)κ

−1
a < 1. The proof of Theorem 1 is complete.

This theorem leads to an important result as follows.

Corollary. A discrete repetitive process (3.4), (3.5) is exponentially stable under an arbitrary
switching signal in pass direction σ if there exist a vector function

V (ηk+1(p), ek(p)) = [V1(ηk+1(p)) V2(ek(p))]T (4.22)

and positive scalars c1, c2, and c3 such that

c1|η|2 � V1(η) � c2|η|2,
c1|e|2 � V2(e) � c2|e|2, (4.23)

DV (ηk+1(p), ek(p)) � −c3
(
|ηk+1(p)|2 + |ek(p)|2

)
.

4.2. ILC Design Based on Dissipativity Theory

Consider the auxiliary vector

zk+1(p) = C1ηk+1(p) + C2ek(p) + Dvk+1(p), (4.24)

where C1, C2, and D are constant matrices of compatible dimensions. Following [22], introduce an
important property of discrete repetitive processes.

Definition 3. A discrete repetitive process (3.4) is said to be exponentially dissipative with re-
spect to the input vk+1(t) and the output zk+1(t) defined by (4.24) if there exist a vector func-
tion (4.3) and positive scalars c1, c2, and c3 such that

c1|ηk+1(p)|2 � V1(ηk+1(p)) � c2|ηk+1(p)|2,
c1|ek(p)|2 � V2i(ek(p)) � c2|ek(p)|2,

DVi(ηk+1(t), ek(t)) � Si(zk+1(p), vk+1(p)) − c3
(
|ηk+1(t)|2 + |ek(t)|2

)
, i ∈ N ,

where Si is a scalar function such that Si(0, 0) = 0.
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In the theory of dissipativity pioneered by Willems, the functions Si and Vi are called a supply
rate and a storage function, respectively. Clearly, if for some z sequence (3.5) satisfies the con-
dition Si(zk+1(p), vk+1(p)) � 0, i ∈ N , then system (3.4), (3.5) will be exponentially stable under
any switching signal in pass direction σ with an average dwell time (4.5); see Theorem 1. Thus,
the ILC design problem is to find a stabilizing triplet {V, z, v}. Introduce the notations

ζk+1(p) =

[
ηk+1(p)

ek(p)

]
, Āi =

[
Ai11 Ai12

Ai21 Ai22

]
, B̄i =

[
Bi1

Bi2

]
, i ∈ N .

Define a block-diagonal matrix Pi = diag[P1 P2i] � 0 as the solution of the Riccati inequality

ĀT
i PiĀ− (1 − σ)Pi − ĀT

i PiB̄i

[
B̄T

i PiB̄i + R
]−1

B̄T
i PiĀi + Q � 0, i ∈ N , (4.25)

where 0 < σ < 1 is a positive scalar, and Q � 0 and R � 0 are weight matrices. Clearly, if the
system of linear matrix inequalities⎡

⎢⎢⎢⎣
(1 − σ)Xi XĀT Xi

ĀiXi Xi + B̄iR
−1B̄T

i 0

Xi 0 Q−1

⎤
⎥⎥⎥⎦ � 0, Xi � 0, i ∈ N (4.26)

is solvable in Xi = diag[X1 X2i] � 0, then Pi = X−1
i , i ∈ N .

The next theorem suggests a possible set of stabilizing triplets.

Theorem 2. A discrete repetitive process (3.4) is exponentially dissipative with respect to the
supply rate

Si(vk+1(p), zk+1(p)) = zTk+1(p)
(
B̄T

i PiB̄i + R
)−1

zk+1(p)

+ 2zk+1(p)Tvk+1(p) + vk+1(p)T
[
B̄T

i PiB̄i + R
]
vk+1(p), i ∈ N

(4.27)

with the input vk+1(p) and the output

zk+1(p) = B̄T
i PiĀiζk+1(p), i ∈ N , (4.28)

where Pi = X−1
i , Xi = diag[X1 X2i] � 0 i ∈ N , is the solution of (4.25). The set of control update

sequences (3.5) ensuring the exponential stability of system (3.4), (3.5) is given by

vk+1(p) = −
[
B̄T

i PiB̄i + R
]−1

B̄T
i PĀiΘi(ζk+1(p))ζk+1(p), i ∈ N , (4.29)

where Θ(ζ) is a symmetric matrix function that satisfies the relation

Mi −MiΘi(ζ) − Θi(ζ)Mi + Θi(ζ)MiΘi(ζ) −Q− (σ − μ)Pi ≺ 0, i ∈ N (4.30)

for all ζ ∈ R
2nx+ny , where

Mi = ĀT
i PiB̄i[B̄

T
i PiB̄i + R]−1B̄T

i PiĀi, 0 < μ < σ, i ∈ N .

Proof. Choose the components of the vector storage function (4.3) as the quadratic forms

V1(ηk+1(p)) = ηk+1(p)TP1ηk+1(p), V2i(ek(p)) = ek(p)T(t)P2ek(p), i ∈ N ,
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where P1 � 0 and P2 � 0 are the diagonal blocks of the matrix P representing the solution of (4.25).
Calculating the counterpart of the divergence operator of (4.3) along the trajectories of (3.4) yields

DVi(ηk+1(p), ek(p))

= ζk+1(p)T
(
ĀT

i PĀi − (1 − σ)Pi − ĀT
i PiB̄

[
B̄T

i PiB̄i + R
]−1

B̄T
i PiĀi + Q

)
ζk+1(p)

+ ζk+1(p)TĀT
i PiB̄

[
B̄T

i PiB̄i + R
]−1

B̄T
i PiĀiζk+1(p) − ζk+1(p)T(Q + σPi)ζk+1(p)

+ 2ζk+1(p)TĀT
i PiB̄ivk+1(p) + vk+1(p)TB̄T

i PiB̄ivk+1(p)

� ζk+1(p)TĀT
i PiB̄i

[
B̄T

i PiB̄i + R
]−1

B̄T
i PiĀζk+1(p) + 2ζk+1(p)TĀT

i PiB̄ivk+1(p)

+ vk+1(p)T
[
B̄T

i PiB̄i + R
]
vk+1(p) − ζk+1(p)T(Q + σPi)ζk+1(p), i ∈ N .

(4.31)

From (4.31) it follows that (3.4) is exponentially dissipative with respect to the supply rate (4.27)
with the input vk+1(p) and the output (4.28). Moreover, from (4.31) it follows that if sequence (3.5)
is determined by (4.29), then

DVi(ηk+1(p), ek(p)) � −μλmin(Pi)
(
|ηk+1(p)|2 + |ek(p)|2

)
and the discrete repetitive process (4.29), (3.4) is exponentially stable under any switching signal
in pass direction σ with an average dwell time (4.5); see Theorem 1. The proof of Theorem 2 is
complete.

Remark 1. Since the increment of the estimation error ξ̃k+1(p) is not available for the control
update design, the matrix Θi always has the form Θi(ζ) = diag[0nx Θi1(ζ)]. In the simplest case,
matrix Θi1 can be chosen independent of ζ and then, after the matrix Pi is found, condition (4.30)
reduces to a system of linear matrix inequalities, and Theorem 2 gives a linear sequence of control
updates. In the general case, Θi(ζ) depends on the variations of the error in pass direction;
therefore, the control update coefficients can be decreased upon achieving the required accuracy
and, conversely, increased when the error is large. In other words, adaptation to the error value
can be introduced in the control update procedure. This approach will guarantee a reasonable
compromise between the rate of learning and ILC costs. The simplest solution here is to use
piecewise-constant variations of Θ, depending on the accuracy achieved. For discrete repetitive
processes without switching, it was discussed in [24].

4.3. Alternative Approach

In a series of cases, it seems interesting to construct non-switched control. Here an alternative
approach turns out to be more efficient. Consider a Lyapunov function (4.22) with the components

V1(ξk+1(p)) = ξTk+1(p)P1ξk+1(p), V2(ek) = eTk (p)P2ek(p),

where P1 � 0 and P2 � 0. Find the control update law as a linear feedback in the increments of
the measurable variable and the error:

vk+1(p) = K1ξ̂k+1(p) + K2ek(p) = KHζk+1(p), (4.32)

where K = [K1 K2], H = [0 Inx+ny ]. Calculating the divergence operator of (4.22) along the tra-
jectories of (3.4), (4.32) gives

DV = x̄T
(
ĀT

ciPiĀci − P
)
x̄, i ∈ N , (4.33)
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where

Pi = diag[P1 P2i], Āci =

⎡
⎢⎢⎣
Ai − FiC 0 0

FiC Ai + BiK1 BiK2

−CAi −C(Ai + BiK1) I − CBiK2

⎤
⎥⎥⎦, i ∈ N .

Assume that the matrices P � 0 and K satisfy the system of inequalities

(Āi + B̄iKH)TP (Āi + B̄iKH) − Pi + Q + HTKTRKH � 0, i ∈ N , (4.34)

where Q � 0 and R � 0 are some matrices, which play the same role as weight matrices in linear-
quadratic control design. Due to (4.33), the discrete repetitive process (3.4), (4.32) is exponentially
stable under an arbitrary switching signal in pass direction σ; see the corollary of Theorem 1. Using
the well-known Schur’s complement lemma, inequalities (4.34) are easily reduced to the following
linear matrix inequalities and equation in the variables X = diag[P−1

1 P−1
2 ], Y, and Z :

⎡
⎢⎢⎢⎢⎣

X (ĀiX + B̄iY H)T X (Y H)T

ĀiX + B̄iY H X 0 0

X 0 Q−1 0

Y H 0 0 R−1

⎤
⎥⎥⎥⎥⎦ � 0, X � 0, HX = ZH, i ∈ N . (4.35)

If the inequalities and equation of (4.35) are solvable, then K = [K1 K2] = Y Z−1, since the ma-
trix Z is nonsingular due to the structure of the matrix H.

5. EXAMPLE

Consider the model of a single flexible link gantry robot [26] operating in a repetitive mode with
a constant repetition period. The dynamics of the gantry robot are described by the state-space
equations

ẋk(t) = A0xk(t) + B0uk(t), yk(t) = Cxk(t), 0 � t � Tf , k = 0, 1, 2, . . . , (5.1)

where x(t) =
[
θ(t) α(t) θ̇(t) α̇(t)

]T
in which θ(t) is the servo angle and α(t) is the flexible link

angle;

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

0
Ks

Jeq
−Beq

Jeq
0

0 −Ks(Jl + Jeq)

JlJeq

Beq

Jeq
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

Jeq

− 1

Jeq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, C = [1 0 0 0] ,

in which Beq is the viscous friction coefficient of the servo, Ks is the stiffness of the flexible link,
Jl is the moment of inertia of the flexible link, and Jeq is the moment of inertia of the servo. The
flexible link is moving in the horizontal plane.

The problem is to find an iterative learning control algorithm enabling the output variable
y(t) = θ(t) to track a reference trajectory yref(t) with a given accuracy e∗. Only the servo angle θ
is available for direct measurement.

Select the following nominal values of the parameters for simulation [26]:
Beq = 0.004 N×m/(rad/s), Ks = 1.3 N×m/rad, Jl = 0.0038 kg×m2, Jeq = 2.08 × 10−3 kg×m2.
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Fig. 1. Reference trajectory of servo angle.

Set the length of a repetition period equal to 3 s and the required accuracy to e∗ = 0.5 grad =
0.00873 rad.

Let the reference trajectory of the output variable (see Fig. 1) be described by

yref (t) =
πt2

6
− πt3

27
, t ∈ [0, Tf ].

Assume that the ILC algorithm is implemented on computer with a sampling rate of Ts = 0.01 s.
The equivalent discrete model of (5.1), which connects the values of all variables at the time instants
0, Ts, 2Ts, . . . , has the form

xk(p + 1) = Axk(p) + Buk(p), p = 0, 1, . . . , NTf
, k = 0, 1, 2, . . . , (5.2)

where A = exp(A0Ts), B =
(∫ Ts

0 exp(A0τ)dτ
)
B0, and NTf

is the number of samples on the inter-

val [0, Tf ].

When the gantry robot begins operation, the first few passes are without load for presetting,
and the parameters have their nominal values. After three passes, the gantry robot is loaded:
Jl = 0.0076 kg×m2, Jeq = 3.3× 10−3 kg×m2. Based on the physical meaning of the state variables,
set the weight matrices Q = diag[10−3I8 106] and R = 0.01. Treating the stepwise change in the
gantry robot’s load as a mode switching, use the results of Section 4.3, which are convenient for
comparative analysis. Denote by A1 and B1 the matrices of the unloaded gantry robot and by A2

and B2 and the matrices of the loaded one. The switched iterative learning control algorithm is
described by

x̂k(p) = Aix̂k(p − 1) + Biuk(p − 1) + Fi(yk(p− 1) − Cx̂k(p− 1)),

i =

{
1 if k < 3

2 if k � 3,

Fi =

{
F1 = [1.9199 − 1.8415 91.1151 − 84.9936]T if k < 3

F2 = [1.7575 − 1.7001 81.2812 − 78.3325]T if k � 3,

uk(p) = uk−1(p) + K1 (x̂k(p) − x̂k−1(p)) + K2i (yref(p) − yk−1(p + 1)) ,

K1 = [−31.0300 − 0.3018 − 0.4530 − 0.0444], K2i =

{
9.5140 if k < 3

27.1609 if k � 3.
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Fig. 2. Mean square learning error depending
on number of passes: switched control.

Fig. 3. Mean square learning error depending
on number of passes: non-switched control.

The non-switched algorithm has the form

uk(p) = uk−1(p) + K1 (x̂k(p) − x̂k−1(p)) + K2 (yref(p) − yk−1(p + 1)) ,

K1 = [−28.1965 − 0.2408 − 0.4345 − 0.0395], K2 = 12.8135.

For assessing the tracking accuracy of the reference trajectory, select the mean-square learning error

E(k) =

√√√√√ 1

NTf

NTf∑
p=0

|ek(p)|2. (5.3)

The progressions of the mean-square learning error depending on the number of passes under the
switched and non-switched control algorithms are presented in Figs. 2 and 3, respectively.

A direct analysis of these dependencies shows that in the case of switched control, the required
accuracy is achieved immediately after the presetting passes; in the case of non-switched control,
additional passes in the operating mode are required to achieve the required accuracy, which is
obviously undesirable.

6. CONCLUSIONS

This paper has proposed a state observer-based iterative learning control design method for
switched discrete repetitive processes. As it has been demonstrated by an example, in the case of
observable switchings the switched iterative learning control algorithm accelerates the convergence
of the learning process. In the authors’ viewpoint, further research in this area can be associated
with the development of the theory for switched differential repetitive processes and its application
to iterative learning control design problems. Also, an in-depth study is needed for the choice of the
nonlinear function Θi(ζ) in the dissipativity-based design procedure (Theorem 2 and Remark 1).
Of considerable interest are networked iterative learning control problems, where switching is a
natural model of structural changes in the network configuration. The combination of iterative
learning control and feedback control is another interesting area for future investigations.
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