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1. INTRODUCTION

Systems of ordinary differential equations with small parameters at some derivatives are usually
called singularly perturbed systems. Within the mathematical theory of optimal processes, con-
siderable attention is paid to the optimization problems of such systems; for example, see [1–4].
This class of problems provoked much interest due to the efficiency of asymptotic methods for their
solution, which allow decomposing the original optimal control problems into the ones of smaller
dimension. In addition, the asymptotic approach makes it possible to avoid the integration of
singularly perturbed systems, which are rigid systems [5].

This paper is devoted to the construction of asymptotic approximations in the form of open
loop and feedback controls to the solution of the singularly perturbed linear-quadratic optimal
control problem with linear terminal constraints on the trajectories. It can be interpreted as a
control problem with minimum energy cost. The core of the algorithms suggested below consists
in the asymptotic expansion of the Lagrange multipliers in terms of the integer powers of the small
parameter; in accordance with the maximum principle [6], these multipliers correspond to optimal
control. The computational procedures developed in this paper are another implementation of the
methodological approach to the optimization problems of perturbed dynamic systems, which is
based on the idea of special finite-dimensional parametrization of optimal controls; the details can
be found in [2].

Note that a significant number of publications were devoted to singularly perturbed linear-
quadratic optimal control problems; for example, see [7–11]. However, with the exception of [11],
no constraints on system trajectories were imposed. This paper generalizes the results established
in [11], where the problem with a fixed right endpoint of the trajectories was considered.
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2. PROBLEM STATEMENT

In the class of r-dimensional controls u(t), t ∈ T = [t∗, t∗], with piecewise continuous components,
consider an optimal control problem of the form

ẏ = A1(t)y +A2(t)z +B1(t)u, y(t∗) = y∗,
μż = A3(t)y +A4(t)z +B2(t)u, z(t∗) = z∗,

(2.1)

H1y(t
∗) = g1, H2z(t

∗) = g2, (2.2)

J(u) =
1

2

t∗∫

t∗

uTP (t)udt → min, (2.3)

with the following notations: μ as a small positive parameter; t∗ and t∗ as given time instants
(t∗ < t∗); y as the n-dimensional vector of slow variables; z as the m-dimensional vector of fast
variables; g1 and g2 as vectors of dimensions n1 and m1, respectively (n1 ≤ n,m1 ≤ m); H1 and H2

as full rank matrices of compatible dimensions; finally, P (t) as a positive definite and symmetric
matrix of compatible dimensions, for all t ∈ T.

Assumption 1. All eigenvalues of the matrix A4(t), t ∈ T, have negative real parts.

Assumption 2. The elements of all matrices figuring in the problem statement are indefinitely
differentiable.

A control with piecewise continuous components is said to be admissible if the trajectory of
system (2.1) induced by this control satisfies the terminal constraints (2.2). An admissible control
on which the performance criterion (2.3) achieves minimum is said to be optimal. In addition to
the conventional notions, we define the asymptotic approximations to the solution of the stated
problem in the following way.

Definition 1. A control u(N)(t, μ), t ∈ T , with piecewise continuous components will be called an
asymptotically suboptimal open loop control of order N (N = 0, 1, 2, . . .) in problem (2.1)–(2.3) if
it deviates from the optimal control in terms of the performance criterion (2.3) by a value of order

O
(
μN+1

)
and also the trajectory y (t, μ) , z (t, μ) , t ∈ T , of system (2.1) induced by it satisfies the

terminal constraints (2.2) with the same infinitesimal order.

Definition 2. A vector function u(N)(y, z, t, μ) will be called an asymptotically suboptimal feed-
back control of order N if, for any initial state (y∗, z∗, t∗), t∗ < t∗,

u(N)(y∗, z∗, t∗, μ) = u(N)(t∗, μ),

where u(N)(t, μ), t∈T , is an asymptotically suboptimal open loop control of order N in prob-
lem (2.1)–(2.3).

In this paper, we will propose and justify an algorithm to construct an asymptotically subop-
timal open loop control of a given order N in the optimal control problem under study. Also, an
asymptotically suboptimal feedback control of zeroth order will be constructed.

For compact presentation, the following notations will be used below:

A (t, μ) =

(
A1 (t) A2 (t)
A3 (t) /μ A4 (t) /μ

)
,

B (t, μ) =

(
B1 (t)
B2 (t) /μ

)
, x∗ =

(
y∗
z∗

)
.

(2.4)
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3. FIRST BASIC PROBLEM

The calculations for constructing asymptotically suboptimal controls begin with solving the
degenerate problem

ẏ = A0(t)y +B0(t)u, y(t∗) = y∗, H1y(t
∗) = g1,

J1(u) =
1

2

t∗∫

t∗

uTP (t)udt → min,
(3.1)

where

A0(t) = A1(t)−A2(t)A
−1
4 (t)A3(t), B0(t) = B1(t)−A2(t)A

−1
4 (t)B2(t). (3.2)

In the sequel, this problem will be called the first basic problem.

Assumption 3. The dynamic system in problem (3.1) is controllable on a time interval [τ, t∗]
with respect to the subspace H1y = 0 for any τ ∈ [t∗, t∗) [12].

This assumption holds if and only if, for any τ ∈ [t∗, t∗) and any nonzero vector l of dimension n1,

lTH1F0(t)B(t) �≡ 0, τ ≤ t ≤ t∗, (3.3)

where F0(t), t ∈ T , is a matrix function of dimensions (n× n) that satisfies the original differential
equation

Ḟ0 = −F0A0 (t) , F0(t
∗) = En (3.4)

with an identity matrix En of compatible dimensions; for example, see [13]. Note that condi-
tion (3.3) is often called the implicit controllability criterion with respect to a subspace and, for a
time-invariant dynamic system, is equivalent to the requirement [12]

rank
(
H1B0, H1A0B0, . . . , H1A

n−1
0 B0

)
= n1. (3.5)

Under Assumption 3 there exist admissible controls in the first basic problem; moreover, this
problem has a unique solution [14], representing a normal extremal. This means that the maximum
principle [6, 15] can be formulated in the following way: let u0(t), y0(t), t ∈ T , be an optimal control
and a corresponding optimal trajectory in problem (3.1); then there exists the n1-dimensional vector
of Lagrange multipliers λ0 such that

ψ0T(t)B0(t)u
0(t)− 1

2
u0T(t)P (t)u0(t)

= max
u∈Rr

(
ψ0T(t)B0(t)u− 1

2
uTP (t)u

)
, t ∈ T,

where ψ0(t), t ∈ T , is the solution of the conjugate system ψ̇ = −AT
0 (t)ψ, ψ(t

∗) = HT
1 λ0. This

immediately gives

u0(t) = P−1(t)BT
0 (t)ψ

0(t), t ∈ T. (3.6)

Note that

ψ0T (t) = λT0H1F0 (t) , ψ0T(t)B0(t) = λT0H1Φ0 (t) , t ∈ T, (3.7)
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where

Φ0 (t) = F0 (t)B0 (t) , t ∈ T. (3.8)

Due to (3.6), (3.7) and the Cauchy formula, we have the equality

H1y
0(t∗) = H1F0 (t∗) y∗ +H1C1H

T
1 λ0 = g1, (3.9)

where

C1 =

t∗∫

t∗

Φ0 (t)P
−1 (t)ΦT

0 (t) dt. (3.10)

Under Assumption 3 the matrix H1C1H
T
1 is nonsingular, which can be easily checked using the

implicit controllability criterion with respect to a subspace. Since λ0 is uniquely defined, by the
maximum principle a unique vector of the conjugate variables is associated with the optimal control
in the first basic problem.

4. SECOND BASIC PROBLEM

The second stage of the calculations is to solve the infinite-horizon optimal control problem

dz

ds
= A4(t

∗)z +B2(t
∗)u,

H2z(0) = H2A
−1
4 (t∗)

(
A3(t

∗)y0 (t∗) +B2(t
∗)u0(t∗)

)
+ g2,

z(−∞) = 0, J2(u) =
1

2

0∫

−∞
uTP (t∗)uds→ min,

(4.1)

which will be called the second basic problem.

Assumption 4. The controllability criterion with respect to a subspace is satisfied:

rank
(
H2B2(t

∗), H2A4(t
∗)B2(t

∗), . . . , H2A
m−1
4 (t∗)B2(t

∗)
)
= m1.

This assumption guarantees the existence of admissible controls in the second basic problem. In
turn, from this fact it follows that problem (4.1) has a unique solution [14] and is normal. In this
case, the maximum principle [6] can be stated in the following way: let u∗ (s) , z∗ (s) , s ≤ 0, be an
optimal control and an optimal trajectory in problem (4.1); then there exists the m1-dimensional
vector of Lagrange multipliers ν0 such that

ΠψT (s)B2 (t
∗)u∗ (s)− 1

2
u∗T (s)P (t∗)u∗ (s)

= max
u∈Rr

(
ΠψT (s)B2 (t

∗) u− 1

2
uTP (t∗) u

)
, s ≤ 0,

where Πψ (s) , s ≤ 0, is the solution of the conjugate system

d

ds
Πψ = −AT

4 (t
∗)Πψ, Πψ(0) = HT

2 ν0.

This immediately gives

u∗(s) = P−1(t∗)BT
2 (t

∗)Πψm(s), s ≤ 0. (4.2)
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Note that

ΠψT (s) = νT0 H2G (s) , ΠψT (s)B2 (t
∗) = νT0 H2ΠΦ (s) , s ≤ 0, (4.3)

where

ΠΦ (s) = G (s)B2 (t
∗) , s ≤ 0, (4.4)

and G (s) , s ≤ 0, is a matrix function of dimensions (m×m) that satisfies the differential equation

dG

ds
= −GA4 (t

∗) , G (0) = Em. (4.5)

Introduce the notation

C3 =

0∫

−∞

(
ΠΦ(s)P−1(t∗)ΠΦT(s)

)
ds. (4.6)

Due to Assumption 4, the matrix H2C3H
T
2 is nonsingular. Moreover, from (4.2), (4.3), and the

Cauchy formula it follows that

H2z
∗ (0) = H2C3H

T
2 ν0, (4.7)

and hence a unique vector of the conjugate variables is associated with the optimal control in the
second basic problem.

We emphasize that the vector of Lagrange multipliers ν0 is the only information about the solu-
tion of the second basic problem that will be used below for constructing asymptotically suboptimal
controls. There is no need to construct the optimal control u∗(s), s ≤ 0. By the way, this is even
impossible if the problem is solved numerically.

As soon as the basic problems are solved, we have to form the matrix

I0 =

⎛
⎝ H1C1H

T
1 0n1×m1

H2C2H
T
1 H2C3H

T
2

⎞
⎠ (4.8)

of dimensions (n1 +m1)× (n1 +m1). The matrices C1 and C3 are given by formulas (3.10), (4.6),
and

C2 = −A−1
4 (t∗)

(
A3(t

∗)C1 +B2 (t
∗)P−1 (t∗)BT

0 (t∗)
)
.

As it has been mentioned, H1C1H
T
1 and H2C3H

T
2 are nonsingular matrices; in this case, det I0 �= 0.

5. ASYMPTOTIC ANALYSIS OF SOLUTION OF ORIGINAL PROBLEM

It makes sense to speak about asymptotic suboptimal controls only if the original problem has a
solution. We will demonstrate that under the assumptions above, there exists an optimal control in
problem (2.1)–(2.3) with a sufficiently small parameter μ. The proof of this fact will be constructive,
predetermining further calculations for asymptotically suboptimal control design.

Let ψ1 (t, λ, ν, μ) , ψ2 (t, λ, ν, μ) , t ∈ T, be the solution of the original problem

ψ̇1 = −AT
1 (t)ψ1 −AT

3 (t)ψ2, ψ1 (t
∗) = HT

1 λ,

μψ̇2 = −AT
2 (t)ψ1 −AT

4 (t)ψ2, ψ2 (t
∗) = HT

2 ν,
(5.1)

where λ and ν are vectors of dimensions n1 andm1, respectively. Denote by y(t, λ, ν, μ), z(t, λ, ν, μ),
t ∈ T , the trajectory of system (2.1) that is induced by the control

u (t, λ, ν, μ) = P−1 (t)
(
BT

1 (t)ψ1 (t, λ, ν, μ) +BT
2 (t)ψ2 (t, λ, ν, μ)

)
, t ∈ T. (5.2)
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Theorem. Under Assumptions 1–4 there exists a unique optimal control in problem (2.1)–(2.3)
with a sufficiently small parameter μ, which is a normal extremal and can be represented as

u0 (t, μ) = u (t, λ (μ) , ν (μ) , μ) , t ∈ T. (5.3)

In accordance with the maximum principle, the vector of conjugate variables

(ψ1 (t, λ (μ) , μν (μ) , μ) , μψ2 (t, λ (μ) , μν (μ) , μ)) , t ∈ T ,

is associated with the optimal control; the vectors λ (μ) and ν (μ) , representing the solution of the
system of equations

H1y (t
∗, λ, ν, μ)− g1 = 0, H2z (t

∗, λ, ν, μ)− g2 = 0, (5.4)

have the asymptotic expansions

λ (μ) ∼ λ0 +
∞∑
k=1

μkλk, ν (μ) ∼ ν0 +
∞∑
k=1

μkνk, (5.5)

in which the leading coefficients are the vectors of Lagrange multipliers in the basic problems.

Proof. First of all, we show that the left-hand sides of Eqs. (5.4) have asymptotic expan-
sions in terms of the integer powers of the small parameter, and derive the coefficients of these
expansions. For the sake of brevity, introduce the notations η = (λ, ν), η0 = (λ0, ν0), and let
x(t, η, μ) = (y(t, η, μ), z(t, η, μ)), t ∈ T . By the Cauchy formula, using notations (2.4) we obtain

x(t∗, η, μ) = F (t∗, μ) x∗ +
t∗∫

t∗

F (t, μ)B (t, μ)u (t, η, μ) dt, (5.6)

where F (t, μ), t ∈ T , is a matrix function of dimensions (n+m)× (n+m) that satisfies the original
equation

Ḟ = −FA (t, μ) , F (t∗) = En+m. (5.7)

For convenience, the solution of this singularly perturbed equation can be written in the block form

F (t, μ) =

⎛
⎝ F1 (t, μ) F2 (t, μ)

F3 (t, μ) F4 (t, μ)

⎞
⎠ ,

where F1, F2, F3, and F4 are matrices of dimensions n× n, n×m, m× n, and m×m, respectively.
Using the method of boundary functions [16], we expand them into the asymptotic series

Fi(t, μ) ∼
∞∑
k=0

μk (Fik(t) + ΠkFi (s)) , s = (t− t∗) /μ, t ∈ T, i = 1, 2, 3, 4. (5.8)

We emphasize that expressions (5.8) are asymptotic expansions uniform in t ∈ T . Another impor-
tant fact is that the matrix functions ΠkFi (s) , s ≤ 0, called boundary terms, satisfy the upper
bounds

‖ΠkFi (s)‖ ≤ αk exp (βks) , i = 1, 2, 3, 4, k = 0, 1, . . . , (5.9)
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where αk and βk are positive constants. Some leading coefficients of expansions (5.8), which will
be employed for proving this theorem, have the form

F10 = F0 (t) , F20 = 0n×m, F30 = −A−1
4 (t∗)A3 (t

∗)F0 (t) ,

F40 = 0m×m, F21 = −F0 (t)A2 (t)A
−1
4 (t) ,

F41 = A−1
4 (t∗)A3 (t

∗)F0 (t)A2 (t)A
−1
4 (t) ,

Π0F1 = 0n×n, Π0F2 = 0n×m, Π0F3 = G (s)A−1
4 (t∗)A3 (t

∗) ,

Π0F4 = G (s) , Π1F2 = A2 (t
∗)A−1

4 (t∗)G (s) ,

(5.10)

where F0 (t) , t ∈ T , and G (s) , s ≤ 0, are the solutions of the original problems (3.4) and (4.5),
respectively.

We write (5.6) in the block form

y(t∗, η, μ) = F1(t∗, μ)y∗+F2(t∗, μ)z∗+
t∗∫

t∗

(F1(t, μ)B1(t) + F2(t, μ)B2(t)/μ)u(t, η, μ)dt,

z(t∗, η, μ) = F3(t∗, μ)y∗+F4(t∗, μ)z∗+
t∗∫

t∗

(F3(t, μ)B1(t) + F4(t, μ)B2(t)/μ)u(t, η, μ)dt.

(5.11)

Note that

ψT
1 (t, η, μ) = λTH1F1 (t, μ) + μνTH2F3 (t, μ) ,

ψT
2 (t, η, μ) = λTH1F2 (t, μ) /μ+ νTH2F4 (t, μ) .

In view of formulas (5.8) and (5.10), this leads to the asymptotic expansions

ψi(t, η, μ) ∼
∞∑
k=0

μk (ψik(t, η) + Πkψi (s, η)) , s = (t− t∗) /μ, t ∈ T, i = 1, 2, (5.12)

in which

ψT
10(t, η) = λTH1F0 (t) , ψT

20(t, η) = −λTH1F0 (t)A2 (t)A
−1
4 (t) ,

ΠT
0 ψ1(s, η) = 0, ΠT

0 ψ2 (s, η) =
(
λTH1A2 (t

∗)A−1
4 (t∗) + νTH2

)
G (s) ,

ψT
1k(t, η) = λTH1F1k (t) + νTH2F3,k−1 (t) ,

ψT
2k(t, η) = λTH1F2,k+1 (t) + νTH2F4k (t) ,

ΠT
k ψ1(s, η) = λTH1ΠkF1 (s) + νTH2Πk−1F3 (s) ,

ΠT
k ψ2(s, η) = λTH1Πk+1F2 (s) + νTH2ΠkF4 (s) ,

k ≥ 0, t ∈ T, s ≤ 0.

(5.13)

The asymptotic expansions are uniform in the domain ‖η − η0‖ < ε0, t ∈ T , where ε0 is some
positive number. Note that due to formulas (3.7) and (4.3), we have the equalities

ψT
10(t, η0) = ψ0 (t) , ψT

20(t, η0) = −
(
A2 (t)A

−1
4 (t)

)T
ψ0 (t) , t ∈ T, (5.14)

Π0ψ2 (s, η0) = Πψ (s) , s ≤ 0.
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In addition, control (5.2) has the uniform asymptotic expansion

u(t, η, μ) ∼
∞∑
k=0

μk (uk(t, η) + Πku (s, η)) , s = (t− t∗) /μ, t ∈ T, (5.15)

where

uk (t, η) = P−1 (t)
(
BT

1 (t)ψ1k (t, η) +BT
2 (t)ψ2k (t, η)

)
,

Πku (s, η) =
k∑

j=0

sj

j!

(
dj

dtj

(
P−1BT

1

)
(t∗)Πk−jψ1(s, η) +

dj

dtj

(
P−1BT

2

)
(t∗)Πk−jψ2(s, η)

)
, (5.16)

t ∈ T, s ≤ 0, k = 0, 1, . . . .

Besides formulas (3.2), (3.6), (4.2), and (5.14), the equality Π0ψ1(s, η) = 0 holds; consequently,

u0(t, η0) = u0 (t) , t ∈ T, Π0u (s, η0) = u∗ (s) , s ≤ 0. (5.17)

From (5.8)–(5.10), (5.12), (5.13), (5.15), and (5.16) it follows that the vector functions (5.11)
can be expanded into the asymptotic series

y(t∗, η, μ) ∼
∞∑
k=0

μkyk (η) , z(t∗, η, μ) ∼
∞∑
k=0

μkzk (η) , (5.18)

in which

y0(η) = F0 (t∗) y∗ +
t∗∫

t∗

F0(t)B0(t)u0 (t, η) dt,

z0(η) = −A−1
4 (t∗)A3(t

∗)y0(η) +
0∫

−∞
G(s)B2(t

∗)(u0(t∗, η) + Π0u(s, η))ds,

yk(η) = F1k (t∗) y∗ + F2k (t∗) z∗ +
t∗∫

t∗

k∑
j=0

F1j (t)B1 (t)uk−j (t, η) dt

+

t∗∫

t∗

k+1∑
j=1

F2j (t)B2 (t)uk−j+1 (t, η) dt

+

0∫

−∞

k−1∑
p=0

k−p−1∑
j=0

sj

j!

dj

dtj
(F1,k−p−j−1B1) (t

∗)Πpu (s, η) ds

+

0∫

−∞

k∑
p=0

k−p∑
j=0

sj

j!

dj

dtj
(F2,k−p−j−1B2) (t

∗) Πpu (s, η) ds

+

0∫

−∞

k−1∑
p=0

k−p−1∑
j=0

sj

j!
Πk−p−j−1F1(s)

(
djB1

dtj
(t∗)Πpu (s, η) +

∂j

∂tj
(B1up) (t

∗, η)

)
ds

+

0∫

−∞

k∑
p=0

k−p∑
j=0

sj

j!
Πk−p−jF2 (s)

(
djB2

dtj
(t∗) Πpu (s, η) +

∂j

∂tj
(B2up) (t

∗, η)

)
ds, k ≥ 1.

(5.19)
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For zk(η), k ≥ 1, we have a similar formula, with the only difference that F1j , F2j , ΠjF1, and ΠjF2

are replaced by F3j , F4j , ΠjF3, and ΠjF4, respectively, where j = 0, 1, . . . .

Using the implicit function theorem, we check that the system of Eqs. (5.4) is uniquely solvable
in η for sufficiently small numbers μ. We write (5.4) as

R (η, μ) = 0. (5.20)

Due to (5.18), the asymptotic expansion

R (η, μ) ∼
∞∑
k=0

μkRk (η) , (5.21)

where R0(η) = (H1y0(η) − g1,H2z0(η)− g2) and Rk(η) = (H1yk(η),H2zk(η)), k = 1, 2, . . . , holds
uniformly in the domain ‖η − η0‖ < ε0. Let R(η, 0) = R0(η); then the vector function R(η, μ) is
continuous together with its partial derivatives with respect to the components of the vector η in
the domain ‖η − η0‖ < ε0, 0 ≤ μ < μ0, where μ0 is a sufficiently small positive number.

In accordance with (5.17), (5.19), and the Cauchy formula, we have H1y0 (η0) = H1y
0 (t∗) = g1.

The matrix function G (s) , s ≤ 0, is the solution of the original problem (4.5); since G (s) → 0 as
s→ −∞,

0∫

−∞
G (s)B2 (t

∗) u0(t∗, η0)ds

= −
0∫

−∞

dG

ds
(s)A−1

4 (t∗)B2 (t
∗) u0(t∗)ds = −A−1

4 (t∗)B2 (t
∗) u0(t∗).

(5.22)

At the same time, from (5.17) and the Cauchy formula it follows that

0∫

−∞
G (s)B2 (t

∗) Π0u(s, η0)ds = z∗ (0) .

In combination with expressions (4.1), (5.19), and (5.22), this equality gives H2z0 (η0) = g2. Thus,
R (η0, 0) = R0 (η0) = 0.

Taking into account (3.7), (4.4), (5.10), (5.13), and (5.16), we perform direct differentiation of the
vector function (5.19) to check that ∂R0 (η0, 0) /∂η = ∂R0 (η0) /∂η = I0 (see (4.8)). Because this
Jacobian matrix is nonsingular, system (5.20) (equivalently, system (5.4)) satisfies the conditions of
the implicit function theorem. In accordance with this theorem, in some right-sided neighborhood of
the origin 0 ≤ μ < μ1 there exists a uniquely defined vector function η (μ) = (λ (μ) , ν (μ)) satisfying
Eqs. (5.4). Moreover, it is continuous and η (0) = η0 = (λ0, ν0) .

As it has been mentioned, expansion (5.21) is uniform in the domain ‖η − η0‖ < ε0, and its
coefficients are linear functions. Then the solution (λ (μ) , ν (μ)) of system (5.4) has the asymptotic
expansions (5.5).

Consider control (5.3). It is admissible in problem (2.1)–(2.3), since the corresponding trajec-
tory y0 (t, μ) = y (t, λ (μ) , ν (μ) , μ), z0 (t, μ) = z (t, λ (μ) , ν (μ) , μ), t ∈ T , induced by this control
satisfies the conditions H1y

0(t∗, μ) = g1 and H2z
0(t∗, μ) = g2. By construction, control (5.3) is the

normal Pontryagin extremal with the vector of Lagrange multipliers (λ (μ) , μν (μ)). In accordance
with the maximum principle, the vector of conjugate variables ψ0

1 (t, μ) = ψ1(t, λ (μ) , μν (μ) , μ),
ψ0
2 (t, μ) = μψ2(t, λ (μ) , μν (μ) , μ), t ∈ T , is associated with this control. Due to the results proved
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above, there exists an admissible control in the original problem with a sufficiently small number μ.
Then, this problem has a unique solution [14], represented by control (5.3). Really, the normal
extremal is an optimal control in the minimization problems of convex integral functionals on the
trajectories of linear systems; details can be found, e.g., in [17]. The proof of this theorem is
complete.

6. DESIGN OF ASYMPTOTICALLY SUBOPTIMAL CONTROLS

In this section, we further describe the algorithm for constructing asymptotic approximations to
the solution of problem (2.1)–(2.3), based on the theorem from the previous section and associated
formulas.

The vector function

u(0)(t, μ) = P−1 (t)
(
BT

1 (t)ψ1(t, η0, μ) +BT
2 (t)ψ2(t, η0, μ)

)
, t ∈ T,

is an asymptotically suboptimal open loop control of zeroth order in the original problem. Note
that it can be obtained directly after solving the basic problems. An asymptotically suboptimal
open loop control of order N (N ≥ 1) has the form

u(N)(t, μ) = P−1 (t)
(
BT

1 (t)ψ1(t, η
(N) (μ) , μ) +BT

2 (t)ψ2(t, η
(N) (μ) , μ)

)
, (6.1)

where

η(N) (μ) =
N∑
k=0

μkηk, ηk = (λk, νk) , k = 1, . . . , N. (6.2)

For calculating control (6.1), we have to find the coefficients λk, νk, k = 1, . . . , N, of the asymp-
totic series (5.5), which can be done by the method of undetermined coefficients using expan-
sion (5.21). For this purpose, we expand the vector function

N∑
k=0

μkRk

(
η(N) (μ)

)

into the Taylor series in terms of the powers of μ up to order N inclusive, equating to zero all
the coefficients starting from the one at μ. As a result, the vectors ηk, k = 1, . . . , N, can be found
sequentially from the following nondegenerate systems of linear algebraic equations:

I0η1 = −R1 (η0) , I0ηk = −R2 (η0)−
k−1∑
i=1

∂Ri

∂η
(η0) ηk−i, k ≥ 2. (6.3)

(Recall that the coefficients of expansions (5.19) are linear vector functions, and this fact has been
used in the expressions above.) Due to structure (4.8) of the Jacobian matrix I0, systems (6.3)
are split. Solving these systems sequentially, we find the vectors ηk, k = 1, . . . , N, and compile
polynomials (6.2). For obtaining control (6.1), we have to solve the original problem (5.1) for the
conjugate system with

λ =
N∑
k=0

μkλk, ν =
N∑
k=0

μkνk.
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The conjugate system is singularly perturbed and hence rigid. The integration of rigid systems
can be avoided by replacing the vector functions ψi (t, η, μ) , i = 1, 2, in (6.1) by their asymptotic
approximations

ψ
(N)
i (t, η, μ) =

N∑
k=0

μk (ψik (t, η) + Πkψi (s, η)) , s = (t− t∗) /μ, t ∈ T, i = 1, 2.

The vector function

ū(N)(t, μ) = P−1 (t)
(
BT

1 (t)ψ
(N)
1

(
t, η(N) (μ) , μ

)
+BT

2 (t)ψ
(N)
2

(
t, η(N) (μ) , μ

))
, t ∈ T,

together with (6.1), is an asymptotically suboptimal open loop control of order N in problem (2.1)–
(2.3). In particular, as it follows from (3.6), (3.7), (4.2), (5.13), and (5.14),

ū(0)(t, μ) = P−1(t)
(
BT

0 (t)ψ
0(t) +BT

2 (t)Πψ ((t− t∗) /μ)
)

= u0 (t) + u∗ ((t− t∗) /μ) , t ∈ T.
(6.4)

The vector function (6.4) is an asymptotically suboptimal open loop control of zeroth order, which
is also clear from formulas (5.15) and (5.17). Note that control (6.4) does not depend on the initial
state z∗ of the vector of fast variables; for small numbers μ, this control considerably differs from
the solution u0(t), t ∈ T , of the first basic problem only in the boundary layer, i.e., some left-sided
neighborhood of the point t∗.

Remark 1. For constructing an asymptotically suboptimal control of order N in the original
problem, it suffices to find an asymptotic approximation to R (η, μ) with an accuracy of order μN+1.
This applies the following smoothness requirement to the elements of all matrices figuring in the
problem statement [16]: they must have continuous derivatives up to order N + 1 inclusive.

Remark 2. As follows from the proof of the theorem above, the admissible control (5.3) also exists
if the elements of all matrices forming the dynamic system in problem (2.1)–(2.3) are continuously
differentiable. In this problem, (y∗, z∗) is an arbitrary initial state; hence, such a hypothesis together
with Assumptions 1 and 3 guarantees the controllability of the dynamic system on the segment
[t∗, t∗] with respect to the subspace H1y = 0, H2z = 0. In the case of complete controllability
(H1 = En,H2 = Em), this hypothesis leads to the result established in [18].

The asymptotic approximations to the Lagrange multipliers, which satisfy the system of
Eqs. (5.20), can be adopted for obtaining an optimal control in problem (2.1)–(2.3) with a given
value of μ. This is achieved by the so-called refinement procedure [19]: the roots of system (5.20) are
calculated using the Newton method, with η(N) (μ) taken as an initial approximation. For avoid-
ing the integration of rigid systems, the matrix ∂R (η, μ) /∂η can be replaced by its asymptotic
approximation I0.

7. ASYMPTOTICALLY SUBOPTIMAL FEEDBACK CONTROL DESIGN

Of course, asymptotically suboptimal open loop controls depend on the initial state (y∗, z∗, t∗)
of the dynamic system. In the previous considerations, such a dependence has been neglected
due to a given value of the initial state. In this section, which is devoted to the construction of an
asymptotically suboptimal feedback control of zeroth order, we will study precisely this dependence.
Hereinafter, let the matrix C1 be a function of t∗, t∗ < t∗. As before, the time instant t∗ is given.

From equality (3.9) it follows that

λ0 =
(
H1C1 (t∗)HT

1

)−1
(g1 −H1F0(t∗)y∗) ; (7.1)
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since ψ0 (t∗) = FT
0 (t∗)ψ0 (t∗) = FT

0 (t∗)HT
1 λ0,

ψ0 (t∗) =M1(t∗) (g1 −H1F0(t∗)y∗) , (7.2)

where M1 (t) = FT
0 (t)T1

(
H1C1 (t)H

T
1

)−1
.

Due to (4.1) and (4.7), we have the equality

ν0 =
(
H2C3H

T
2

)−1
H2z

∗ (0) =
(
H2C3H

T
2

)−1 (
H2A

−1
4 (t∗)

(
A3 (t

∗) y0 (t∗) +B2 (t
∗)u0 (t∗)

)
+ g2

)
,

which together with formulas (3.6), (3.10), (7.1), and (7.2) yields

Πψ(s) = GT(s)Πψ(0) = GT(s)HT
2 ν0

=M2(s)
(
H2A

−1
4 (t∗)(A3(t

∗)y0(t∗) +B2(t
∗)u0(t∗)) + g2

)
(7.3)

=M2(s)
(
H2A

−1
4 (t∗)(A3(t

∗)F0(t∗)y∗ +M3(t∗)(g1 −H1F0(t∗)y∗)) + g2
)
, s ≤ 0,

where

M2 (s) = GT (s)HT
2

(
H2C3H

T
2

)−1
,

M3 (t) =
(
A3 (t

∗)C1 (t) +B2 (t
∗)P−1 (t∗)BT

0 (t∗)
)
HT

1

(
H1C1 (t)H

T
1

)−1
.

In accordance with (6.4), (7.2), and (7.3), at the initial time instant the asymptotically subop-
timal open loop control of zeroth order can be represented as

ū(0)(t∗, μ) = P−1(t∗)
(
BT

0 (t∗)M1 (t∗)H1 −BT
2 (t∗)M2 ((t∗ − t∗) /μ)

×H2A
−1
4 (t∗) (A3 (t

∗)−M3 (t∗)H1)
)
F0 (t∗) y∗

− P−1(t∗)
(
M1 (t∗) g1 +M2 ((t∗ − t∗) /μ) (g2 +M3 (t∗) g1)

)
.

Because (y∗, z∗, t∗) is an arbitrary initial state of the dynamic system, by Definition 2 the vector
function

u(0)(t, y, z, μ)

= P−1(t)
(
BT

0 (t)M1(t)H1 −BT
2 (t)M2((t− t∗)/μ)H2A

−1
4 (t∗)(A3(t

∗)−M3(t)H1)
)
F0(t)y

− P−1(t)
(
M1(t)g1 +M2((t− t∗)/μ)(g2 +M3(t)g1)

) (7.4)

is an asymptotically suboptimal feedback control of zeroth order in the original problem. Interest-
ingly, this feedback control does not depend on the current position of the vector of fast variables z.

8. EXAMPLE

Consider the reorientation problem for a dynamically symmetric rigid body rotating about its
axis of symmetry:

ẏ1 = z1, ẏ2 = z2, μż1 = −cz1 − kz2 + bu1, μż2 = kz1 − cz2 + bu2,

y1 (t∗) = y∗1, y2 (t∗) = y∗2,
z1 (t∗) = 0, z2 (t∗) = 0,

y1 (t
∗) = 0, z1 (t

∗) = 0,

J (u) =
1

2

t∗∫

t∗

(
u21 + u22

)
dt→ min .

(8.1)
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The constants μ, b, c, and k are positive, and also μ� 1. We will construct asymptotically subop-
timal open loop and feedback controls of zeroth order in this problem. Note that Assumptions 1
and 2 obviously hold.

In the first basic problem

ẏ1 =
cbu1 − kbu2
c2 + k2

, ẏ2 =
kbu1 + cbu2
c2 + k2

,

y1 (t∗) = y∗1, y2 (t∗) = y∗2, y1 (t
∗) = 0,

J1 (u) =
1

2

t∗∫

t∗

(
u21 + u22

)
dt → min,

the dynamic system satisfies requirement (3.5); hence, Assumption 3 holds. The optimal control
in this problem can be represented as

u01 (t) = − cy∗1
b (t∗ − t∗)

, u02 (t) =
ky∗1

b (t∗ − t∗)
, t ∈ T = [t∗, t∗],

being independent of time.

The second basic problem has the form

dz1/ds = −cz1 − kz2 + bu1, dz2/ds = kz1 − cz2 + bu2z1 (0) = y∗1/ (t∗ − t∗) ,
zi (−∞) = 0, i = 1, 2,

J2 (u) =
1

2

0∫

−∞

(
u21 + u22

)
ds→ min .

In this case, Assumption 4 holds. The solution of the second basic problem is the control

u∗1 (s) =
2c exp(cs) cos (ks)

b (t∗ − t∗)
y∗1, u∗2 (s) =

2c exp(cs) sin (ks)

b (t∗ − t∗)
y∗1, s ≤ 0.

In accordance with formula (6.4), the asymptotically suboptimal open loop control of zeroth
order in problem (8.1) can be represented as

ū
(0)
i (t, μ) = u0i (t) + u∗i ((t− t∗) /μ) , t ∈ T, i = 1, 2. (8.2)

The asymptotically suboptimal feedback control of zeroth order (see formula (7.4)) is given by

u
(0)
1 (y, z, t, μ) =

2c exp (c (t− t∗) /μ) cos (k(t− t∗) /μ)− c

b (t∗ − t)
y1,

u
(0)
2 (y, z, t, μ) =

2c exp (c (t− t∗) /μ) sin (k(t− t∗) /μ) + k

b (t∗ − t)
y1.

(8.3)

Note that in this example, expression (8.3) for the asymptotically suboptimal feedback con-
trol follows not only from the general formula (7.4), but also from formula (8.2) and the above
considerations for solving the basic problems.

Finally, we estimated the quality of the asymptotic approximations to the solution of prob-
lem (7.2). For this purpose, we calculated the states (y1(t

∗, μ), z1(t∗, μ)) obtained by applying the
open loop control (8.2) (the feedback control (8.3)) to the dynamic system with specific values
of the small parameter in the case b = 4, c = 3, t∗ = 0, t∗ = 4, k = 1, y∗1 = −2, and y∗2 = 1. In
particular, it turned out that

y1(4, 0.1) = −0.03, z1(4, 0.1) = 0, y1(4, 0.001) = 0.0003, z1(4, 0.001) = 0.

The results of the calculations are presented with an accuracy of 10−6.
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9. CONCLUSIONS

In this paper, computational procedures for constructing asymptotic approximations (open loop
and feedback controls) to the solution of the singularly perturbed linear-quadratic optimal control
problem with linear terminal constraints on the trajectories have been proposed and substantiated.
When implementing the corresponding algorithms, the original optimal control problem splits into
two unperturbed optimal control problems of smaller dimension. With such a decomposition, it
is possible to efficiently solve optimization problems for dynamic systems with a large number of
state-space variables. In addition, the computational procedures of the algorithms do not contain
the integration of rigid systems.
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