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Abstract—The problem of scheduling optimally a given set of jobs on a single machine is
studied. The lower and upper bounds on the admissible duration of each job are known. The
optimality criterion of the schedule is the minimum total completion time of a given set of jobs.
Some properties of the optimality region for a job permutation are investigated. Polynomial
algorithms for constructing the optimality region for a job permutation and also for calculating
the volume of this region are developed. The existence conditions of an empty optimality region
for a job permutation are determined. A criterion for the existence of a job permutation with
the maximum possible volume of the optimality region is established.
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1. INTRODUCTION

Production planning includes the stage of constructing schedules for the execution of incoming
customers’ orders (scheduling for a given set of jobs) on existing equipment (a given set of machines).
The optimal schedule is an important factor for the efficiency of any manufacturing process: the
production expenses of the enterprise are decreased, the execution time of customers’ orders for
the final products is reduced, and the raw materials and components required for the manufacture
of the final products of the enterprise are supplied in due time. The optimal schedule of the
manufacturing process allows reducing the cost of storing raw materials and components, thereby
increasing the efficiency of available resources (machines) and capital.

For scheduling problems arising in practice, the exact values of job durations (processing times),
as a rule, cannot be determined in advance. However, it is possible to determine some lower and
upper bounds for job durations. To solve such problems, algorithms for constructing almost optimal
schedules under uncertain numerical parameters are required; see [1–9].

In Section 2 of this paper, we consider the construction problem of an almost optimal schedule
for a set J = {J1, . . . , Jn} of jobs processed on a single machine, with the minimum total sum

∑
Ci

of the completion times Ci of all jobs Ji ∈ J under given lower pLi > 0 and upper pUi � pLi bounds
on the admissible duration pi ∈ [pLi , p

U
i ] of each job Ji. In Section 3, we define the optimality region

for a permutation πk = (Jk1 , . . . , Jkn) of jobs from the set J that contains the optimality box for
the same permutation. The optimality box for a permutation πk was investigated in [10–17]. In
Section 4, we develop polynomial algorithms for determining the optimality region for a permu-
tation πk and also for calculating the volume of this region. We prove necessary and sufficient
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820 SOTSKOV

conditions under which the optimality region for a job permutation is an empty set. In Section 5,
we study some properties of a permutation πk of jobs from the set J that have the maximal volume
of the optimality region.

2. PROBLEM STATEMENT AND A SURVEY OF KNOWN RESULTS

The set of jobs J = {J1, . . . , Jn} has to be processed on a single machine. The exact value of
the duration pi of each job Ji ∈ J is unknown before scheduling of the set J . No preemptions
of job processing are allowed. When implementing the schedule of the set J , the duration pi of

each job Ji ∈ J can take any real value from a segment
[
pLi , p

U
i

]
, where pUi � pLi > 0. The exact

value of the duration pi ∈
[
pLi , p

U
i

]
becomes known only at the time Ci of completing the job Ji.

We denote by Rn the space of n-dimensional real vectors, and by Rn
+ the subspace of Rn consisting

of all nonnegative n-dimensional real vectors, Rn
+ ⊂ Rn. In the space Rn, the set of all vectors

(p1, . . . , pn) of the admissible durations of all jobs from the set J is the n-dimensional box, i.e., the
set of all vectors p = (p1, . . . , pn) ∈ Rn

+ satisfying the system of inequalities

pL1 � p1 � pU1 ; . . . ; pLn � pn � pUn .

The set of the admissible durations (p1, . . . , pn) = p ∈ Rn
+ of all jobs from the set J can be repre-

sented as the Cartesian product of the segments [pLi , p
U
i ]: ×n

i=1

[
pLi , p

U
i

]
:=

[
pL1 , p

U
1

]
× . . .×

[
pLn, p

U
n

]
=

T =
{
p ∈ Rn

+ : pLi � pi � pUi , i ∈ {1, . . . , n}
}
. A vector p ∈ T will be called a scenario. Let the set

Π = {π1, . . . , πn!} contain all permutations πk = (Jk1 , . . . , Jkn) of the jobs from the set J . For a
fixed scenario p ∈ T and a fixed permutation πk ∈ Π, we denote by Ci = Ci(πk, p) the completion
time of a job Ji ∈ J in the semi-active schedule [5, 18], which is uniquely determined by the per-
mutation πk. Hereinafter, the criterion

∑
Ci is the minimum total completion time of all jobs from

the set J :

∑

Ji∈J
Ci(πt, p) = min

πk∈Π

⎧
⎨

⎩

∑

Ji∈J
Ci(πk, p)

⎫
⎬

⎭
. (1)

The permutation πt = (Jt1 , . . . , Jtn) ∈ Π figuring in (1) is an optimal permutation of jobs from
the set J for a fixed scenario p ∈ T .

Since the number of jobs n = |J | is known before constructing a schedule πt for the set of jobs J ,

the criterion
∑

Ci also corresponds to the minimum average duration

∑
Ji∈J Ci(πk,p)

n of all jobs from
the set J .

The uncertain problem stated above can be written as 1|pLi � pi � pUi |
∑

Ci in the standard
three-position notation α|β|γ of scheduling problems; see [19]. Hereinafter, α specifies the type of
the processing system (the number of machines), β the processing conditions of jobs, and γ the
objective function.

If a scenario p ∈ T is known before scheduling (i.e., for each job Ji ∈ J , [pLi , p
U
i ] = [pi, pi]), then

the uncertain problem 1|pLi � pi � pUi |
∑

Ci turns into the deterministic problem 1||∑Ci. The
notation 1|p|∑Ci will be used to indicate an instance of the deterministic problem 1||∑Ci with
a fixed scenario p ∈ T by the time of optimal schedule construction. As was demonstrated in [20],
an instance 1|p|∑Ci can be solved in the time O(n log n) using the following optimality criterion
of a permutation πk ∈ Π.

Theorem 1. A permutation πk = (Jk1 , . . . , Jkn) ∈ Π of jobs from the set J is optimal for the
instance 1|p|∑Ci if and only if

pk1 � . . . � pkn . (2)
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OPTIMALITY REGION FOR JOB PERMUTATION 821

Under the condition pku < pkv , the job Jku precedes the job Jkv in any permutation πk ∈ Π that is
optimal for the instance 1|p|∑Ci.

In the uncertain problem 1|pLi � pi � pUi |
∑

Ci, the scenario p ∈ T is not fixed before construct-
ing a permutation πk ∈ Π of jobs from the set J . Hence, the exact completion time Ci of each job
Ji ∈ J cannot be determined until the job Ji is completed. Consequently, the value of the objective
function

∑
Ci for a permutation πk of jobs from the set J remains unknown until all jobs from

J processed, provided that the jobs Ji ∈ J satisfy the strict inequalities pLi < pUi .

As a rule, in the uncertain problem α|pLi � pi � pUi |γ there exists no schedule that would be
optimal for all scenarios from a set T of cardinality greater than 1. Therefore, additional objec-
tive functions and/or assumptions are often introduced for such ill-posed scheduling problems in
the literature. In particular, the problem α|pLi � pi � pUi |γ can be solved by the stochastic ap-
proach under the assumption that all job durations are random variables with known probability
distributions [7, 18].

If sufficient information on the probability distributions of random durations is absent, other
methods can be used [5, 21]. For example, in accordance with the robust approach [2, 22–24],
the decision maker prefers to eliminate the worst-case scenario for the requisite schedule to be
implemented [4, 9, 23]. For any permutation πk ∈ Π and any scenario p ∈ T , the difference
γkp − γtp = r(πk, p) is called the regret for πk with the value γkp of the objective function γ for p.
The value Z(πk) = max{r(πk, p) : p ∈ T} is called the worst-case absolute regret, and the value

Z∗(πk) = max
{
r(πk,p)

γt
p

: p ∈ T
}
the worst-case relative regret.

Despite the fact that the problem 1|p|∑wiCi is polynomially solvable [20] for any weights
wi > 0 defined for the set of jobs Ji ∈ J , the construction of a permutation πt ∈ S with the smallest
value Z(πt) (or a permutation with the smallest value Z∗(πt)) for the problem 1|pLi � pi � pUi |

∑
Ci

is NP-hard even in the case of two admissible scenarios [21, 24, 25]. The branch-and-bound
method for constructing a permutation πt with the minimum absolute regret value Z(πt) for the
problem 1|pLi � pi � pUi |

∑
wiCi was developed in [3]. In accordance with the experimental evi-

dence of computer simulations, the suggested method yields such a permutation πt for the problem
1|pLi � pi � pUi |

∑
wiCi if the number n of jobs does not exceed 40.

The fuzzy approach can be used to construct optimal schedules for the set of jobs J with fuzzy
durations processed on a given set of machines M; see [8, 9, 26]. This approach is applicable to
the uncertain scheduling problems with a small number n of jobs only.

Several heuristics for solving the problem 1|pLi � pi � pUi |
∑

wiCi were tested in [1]. Different
probability distributions for the factual durations of jobs were chosen for the numerical experiments
with n ∈ {100, 300, 400, 600, 800, 1000}. As a result, the best heuristic U2 was identified, which
yielded an average error of 1.1% over all test examples considered in comparison with the values of
the objective function

∑
wiCi calculated for the factual durations of jobs.

The stability approach to scheduling [6, 10–17] includes the stability analysis of optimal schedules
with respect to possible variations of the durations of all jobs from the set J and further construction
of the minimal dominant set of schedules. For any scenario p ∈ T , the minimal dominant set
contains at least one optimal schedule. In contrast to the stochastic, robust and fuzzy approaches,
the stability approach to scheduling is to find an optimal schedule for a maximum possible number
of admissible scenarios from a given set T . In particular, if there exists a dominant singleton {πt}
for the problem α|pLi � pi � pUi |γ, then the schedule πt is optimal for the instance α|p|γ for all
scenarios p ∈ T , despite the uncertain durations of all jobs from the set J .

In [10–12, 14, 15], the stability approach was used for solving the scheduling problem
1|pLi � pi � pUi |

∑
wiCi. In [15], a criterion for the existence of a dominant singleton for the

problem 1|pLi � pi � pUi |
∑

wiCi was established. In [12], difficult instances of the problem
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822 SOTSKOV

1|pLi � pi � pUi |
∑

wiCi with n ∈ {50, 100, 500, 1000, 5000, 10 000} were randomly generated and
then approximately solved using the MAX-OPTBOX algorithm (developed therein as well) with
an average error of 1.5%. In [10], some instances of the problem 1|pLi � pi � pUi |

∑
Ci with

n ∈ {10, 20, . . . , 100, 200, . . . , 1000, 2000, . . . , 10 000} were randomly generated and then approxi-
mately solved using Algorithm 3 (developed therein as well) with an average error of 0.74%.

The MAX-OPTBOX algorithm (Algorithm 3) yields a permutation πk ∈ Π for which the op-
timality box has the greatest half-perimeter (the greatest relative half-perimeter, respectively).
Algorithm 3 takes into account the following distinction of the objective function

∑
Ci: an in-

crease δ in a term of the objective function caused by violating inequality (2) due to the factual
duration pki of the job Jki finally leads to the increase δ(n − i+ 1) of the value of the objective
function. Therefore, the error in choosing an appropriate order of processing for the job Jki in the
schedule is more important than the error in choosing an appropriate order of processing for the
job Jkj if i < j.

The definition of the optimality box was given in [10, 12]. Let M = (ki1 , . . . , ki|M|) be an ordered
subset of the set {1, . . . , n} that satisfies the relations {k1, . . . , k|M |} ⊆ {1, . . . , n}, |M | � n, and
ki1 < . . . < ki|M| .

Definition 1. An inclusion-maximal box

OB(πk, T ) =
[
loptki1

, uoptki1

]
× . . .×

[

loptki|M|
, uoptki|M|

]

=: ×kir∈M
[
loptkir

, uoptkir

]
⊆ T

is called the optimality box for a permutation πk = (Jki1 , . . . , Jkin ) ∈ Π if πk, being optimal for the
instance 1|p|∑Ci with a scenario p = (p1, . . . , pn) ∈ T , remains optimal for the instance 1|p′|∑Ci

with any scenario p′ = (p′1, . . . , p′n)∈ [p1, p1]× . . .× [pkir−1, pkir−1]× [loptkir
, uoptkir

]× [pkir+1, pkir+1]×
. . . × [pn, pn] ∈ T . If there exists no scenario p ∈ T for which the permutation πk is optimal for
the instance 1|p|∑Ci, then let OB(πk, T ) = ∅.

Any variation p′kir of the duration pkir of a job Jkir∈J that belongs to the inclusion-maximal

segment
[
loptkir

, uoptkir

]
(see Definition 1) guarantees the optimality of the permutation πk ∈Π for

any scenario p′ = (p′1, . . . , p′n) if it satisfies the inclusion p′kir∈
[
loptkir

, uoptkir

]
. The maximal segment

[
loptkir

, uoptkir

]
of the length uoptkir

− loptkir
� 0, loptkir

� uoptkir
(see Definition 1) will be called the optimality

segment for the job Jkir ∈J in the permutation πk. If there exists no optimality segment
[
loptkir

, uoptkir

]
,

loptkir
� uoptkir

, for a job Jkir ∈J , then we will say that the job Jkir has no optimality segment in the
permutation πk.

3. OPTIMALITY REGION FOR JOB PERMUTATION πk ∈ Π

We define the optimality region OR(πk, T ) for a permutation πk ∈ Π containing the optimality
box for πk: OB(πk, T ) ⊆ OR(πk, T ).

Definition 2. An inclusion-maximal closed subset OR(πk, T ) ⊆ T of the set Rn
+ is called the

optimality region for a permutation πk = (Jk1 , . . . , Jkn) ∈ Π with respect to T if the permutation πk
is optimal for the instance 1|p|∑Ci for any scenario p = (p1, . . . , pn) ∈ OR(πk, T ). If there exists
no scenario p ∈ T for which the permutation πk is optimal for the instance 1|p|∑Ci, then let
OR(πk, T ) = ∅.

Due to Theorem 1, we will discriminate among three types of segments for each job Jkr ∈ J in
a fixed permutation πk = (Jk1 , . . . , Jkn) ∈ Π as follows:

the optimality segment
[
loptkr

, uoptkr

]
⊆
[
pLkr , p

U
kr

]
;
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OPTIMALITY REGION FOR JOB PERMUTATION 823

the conditional optimality segment
[
lcoptkr

, ucoptkr

]
⊆
[
pLkr , p

U
kr

]
;

the nonoptimality segment
[
lnonkr

, unonkr

]
⊆
[
pLkr , p

U
kr

]
.

The optimality segment
[
loptkr

, uoptkr

]
for a job Jkr in a permutation πk has been specified in

Definition 1 of the optimality box.

The nonoptimality segment for a job Jkr in a permutation πk = (Jk1 , . . . , Jkn) ∈ Π is an inclusion-

maximal segment
[
lnonkr

, unonkr

]
⊆
[
pLkr , p

U
kr

]
for which the permutation πk = (Jk1 , . . . , Jkn) cannot be

optimal for the instance 1|p′|∑Ci for any scenario p′ = (p′1, . . . , p′n) ∈ T such that

(
p′1, . . . , p

′
n

) ∈
{
×r−1

i=1

[
pLki , p

U
ki

]}
×
[
lnonkr , unonkr

]
×
{
×n

i=r+1

[
pLki , p

U
ki

]}
.

Due to the necessary and sufficient conditions (2) for the optimality of a permutation πk ∈ Π for
the instance 1|p|∑Ci, for each nonoptimality segment [lnonkr

, unonkr
] either there exists a job Jkv∈J

such that r < v and

pUkv = lnonkr < unonkr = pUkr , (3)

or there exists a job Jkw∈J such that w < r and

pLkr = lnonkr < unonkr = pLkw . (4)

From Definition 1 it follows that the open nonoptimality interval (lnonkr
, unonkr

) for a job Jkr in a

permutation πk = (Jk1 , . . . , Jkn) ∈ Π has no common points with the optimality segment
[
loptkr

, uoptkr

]
,

i.e.,

(
lnonkr , unonkr

)⋂[
loptkr

, uoptkr

]
= ∅. (5)

For illustrating these definitions, we will use Example 1 of the problem 1|pLi � pi � pUi |
∑

Ci

with 18 jobs (n=18). The segments
[
pLi , p

U
i

]
specifying the admissible durations of jobs Ji ∈J =

{J1, . . . , J18} can be found in the table. The segments
[
pLi , p

U
i

]
are also shown in Fig. 1 in the

rectangular coordinate system for a permutation π1 = (J1, . . . , J18) ∈ Π. The abscissa axis in Fig. 1
corresponds to the segment [pLi , p

U
i ] of the admissible durations of jobs Ji ∈ J . The ordinate axis

in this figure corresponds to the jobs Ji from the set J .

The conditional optimality segment for a job Jkr in a permutation πk = (Jk1 , . . . , Jkn) ∈ Π is

an inclusion-maximal segment
[
lcoptkr

, ucoptkr

]
⊆
[
pLkr , p

U
kr

]
such that any point p∗kr ∈

[
lcoptkr

, ucoptkr

]
does

not belong to the open nonoptimality interval, p∗kr �∈ (lnonkr
, unonkr

), and also there exists at least one

job Jkd ∈ J , d �= r, for which p∗kr ∈
[
pLkd, p

U
kd

]
.

In accordance with the definition of the conditional optimality segment, there exist points

p∗kr∈
[
lcoptkr

, ucoptkr

]
such that a permutation πk ∈Π is optimal for the instance 1|p′|∑Ci with a sce-

nario p′ = (p′1, . . . , p′n)∈ [pk1 , pk1 ]× . . .× [pkr−1, pkr−1]× [p∗kr , p
∗
kr
]× [pkr+1, pkr+1]× . . .× [pkn , pkn ],

and also there exist other points p∗∗kr ∈
[
lcoptkr

, ucoptkr

]
such that the permutation πk ∈ Π is nonoptimal

Initial data for Example 1 of problem 1|pLi � pi � pUi |
∑

Ci

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

pLi 1 3 2 7 2 4 11 12 11 14 7 27 30 9 36 37 38 21

pUi 8 5 8 9 10 6 15 15 20 18 23 34 32 40 42 40 40 41
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824 SOTSKOV

Fig. 1. Optimality segments, conditional optimality segments (horizontal hatching) and nonoptimality seg-
ments (horizontal and vertical hatching) for jobs Ji ∈ J in permutation π1 = (J1, . . . , J18): Example 1 of
problem 1|pLi � pi � pUi |

∑
Ci.

for the instance 1|p′′|∑Ci with a scenario p′′ = (p′′1 , . . . , p′′n) ∈ [pk1 , pk1 ]× . . . × [pkr−1, pkr−1]×
[p∗∗kr , p

∗∗
kr
]× [pkr+1, pkr+1]× . . .× [pkn , pkn ]. The conditional optimality segments for jobs Ji ∈ J in

a permutation π1 = (J1, . . . , J18) are hatched by horizontal lines in Fig. 1.

In addition, note that in any fixed permutation πk = (Jk1 , . . . , Jkn) ∈ Π, the conditional opti-

mality segment
[
lcoptkr

, ucoptkr

]
for a job Jkr has no common points with the open optimality interval

(loptkr
, uoptkr

) and also with the open nonoptimality interval (lnonkr
, unonkr

). In other words, the following
equalities hold:

[
lcoptkr

, ucoptkr

]⋂(
loptkr

, uoptkr

)
= ∅, (6)

[
lcoptkr

, ucoptkr

]⋂ (
lnonkr , unonkr

)
= ∅. (7)

If there exists no conditional optimality segment [lcoptkr
, ucoptkr

], lcoptkr
< ucoptkr

for a job Jkr∈J in a
permutation πk, we will say that the job Jkr has no conditional optimality in the permutation πk.

The optimality, conditional optimality, and nonoptimality segments for all jobs Ji ∈ J in the
permutation π1 = (J1, . . . , J18) are presented in Fig. 1. The nonoptimality segments for the jobs
Ji ∈ J in the permutation π1 are indicated by double (vertical and horizontal) hatching.
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Remark 1. Due to Theorem 1, for each job Ji ∈ J in a permutation πk ∈ Π, there may exist
at most one optimality segment, at most two conditional optimality segments, and at most two
nonoptimality segments.

As it has been demonstrated in Fig. 1, the job J3 in the permutation π1 ∈ Π has two nonopti-
mality segments, [2, 3] and [6, 8], one conditional optimality segment, [3, 5], and also one optimality
segment, [5, 6]. For the job J5 in the permutation π1, there are two nonoptimality segments, [2, 7]
and [6, 10], with the non-empty intersection [6, 7] = [2, 7]

⋂
[6, 10].

The following result is immediate from the definitions of the optimality, nonoptimality and
conditional optimality segments for a job Jkr , r∈{1, . . . , n}, in a permutation πk ∈Π.

Lemma 1. The segment [pLkr , p
U
kr
] of all admissible durations of a job Jkr ∈ J can be repre-

sented as the union of all optimality, nonoptimality and conditional optimality segments for a
job Jkr , r ∈ {1, . . . , n}, in a permutation πk = (Jk1 , . . . Jkn) ∈ Π. For any nonoptimality segment
[lnonkr

, unonkr
], at least one of the equalities lnonkr

= pLkr and unonkr
= pUkr holds.

The optimality region OR(πk, T ) for a permutation πk = (Jk1 , . . . , Jkn) ∈ Π can be obtained by
constructing the optimality region for the permutation πk for the corresponding scheduling problem

1|p̂L
i � pi � p̂U

i |∑Ci with the reduced segments of the admissible durations
[
p̂L
i , p̂

U
i

]
⊆
[
pLi , p

U
i

]
.

The reduced segments
[
p̂Lkr , p̂

U
kr

]
, Jkr ∈ J , for a permutation πk = (Jk1 , . . . , Jkn) are given by the

formulas

p̂L
kr = max

1�j�r�n
pLkj , p̂U

kr = min
1�r�j�n

pUkj (8)

for each job Jkr ∈ {Jk1 , . . . , Jkn} = J . The set of all reduced scenarios determined by (8) will be

denoted by T̂ =
[
p̂L
1 , p̂

U
1

]
× . . .×

[
p̂L
n , p̂

U
n

]
.

Theorem 2. The optimality region OR(πk, T ) for a permutation πk = (Jk1 , . . . , Jkn) ∈ Π for the
problem 1|pLi � pi � pUi |

∑
Ci coincides with the optimality region OR(πk, T̂ ) for the same permu-

tation 1|p̂L
i � pi � p̂U

i |∑Ci with the set T̂ of admissible scenarios.

Proof. In accordance with the necessary and sufficient conditions (2) for the optimality of a
permutation πk for an instance 1|p|∑Ci, the relations

pLkr � pkr < p̂L
kr = max

1�j�r�n
pLkj

holding at least for one duration pkr imply that the permutation πk = (Jk1 , . . . , Jkr , . . . , Jkn) can-

not be optimal for an instance 1|p|∑Ci with some scenario p = (p1, . . . , pn) ∈
{
×r−1

i=1

[
pLki , p

U
ki

]}
×

[
lnonkr

, unonkr

]
×
{
×n

i=r+1

[
pLki , p

U
ki

]}
.

In a similar way, the relations

min
1�r�j�n

pUkj = p̂U
kr < pkr � pUkr

holding at least for one duration pkr imply that the permutation πk = (Jk1 , . . . , Jkr , . . . , Jkn) can-

not be optimal for an instance 1|p|∑Ci with some scenario p = (p1, . . . , pn) ∈
{
×r−1

i=1

[
pLki , p

U
ki

]}
×

[
lnonkr

, unonkr

]
×
{
×n

i=r+1

[
pLki , p

U
ki

]}
.

Thus, the following result is true: the set of all scenarios p ∈ T for which a permutation πk
is optimal for the scheduling problem 1|pLi � pi � pUi |

∑
Ci is contained in the set of all scenarios

p ∈ T for which the permutation πk is optimal for the problem 1|p̂L
i � pi � p̂U

i |∑Ci with the set T̂
of admissible scenarios.

The converse assertion follows from the inclusion T̂ ⊆ T.
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Assertion. The set of all scenarios p ∈ T for which a permutation πk is optimal for the problem
1|p̂L

i � pi � p̂U
i |∑Ci is contained in the set of all scenarios p ∈ T for which the permutation πk is

optimal for the problem 1|pLi � pi � pUi |
∑

Ci.

In view of these assertions, for the original problem 1|pLi � pi � pUi |
∑

Ci and for the problem

1|p̂L
i � pi � p̂U

i |∑Ci with the set T̂ =
[
p̂L
1 , p̂

U
1

]
× . . .×

[
p̂L
n , p̂

U
n

]
of scenarios, the optimality re-

gions coincide with each other for any fixed permutation πk ∈ Π: OR(πk, T ) = OR(πk, T̂ ). The
proof of Theorem 2 is complete.

The next result can be easily obtained from Definition 2 and Theorem 2.

Lemma 2. For the problem 1|p̂L
i � pi � p̂U

i |∑Ci with the set T̂ of scenarios, the open optimality

interval
(
loptkr

, uoptkr

)
for a job Jkr in a permutation πk ∈ Π has no common points with the segment

[
pLkd, p

U
kd

]
of the admissible durations of any other job Jkd∈J , d �= r, i.e., the following equality

holds:

(
loptkr

, uoptkr

)⋂[
pLkd , p

U
kd

]
= ∅. (9)

Now, we prove necessary and sufficient conditions under which the optimality region for a
permutation πk ∈ Π is an empty set.

Theorem 3. The optimality region OR(πk, T ) for a job πk = (Jk1 , . . . , Jkn) ∈ Π is an empty set,
OR(πk, T ) = ∅, if and only if there exists at least one job Jkr ∈J , r∈{1, . . . , n}, in the permuta-
tion πk = (Jk1 , . . . , Jkn) ∈ Π that has no conditional optimality and simultaneously no optimality
segment.

Proof. Sufficiency. Assume that there exists a job Jkr∈J in a permutation πk=(Jk1, . . . , Jkn)∈Π

that has no conditional optimality and also no optimality segment. Due to Lemma 1,
[
lnonkr

, unonkr

]
=

[
pLkr , p

U
kr

]
�= ∅. Hence, either there exists a job Jkv∈J such that r < v and also relations (3) hold,

or there exists a job Jkw∈J such that w < r and relations (4) hold. In the former case, the

inequality pkv<pkr is satisfied for each admissible duration pkr∈
[
pLkr , p

U
kr

]
of the job Jkr and for

each admissible duration pkv ∈
[
pLkv , p

U
kv

]
of the job Jkv . In the latter case, the inequality pkw>pkr is

satisfied for each admissible duration pkr∈
[
pLkr , p

U
kr

]
of the job Jkr and for each admissible duration

pkw∈
[
pLkw , p

U
kw

]
of the job Jkw .

In accordance with Theorem 1, in both cases the permutation πk cannot be optimal for an
instance 1|p|∑Ci with some scenario p ∈ T . Hence, by Definition 2, the optimality region for the
permutation πk = (Jk1 , . . . , Jkn) ∈ Π is an empty set, OR(πk, T ) = ∅. Sufficiency is established.

Necessity. This part will be proved by contradiction. Let the equality OR(πk, T ) = ∅ hold.
Assume on the contrary that there exists no job Jkr ∈ J , r ∈ {1, . . . , n}, in a permutation
πk = (Jk1 , . . . , Jkn) ∈ Π without conditional optimality and simultaneously without an optimality
segment.

Due to Definition 2, the equality OR(πk, T ) = ∅ means the absence of any scenario p ∈ T such
that the permutation πk is optimal for the instance 1|p|∑Ci with p ∈ T . Nevertheless, we will
construct a scenario p∗∈T that is contained in the optimality region for the permutation πk.

If a job Jki has the optimality segment
[
loptki

, uoptki

]
, loptki

�uoptki
, in a permutation πk, then there

exists at least one point p∗ki∈
[
loptki

, uoptki

]
. In this case, we choose the value p∗ki as the duration of

the job Jki .
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If a job Jkj has no optimality segment in a permutation πk, then by the assumption there

exists the conditional optimality segment
[
lcoptkj

, ucoptkj

]
for the job Jkj . In this case, we choose the

value lcoptkj
as the duration of the job Jkj : p

∗
kj

= lcoptkj
.

Such a choice of the durations p∗kj of all jobs Jkj ∈ {Jk1 , . . . , Jkn} = J yields the scenario p∗ =
(p∗k1 , . . . , p

∗
kn
) ∈ T . From equalities (6), (7) and Lemma 2 with equality (9) it follows that the

permutation πk is optimal for the instance 1|p∗|∑Ci. The resulting inclusion p∗ ∈ OR(πk, T )
obviously contradicts the equality OR(πk, T ) = ∅. Thus, necessity is established, and the proof of
Theorem 3 is complete.

From Theorem 3 it follows that, if OR(πk, T ) �= ∅, then in the permutation πk=(Jk1, . . . , Jkn)∈Π
for each job Jkr∈J , r ∈ {1, . . . , n}, there exists at least one optimality segment or conditional
optimality segment. Therefore, the dimension of the non-empty optimality region OR(πk, T ) is
n = |J |. Because the converse assertion is also immediate from Theorem 3, we arrive in the
following result.

Corollary 1. The dimension of the optimality region OR(πk, T ) is n = |J | if and only if
OR(πk, T ) �= ∅.

In Fig. 1, the nonoptimality segment [lnon4 , unon4 ] = [7, 9] for the job J4 in the permutation
π1 = (J1, . . . , J18) satisfies the equalities [l

non
4 , unon4 ] = [7, 9] = [pL4 , p

U
4 ], i.e., the job J4 has no condi-

tional optimality and simultaneously no optimality segment in the permutation π1. From Theorem 3
it follows that the optimality region for the permutation π1 is an empty set, OR(π1, T ) = ∅.

4. OPTIMALITY REGION: CONSTRUCTION AND CALCULATION OF VOLUME

Theorem 3 has been adopted to develop Algorithm 1 for checking the equality OR(πk, T ) = ∅
for a fixed permutation πk ∈ Π. This algorithm has a complexity of O(n).

If Algorithm 1 establishes the relation OR(πk, T ) �= ∅ for a permutation πk, then (in accordance

with Theorem 2) it constructs by formulas (8) the reduced segments
[
p̂L
i , p̂

U
i

]
of the admissible

durations of jobs Ji ∈ J . As a result, the initial data for the problem 1|p̂L
i � pi � p̂U

i |∑Ci with
the set T̂ of admissible scenarios are obtained.

Algorithm 1.

INPUT: Segments [pLi , p
U
i ] of durations of jobs Ji ∈ J ;

permutation πk = (Jk1 , . . . , Jkn)∈Π of jobs J .

OUTPUT: Segments [p̂L
i , p̂

U
i ] for jobs Ji ∈ J in the case of establishing

OR(πk, T ) �= ∅.
Step 1: p̂L

k1
= pLk1 , tL = pLk1 , r = 2;

Step 2: IF pUkr � tL THEN GOTO Step 3 ELSE GOTO Step 5;

Step 3: IF pLkr > tL THEN tL = pLkr , p̂
L
kr

= tL, r := r + 1;

ELSE p̂L
kr

= tL, r := r + 1;

IF r � n THEN GOTO Step 2 ELSE p̂U
kn

= pUkn , tU = pUkn ;

Step 4: FOR r = n− 1 to 1 STEP −1 DO

IF pUkr < tU THEN tU = pUkr , p̂
U
kr

= tU ELSE p̂U
kr

= tU ;

END FOR STOP.

Step 5: OR(πk, T ) = ∅ STOP.

In Steps 1, 2, and 5 of Algorithm 1, the equality OR(πk, T ) = ∅ is checked. In Steps 2–4,
the reduced segments of the admissible durations of jobs from the set J for the problem
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1|p̂L
i � pi � p̂U

i |∑Ci are constructed. Due to Theorem 2, the optimality region for a permu-
tation πk ∈ Π of jobs for the problem 1|pLi � pi � pUi |

∑
Ci coincides with the optimality region for

the same permutation πk of jobs for the problem 1|p̂L
i � pi � p̂U

i |∑Ci with the set T̂ of reduced
scenarios. As is easily verified, Algorithm 1 is implemented using O(n) elementary operations.

4.1. Optimality Region for Permutation πk ∈ Π in Special Cases

In this subsection, we will construct the optimality region OR(πk, T ) for two special cases of a
permutation πk = (Jk1 , . . . , Jkn) ∈ Π and calculate the volume Vol (πk, T ) of the optimality region
OR(πk, T ). In the first case, the optimality region OR(πk, T ) is determined only by the optimality
segments of all jobs Jkr∈J (Lemma 3). In the second case, the optimality region is determined
only by the conditional optimality segments of all jobs Jkr∈J (Lemma 4).

Lemma 3. If OR(πk, T ) �= ∅ and each job Jkr∈J has no conditional optimality in a permuta-
tion πk = (Jk1 , . . . , Jkn) ∈ Π, then the optimality region for the permutation πk coincides with the
optimality box for the same permutation:

OR(πk, T ) = ×n
r=1

[
loptkr

, uoptkr

]
= OB(πk, T ). (10)

The volume of this optimality region OR(πk, T ) is

Vol (πk, T ) =
∏

Jkr∈{J : lopt
kr

<uopt
kr
}

(
uoptkr

− loptkr

)
. (11)

Proof. Due to Theorem 2, we will consider the problem 1|p̂L
i � pi � p̂U

i |∑Ci instead of the
problem 1|pLi � pi � pUi |

∑
Ci. Since OR(πk, T ) �= ∅, by Theorem 3 there exists no job Jkr ∈ J

without conditional optimality and simultaneously without an optimality segment in the permuta-
tion πk.

Because each job Jkr∈J has no conditional optimality in the permutation πk and there
exists at most one optimality segment for it (see Remark 1), for each job Jkr∈J we have

the equality
[
p̂L
kr
, p̂U

kr

]
=
[
loptkr

, uoptkr

]
. Hence, in accordance with Definitions 1 and 2, the op-

timality region OR(πk, T ) for the permutation πk coincides with the optimality box for the

same permutation πk, being the n-dimensional box ×n
r=1

[
loptkr

, uoptkr

]
= OB(πk, T ) of the volume

∏
Jkr∈{J : lopt

kr
<uopt

kr
}
(
uoptkr

− loptkr

)
. The proof of Lemma 3 is complete.

The permutation π2 = (J1, . . . , J10) of jobs from the set J = {J1, . . . , J10} for Example 2 of the
problem 1|pLi � pi � pUi |

∑
Ci is shown in Fig. 2. As the permutation π2 satisfies the hypothesis of

Lemma 3, the optimality region OR(π2, T ) is the following 10-dimensional box:

OR(π2, T ) = OB(π2, T ) =
[
lopt1 , uopt1

]
× . . .×

[
lopt10 , uopt10

]

= [4, 8]× [8, 8]× [9, 12]× [13, 16]× [16, 16]× [16, 18]× [19, 19]× [19, 22]× [22, 22]× [22, 24],

whose volume can be calculated using formula (11):

Vol (π2, T ) =
∏

Jr∈{J : loptr <uopt
r }

(
uoptr − loptr

)

= (8− 4)(12 − 9)(16 − 13)(18 − 16)(22 − 19)(24 − 22) = 432.

Following Theorem 2, we will consider the problem 1|p̂L
i � pi � p̂U

i |∑Ci with the set T̂ of
reduced scenarios instead of the problem 1|pLi � pi � pUi |

∑
Ci.
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Fig. 2. Optimality segments and nonoptimality segments (hatching) for jobs Ji ∈ J in permutation
π2 = (J1, . . . , J20): Example 2 of problem 1|pLi � pi � pUi |

∑
Ci.

Definition 3. A section of a permutation πk ∈ Π is an inclusion-maximal permutation

sπk
v = (Jkv , . . . , Jkv+mv

), 1 � v � v +mv � n, such that for any value d ∈
(
p̂L
kv
, p̂U

kv+mv

)
there exists

a job Jkv+i
, i ∈ {0, . . . ,mv}, for which d ∈

(
p̂L
kv+i

, p̂U
kv+i

)
. The segment

[
p̂L
kv
, p̂U

kv+mv

]
is called the

cover of a section sπk
v .

Note that the set S(πk) = {sπk
v , . . . , sπk

w }, 1 � v < . . . < w � n, of all sections of each permuta-
tion πk ∈ Π is uniquely defined.

Remark 2. From Definition 3 it follows that each job Jki ∈ J is either contained in a unique
section of a permutation πk, or is not contained in any section of πk. If there exists at least one
job Jki ∈ J not contained in any section of a permutation πk, then OR(πk, T ) = ∅ by Theorem 3.

The next result is immediate from Remark 2 and the proof of Theorem 3.

Corollary 2. The optimality region for a permutation πk = (Jk1 , . . . , Jkn) ∈ Π is a non-empty
set, OR(πk, T ) �= ∅, if and only if πk = (sπk

1 , . . . , sπk
w ).

Consider the permutation π2 = (J1, . . . , J10) in Example 2 (Fig. 2). For this permutation,
each section consists of the unique job sπ2

1 = (J1), . . . , sπ2
10 = (J10) and also the equality π2 =

(sπ2
1 , . . . , sπ2

10) holds. A section composed of a single job will be called trivial.

For proving Lemma 4, we partition the cover

[

p̂L
kj
, p̂U

kj+mj

]

of each section sπk
j ∈ S(πk) into the

inclusion-maximal conditional optimality subintervals

[
p̂L
kj , p̂

U
kj+mj

]
=
[
lj1

(
sπk
j

)
, uj1

(
sπk
j

))⋃
. . .

⋃[
lji

(
sπk
j

)
, uji

(
sπk
j

))⋃

. . .
⋃[

ljn(j)

(
sπk
j

)
, ujn(j)

(
sπk
j

)]
,

(12)

which are distinct from each other in the sense that, for different subsets J j
i =

{

Jki , . . . , Jk|J j
i
|

}

of the set
{
Jkj , . . . , Jkj+mj

}
, j � i � j +mj, the inclusions

[
lji

(
sπk
j

)
, uji

(
sπk
j

)]
⊆
[
p̂L
kr
, p̂U

kr

]
hold
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Fig. 3. Conditional optimality segments (horizontal hatching) and nonoptimality segments (horizontal
and vertical hatching) for jobs Ji ∈ J in permutation π2 = (J1, . . . , J10): Example 3 of problem
1|pLi � pi � pUi |

∑
Ci.

for all jobs Jkr∈J j
i . Let Ĵ j

i =

(

Jki , . . . , Jk|J j
i
|

)

denote the permutation of jobs of the set

J j
i =

{

Jki , . . . , Jk|J j
i
|

}

.

For illustrating these notations, we will consider the partitions of the covers of the sections sπ2
1

and sπ2
8 of the permutation π2 = (J1, . . . , J10) for Example 3 (Fig. 3). The section sπ2

1 consists of the

seven ordered jobs sπ2
1 =(J1, . . . , J7) and has the cover

[
p̂L
1 , p̂

U
7

]
= [4, 20]. As a result, we obtain

the following partition (12): [4, 20] = [4, 8) ∪ [8, 9) ∪ [9, 13) ∪ [13, 16) ∪ [16, 17) ∪ [17, 18) ∪ [18, 20]
of the cover [p̂L

1 , p̂
U
7 ] into the conditional optimality subintervals. Here

[
l11 (J1, J2) , u

1
1 (J1, J2)

)
= [4, 8);

[
l12 (J1, . . . , J4) , u

1
2 (J1, . . . , J4)

)
= [8, 9);

[
l13 (J2, J3, J4) , u

1
3 (J2, J3, J4)

)
= [9, 13);

[
l14 (J3, J4) , u

1
4 (J3, J4)

)
= [13, 16) ;

[
l15 (J3, . . . , J6) , u

1
5 (J3, . . . , J6)

)
= [16, 17) ;

[
l16 (J3, . . . , J7) , u

1
6 (J3, . . . , J7)

)
= [17, 18] ;

[
l17 (J4, . . . , J7) , u

1
7 (J4, . . . , J7)

]
= [18, 20] .

Note the equalities Ĵ 1
1 = (J1, J2), Ĵ 1

2 = (J1, . . . , J4), Ĵ 1
3 = (J2, J3, J4), Ĵ 1

4 = (J3, J4), Ĵ 1
5 =

(J3, . . . , J6), Ĵ 1
6 = (J3, . . . , J7), and Ĵ 1

7 = (J4, . . . , J7). The section sπ2
8 consists of the three

jobs sπ2
8 = (J8, J9, J10) and has the cover

[
p̂L
8 , p̂

U
10

]
= [22, 28]. Hence, we obtain the parti-

tion [22, 28] = [22, 25) ∪ [25, 28] of the cover [22, 28] into the conditional optimality subintervals
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Fig. 4. (a) Optimality triangle Pyropt(J1, J2) with base [(4, 8), (8, 8)] and altitude [(4, 8), (4, 4)] for condi-
tional optimality subinterval [4, 8) for permutation π2 = (J1, . . . , J10) in Example 3. (b) Optimality pyramid
Pyropt(J2, J3, J4) with base [(9, 9, 13), (9, 13, 13), (13, 13, 13)] and altitude [(9, 9, 13), (9, 9, 9)] for conditional
optimality subinterval [9, 13) for permutation π2 in Example 3.

[
l21(J8, J9), u

2
1(J8, J9)

)
and

[
l22(J8, J9, J10), u

2
2(J8, J9, J10)

]
. Note the equalities Ĵ 2

1 = (J8, J9) and

Ĵ 2
2 = (J8, J9, J10).

Any section sπk
j ∈S(πk) of a permutation πk and any ordered set Ĵ j

i of jobs from the set J j
i ⊆ J

are permutations of a corresponding subset of jobs from the set J . Therefore, it is possible to con-
sider the optimality regions for all jobs from which these permutations consist of. Such optimality
regions will be denoted by OR(sπk

j , T ) and OR(Ĵ j
i , T ), like the optimality regions OR(πk, T ) for a

permutation πk ∈Π of the entire set of jobs J . The volumes of the optimality regions OR(sπk
j , T )

and OR(Ĵ j
i , T ) will be denoted by Vol (sπk

j , T ) and Vol (Ĵ j
i , T ), respectively.

The proof of Lemma 4, like the definition of the d-dimensional optimality pyramid PyroptĴ j
i ,

is postponed to the Appendix. This pyramid is the optimality region for the permutation of jobs
J j
i ⊆ J , i.e., the equalities d = |J j

i | and OR(Ĵ j
i , T ) = PyroptĴ j

i hold.

Lemma 4. If OR(πk, T ) �= ∅ and each job Jkr∈J has no optimality segment in a permutation
πk = (Jk1 , . . . , Jkn) ∈ Π, then the optimality region OR(πk, T ) for the permutation πk is the Carte-
sian product of the |S(πk)| optimality regions OR(sπk

j , T ) of all sections S(πk):

OR (πk, T ) = OR (sπk
1 , T )× . . . ×OR

(
sπk
j , T

)
× . . . ×OR

(
sπk

|S(πk)|, T
)
, (13)

where OR(sπk
j , T ) is defined as the union of the d-dimensional optimality pyramids PyroptĴ j

i in

the space Rn, d ∈
{
|J j

i |, . . . , |J j
n(j)|

}
:

OR(sπk
j , T ) =

n(j)⋃

i=1

OR(Ĵ j
i , T ) =

n(j)⋃

i=1

PyroptĴ j
i . (14)

The volume of the optimality region for the permutation πk is given by

Vol (πk, T ) =

|S(πk)|∏

j=1

n(j)∑

i=1

(
uji

(
sπk
j

)
− lji

(
sπk
j

))|J j
i |

|J j
i |!

. (15)
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The permutation π2 = (J1, . . . , J10) of jobs from the set J = {J1, . . . , J10} for Example 3 of
the problem 1|pLi � pi � pUi |

∑
Ci is shown in Fig. 3. By Theorem 3, the optimality region for the

permutation π2 is a non-empty set; because the permutation π2 satisfies the hypothesis of Lemma 4,
the volume of the optimality region OR(π2, T ) can be calculated by formula (15):

Vol (π2, T ) =
2∏

j=1

n(j)∑

i=1

(
uji

(
sπk
j

)
− lji

(
sπk
j

))|J j
i |

|J j
i |!

=

[
(8− 4)2

2!
+

(9− 8)4

4!
+

(13− 9)3

3!
+

(16 − 13)2

2!
+

(17− 16)4

4!

+
(18 − 17)5

5!
+

(20− 18)4

4!

] [
(25− 22)2

2!
+

(28− 25)3

3!

]

=

[
16

2
+

1

24
+

64

6
+

9

2
+

1

24
+

1

120
+

16

24

] [
9

2
+

27

6

]

= 210
33

40
.

The triangle PyroptĴ1
1 = Pyropt(J1, J2) (see equality (14)) for the conditional optimal-

ity subinterval [4, 8) that belongs to the optimality region OR(π2, T ) for the permutation
π2 = (J1, . . . , J10) in Example 3 is demonstrated in Fig. 4a. Also, the three-dimensional pyra-
mid PyroptĴ1

3 = Pyropt(J2, J3, J4) (see (14)) for the conditional optimality subinterval [9, 13) that
belongs to the same optimality region OR(π2, T ) is presented in Fig. 4b.

4.2. Volume of Optimality Region for Permutation πk ∈ Π in General Case

Let S∗(πk) denote the subset of trivial sections of the set S(πk).

Note that the permutation π2 = (J1, . . . , J10) in Example 2 satisfies the hypotheses of Lemma 3
and all sections of the set S(π2) are trivial: S(π2) = S∗(π2).

The permutation π2 = (J1, . . . , J10) in Example 3 satisfies the hypothesis of Lemma 4, and the
set S∗(π2) of its trivial sections is empty: S∗(π2) = ∅.

Theorem 4. If OR(πk, T ) �= ∅, then the optimality region OR(πk, T ) is the Cartesian prod-
uct (13) of the optimality regions of the sections S(πk) such that

OR
(
sπk
j , T

)
= OB

(
sπk
j , T

)
=
[
loptkr

, uoptkr

]

for each trivial section sπk
j = (Jkr ) and

OR(sπk
j , T ) =

n(j)⋃

i=1

OR(Ĵ j
i , T ) =

n(j)⋃

i=1

PyroptĴ j
i

for each nontrivial section sπk
j ∈ S(πk) \ S∗(πk). The volume of the optimality region is given by

Vol (πk, T ) =
∏

(Jkr )∈{S∗(πk) : l
opt
kr

<uopt
kr
}

(
uoptkr

− loptkr

) ∏

s
πk
j ∈S(πk)\S∗(πk)

n(j)∑

i=1

(
uji

(
sπk
j

)
− lji

(
sπk
j

))|J j
i |

|J j
i |!

. (16)

Proof. Due to Theorem 2, we will consider the problem 1|p̂L
i � pi � p̂U

i |∑Ci instead of the prob-
lem 1|pLi � pi� pUi |

∑
Ci. Because OR(πk, T ) �= ∅, the dimension of the optimality region OR(πk, T )

is equal to n (Corollary 1). From Theorem 3 it follows that there exists no job Jkr∈J without
conditional optimality and simultaneously without an optimality segment in the permutation πk.
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Since OR(πk, T ) �= ∅, Remark 2 implies that each job Jki∈J is contained in a unique section
of the permutation πk. Moreover, in accordance with Corollary 2, the equality πk = (sπk

1 , . . . , sπk
w )

holds.

Using the above-mentioned properties of the permutation πk, we will establish equalities (13)
and (16) by the sequential application of Lemma 3 or Lemma 4 in special cases where a successive
permutation consists of a unique section sπk

v ∈ S(πk) of the permutation πk.

We begin with the first section sπk
1 = (Jk1 , . . . , Jk1+m1

) of the permutation πk. If the section sπk
1

is trivial, i.e., sπk
1 = (Jk1), then by Lemma 3 we obtain the first factor

[
loptk1

, uoptk1

]
= OR(sπk

1 , T )

in the requisite Cartesian product (13) and the first factor
(
uoptk1

− loptk1

)
in the first product of

equality (16) given the strict inequality loptk1
< uoptk1

. (If loptk1
= uoptk1

, then the factor
(
uoptk1

− loptk1

)
= 0

is not added into equality (16) due to Lemma 3.)

If the section sπk
1 is nontrivial, i.e.,

sπk
1 ∈S(πk)\S∗(πk),

then by Lemma 4 we obtain the first factor

OR(sπk
1 , T ) =

n(1)⋃

i=1

OR(Ĵ1
i , T ) =

n(1)⋃

i=1

PyroptĴ1
i

in the Cartesian product (13) and the first factor

n(1)∑

i=1

(
u1i (s

πk
1 )− l1i (s

πk
1 )

)|J 1
i |

|J 1
i |!

in the second product of equality (16). Here, note that the partition (12) of the section sπk
1

into the conditional optimality subintervals may also include the subintervals [l1i (s
πk
1 ), u1i (s

πk
1 )) for

which |J 1
i | = 1. (In fact, Lemma 4 makes no provision for such a possibility.) However, we will

demonstrate that the equality

OR(Ĵ j
i , T ) =

(uji (s
πk
j )− lji (s

πk
j ))|J

j
i |

|J j
i |!

,

which appears in (16), is valid in the case |J j
i | = 1 as well. Really, if |J j

i | = 1, then

(
uji

(
sπk
j

)
− lji

(
sπk
j

))|J j
i |

|J j
i |!

=

(
uji

(
sπk
j

)
− lji

(
sπk
j

))1

1!
=
(
uji

(
sπk
j

)
− lji

(
sπk
j

))
,

which is required for satisfying equality (16).

In a similar manner, we will consider the second section sπk
2 = (Jkm1+1 , . . . , Jkm1+1+m2

) of the
permutation πk. Applying Lemma 3 (if the section sπk

2 is trivial) or Lemma 4 (otherwise), we
will supplement the constructed part of the Cartesian product (13) with the second factor and
also supplement a corresponding product of the two ones figuring in equality (16) with the second
factor.

Proceeding in this fashion up to the last section sπk
w of the permutation πk (and adding the cor-

responding factors), we will finally arrive in both equalities (13) and (16). The proof of Theorem 4
is complete.

The algorithm for calculating the volume Vol (πk, T ) of the optimality region OR(πk, T ) �= ∅ for
a permutation πk ∈ Π (see below) is based on Theorems 2, 3, and 4.
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Algorithm 2.

INPUT: Permutation πk = (Jk1 , . . . , Jkn) ∈ Π for which OR(πk, T ) �= ∅;
segments [p̂L

i , p̂
U
i ] of durations of jobs Ji ∈J .

OUTPUT: Volume of optimality region OR(πk, T ) for permutation πk.
Step 1: Determine set of sections

S(πk) =
{
sπk
1 , sπk

1+m1
, . . . , sπk

j+mj
, . . . , sπk

w

}
;

Step 2: j = 1, Vol = 1, Vol ∗ = 1, Sum = 0;
Step 3: IF section sπk

j = (Jkj , . . . , Jkj+mj
) is trivial sπk

j = (Jkj ) THEN

GOTO Step 7;
Step 4: ELSE for section sπk

j = (Jkj , . . . , Jkj+mj
) construct partition (12)

of cover
[
p̂L
kj
, p̂U

kj+mj

]
into conditional optimality subintervals:

[
lj1

(
sπk
j

)
, uj1

(
sπk
j

))⋃
. . .

⋃[
lji

(
sπk
j

)
, uji

(
sπk
j

))⋃
. . .

⋃[
ljn(j)

(
sπk
j

)
, ujn(j)

(
sπk
j

)]
;

Step 5: FOR i = 1 to n(j) DO calculate OS =
(uj

i(s
πk
j )−lji (s

πk
j ))

|J j
i
|

|J j
i |!

;

Sum := Sum+OS END FOR
Step 6: Vol := Vol × Sum, j := j +mj IF j � w THEN GOTO Step 3;

ELSE GOTO Step 10;

Step 7: j := j +mj, OS∗ = uoptkj
− loptkj

IF uoptkj
> loptkj

THEN GOTO Step 9;

ELSE IF j � w THEN GOTO Step 3;
Step 8: ELSE GOTO Step 10;
Step 9: Vol ∗ := Vol ∗ ×OS∗ IF j � w THEN GOTO Step 3 ELSE
Step 10: Vol (πk, T ) = Vol × Vol ∗ STOP.

Step 1 of this algorithm is implemented using O(n) operations. Next, Steps 3–6 are implemented
using O(n2) operations. Finally, Steps 7–9 are implemented using O(n) operations. Hence, Algo-
rithm 2 requires O(n2) operations for calculating the volume Vol (πk, T ) of the optimality region
OR(πk, T ) for a fixed permutation πk ∈ Π.

The permutation π3 = (J1, . . . , J3, J6, J5, J4, J7, . . . , J18) of jobs from the set J = {J1, . . . , J18}
for Example 3 of the problem 1|pLi � pi � pUi |

∑
Ci is shown in Fig. 5. Due to Theorem 3, the

optimality region for the permutation π3 is non-empty; therefore, we calculate its volume by for-
mula (16) of Theorem 4, taking into account the equality S∗(π3) = ∅:

Vol (π3, T ) =
∏

s
π3
j ∈S(π3)

n(j)∑

i=1

(uji (s
π3
j )− lji (s

π3
j ))|J

j
i |

|J j
i |!

=

[
(3− 1)1

1!
+

(4− 3)3

3!
+

(5− 4)5

5!
+

(6− 5)3

3!
+

(7− 6)1

1!
+

(9− 7)2

2!

]

×
[
(12 − 11)1

1!
+

(14− 12)3

3!
+

(15− 14)5

5!
+

(18− 15)3

3!
+

(23− 18)1

1!

]

×
[
(30− 27)1

1!
+

(32− 30)3

3!
+

(36− 32)1

1!
+

(37 − 36)2

2!
+

(38 − 37)3

3!

+
(40 − 38)5

5!
+

(41 − 40)1

1!

]

=

[
2

1
+

1

6
+

1

120
+

1

6
+

1

1
+

4

2

]

×
[
1

1
+

8

6
+

1

120
+

27

6
+

5

1

]

×
[
3

1
+

8

6
+

4

1
+

1

2
+

1

6
+

32

120
+

1

1

]

= 657.85.
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Fig. 5. Optimality segments, conditional optimality segments (horizontal hatching) and nonopti-
mality segments (horizontal and vertical hatching) for jobs Ji ∈J = {J1, . . . , J18} in permutation
π3 = (J1, . . . , J3, J6, J5, J4, J7, . . . , J18): Instance 1 of problem 1|pLi � pi � pUi |

∑
Ci.

5. PERMUTATION πk WITH MAXIMAL OPTIMALITY REGION

If there exists a dominant singleton {πk} for the problem 1|pLi � pi � pUi |
∑

Ci, then the per-
mutation πk of jobs from the set J is optimal for the problem 1|p|∑Ci for any scenario p ∈ T . In
accordance with Definition 2, such a permutation πk satisfies the equality OR(πk, T ) = T .

5.1. Maximum Possible Optimality Region for Given Scenarios

We will prove necessary and sufficient conditions for the existence of a permutation πk ∈ Π with
the maximum possible optimality region for a given set of scenarios T , i.e., a criterion under which
there exists a permutation πk such that OR(πk, T ) = T .

Theorem 5. The optimality region for a permutation πk = (Jk1 , . . . , Jkn) ∈ Π is maximum pos-
sible for a given set of scenarios T , i.e., OR(πk, T ) = T , if and only if the equality

[
loptks

, uoptks

]
=
[
pLks , p

U
ks

]
(17)

holds for each job Jkr ∈ J in the permutation πk.

Proof. Sufficiency. Let equality (17) be satisfied for each job Jks∈J in a permutation
πk = (Jk1 , . . . , Jkn). Then, in accordance with Definition 1, we also have the equalities OB(πk, T ) =
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×kir∈M
[
loptkir

, uoptkir

]
= ×kir∈M

[
pLkir , p

U
kir

]
= T , where M = (ki1 , . . . , ki|M|), ki1 < . . . < ki|M| , is an or-

dered set {k1, . . . , kn} = {1, . . . , n} for which n = |M |. From Definition 1 it follows that the per-
mutation πk is optimal for the instance 1|p′|∑Ci for any scenario p′ ∈ OB(πk, T ) = T . Then by
Definition 2 we obtain the equality OR(πk, T ) = T . Sufficiency is established.

Necessity. Let the equality OR(πk, T ) = T hold. Assume on the contrary that there exists a
job Jkr ∈ J in the permutation πk = (Jk1 , . . . , Jkn) ∈ Π such that equality (17) is not satisfied.

Due to Lemma 1, then there exists a non-empty nonoptimality segment [lnonkr
, unonkr

] or/and

there exists a non-empty conditional optimality segment [lcoptkr
, ucoptkr

] for the job Jkr ∈ J in the
permutation πk = (Jk1 , . . . , Jkn).

In the former case (the existence of [lnonkr
, unonkr

]), equality (5) holds. In the latter case

(the existence of [lcoptkr
, ucoptkr

]), equality (7) holds. In both cases, there exists a scenario

p∗ ∈ (lnonkr
, unonkr

)
⋃
(lcoptkr

, ucoptkr
) ⊆ T such that the permutation πk is not optimal for the instance

1|p∗|∑Ci with the scenario p∗ ∈ T . Hence, in accordance with Definition 2, we arrive in the re-
lation OR(πk, T ) �= T , which obviously contradicts the equality OR(πk, T ) = T . Thus, necessity is
established, and the proof of Theorem 5 is complete.

Theorem 5 in combination with Corollary 1 gives the following result.

Corollary 3. If for each job Jkr∈J in a permutation πk = (Jk1 , . . . , Jkn) equality (17) holds, then
the optimality region OR(πk, T ) is the n-dimensional box T ⊂Rn

+ with the volume Vol (πk, T ) =∏
Ji∈{J : pLi <pUi }(p

U
i − pLi ).

A permutation πk = (Jk1 , . . . , Jkn) for which equalities (17) hold for all jobs Jkr∈J is optimal
for the instance 1|p|∑Ci with any admissible scenario p ∈ T . Consequently, the set {πk} is the
minimal dominant set for the problem 1|pLi � pi � pUi |

∑
Ci.

5.2. How Should Permutation with Maximal Optimality Region Be Used?

The optimal permutation πk for the problem 1|pLi � pi � pUi |
∑

Ci (see the existence crite-
rion in Theorem 5 and Corollary 3) is quite rare in practice. However, for a specific problem
1|pLi � pi � pUi |

∑
Ci arising in applications, as a rule, a single permutation has to be chosen from

the set Π and then implemented for processing all jobs from the set J .

In view of the results established in Sections 3–5.1, for implementation it can be recommended
to choose a permutation πt of jobs from the set J for which the volume of the optimality re-
gion OR(πt, T ) achieves maximum over all permutations from the set Π. If the factual scenario
p ∈ T of processing of all jobs from the set J belongs to the optimality region OR(πt, T ), then
the implemented permutation πt will be optimal for the factual scenario of processing of all jobs
from the set J . Generally speaking, the greater the volume of the optimality region OR(πk, T )
is, the higher the probability that the permutation πk is optimal for the factual scenario of pro-
cessing of all jobs from the set J will be. Therefore, important problems for further research are
the development of efficient algorithms to construct a permutation πt with the maximal volume
Volmax(πt, T ) = max{Volmax(πk, T ) : πk ∈ Π} of the optimality region OR(πt, T ) and the testing
of such algorithms on the problems 1|pLi � pi � pUi |

∑
Ci of practically relevant dimensions.

For the general problem 1|pLi � pi � pUi |
∑

Ci, the difference

1− Volmax(πk, T )
∏

Ji∈{J : lopti <uopt
i }(p

U
i − pLi )

=: μ

can be treated as its measure of uncertainty (or measure of complexity). In particular, if μ = 0,
then the permutation πt with the maximal volume Volmax(πt, T ) of the optimality region OR(πt, T )
will surely be optimal for the factual scenario of processing of all jobs from the set J , even despite
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the uncertainty of the given scenarios T . Conversely, if the value μ is equal to 1 (or very close
to 1), then the probability that the permutation πt is optimal for the factual scenario of processing
of all jobs from the set J will be 0 (almost 0, respectively). In such cases, the uncertain problem
1|pLi � pi � pUi |

∑
Ci can be solved using approximate algorithms, like Algorithm U2 described

in [1], or Algorithm 3 introduced in [10]. The latter is oriented towards achieving the minimum
error of the resulting solution.

6. CONCLUSIONS

Single-machine scheduling problems for jobs with uncertain numerical parameters arise, e.g., in
the course of employee’s working time planning for a definite period (day, week, or month). As a
rule, the ranges of admissible durations of jobs can be estimated in advance. It can be assumed that
the set of planned jobs will not considerably change when implementing a schedule. The minimum
total completion time of jobs (the average processing time of jobs) can be treated as an aggregate
index of efficiency for an employee performing a given set of jobs.

Another example of the problem 1|pLi � pi � pUi |
∑

Ci, which arises in the single-truck optimal
scheduling of product supply service logistics in a city retail network, was described in [27]. The
product supply time to a retail outlet depends on numerous factors, such as traffic jamming,
weather, the condition of supply trucks and the road.

The problem 1|pLi � pi � pUi |
∑

Ci may also arise in some multistage serving systems if one
server is a bottleneck of a corresponding process and only the ranges of admissible durations of
jobs on this server are known.

The results obtained in Section 3–5 as well as Algorithms 1 and 2 can be used to construct a
permutation πt ∈ Π of given jobs with the maximal volume Volmax(πt, T ) of the optimality region
OR(πt, T ). Choosing the permutation πt to process given jobs, we increase the probability of
obtaining an almost optimal schedule, despite the fact that the probability distributions of the
uncertain durations of jobs are unavailable in the scheduling problem 1|pLi � pi � pUi |

∑
Ci.

APPENDIX

For proving Lemma 4, we will consider the problem

1
∣
∣
∣p̂L

i � pi � p̂U
i

∣
∣
∣
∑

Ci

instead of the problem 1|pLi � pi � pUi |
∑

Ci (Theorem 2). Since OR(πk, T ) �= ∅, by Theorem 3
there exists no job Jkr ∈ J without conditional optimality and simultaneously without an opti-
mality segment in the permutation πk. In accordance with the hypothesis of Lemma 4, each job
Jkr ∈ J has no optimality segment in the permutation πk.

In view of Remark 1 and Lemma 1, we obtain the equality

[
p̂ L
kr , p̂ U

kr

]
=
[
lcoptkr

, ucoptkr

]
,

which holds for each job Jkr∈J . From this equality it follows that the set S(πk) of all sections of the

permutation πk contains no trivial sections. We construct the partition (12) of covers

[

p̂L
kj
, p̂ U

kj+mj

]

of all sections sπk
j ∈ S(πk) into the following conditional optimality subintervals:

[
lj1

(
sπk
j

)
, uj1

(
sπk
j

))⋃
. . .

⋃[
lji

(
sπk
j

)
, uji

(
sπk
j

))⋃
. . .

⋃[
ljn(j)

(
sπk
j

)
, ujn(j)

(
sπk
j

)]
=
[
p̂L
kj , p̂

U
kj+mj

]
.
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Using mathematical induction in the cardinality |J j
i | of the set J j

i , we will demonstrate that,

for each conditional optimality subinterval
[
lji

(
sπk
j

)
, uji

(
sπk
j

))
in partition (12),

Vol
(
Ĵ j
i , T

)
=

(
uji

(
sπk
j

)
− lji

(
sπk
j

))|J j
i |

|J j
i |!

, (A.1)

OR
(
Ĵ j
i , T

)
= PyroptĴ j

i = Pyropt
(

Jki , . . . , Jk|J j
i
|

)

, (A.2)

where the base of the |J j
i |-dimensional pyramid PyroptĴ j

i = Pyropt
(

Jki , . . . , Jk|J j
i
|

)

is the

(|J j
i | − 1)-dimensional pyramid and the altitude of all pyramids is equal to

(
uji

(
sπk
j

)
− lji

(
sπk
j

))
.

First, we show that for |J j
i | = 2, the pyramid PyroptĴ j

i = Pyropt(Jki , Jki+1
) turns into a tri-

angle (a degenerate case of a pyramid) with the base
[
lji

(
sπk
j

)
, uji

(
sπk
j

)]
and the same altitude

(
uji

(
sπk
j

)
− lji

(
sπk
j

))
as its base. This triangle PyroptĴ1

1 = Pyropt(J1, J2) is presented in Fig. 4a

for the conditional optimality subinterval

[4, 8) =
[
l11(J1, J2), u

1
1(J1, J2)

)

for the permutation π2 = (J1, . . . , J10) ∈ Π in Example 3. From Theorem 1 it follows that the order
(Jki , Jki+1

) = Ĵ j
i of processing of two jobs is optimal in a permutation πk ∈ Π if and only if the

durations pki and pki+1
of the jobs Jki and Jki+1

satisfy the inequality pki � pki+1
. In view of the

belonging of the admissible scenario (pk1 , . . . , pkn) to the given set T, the admissible durations pki
and pki+1

must satisfy the final system of inequalities

⎧
⎪⎪⎨

⎪⎪⎩

pki � pki+1

pLki � pki � pUki
pLki+1

� pki+1
� pUki+1

.

(A.3)

System (A.3) determines the triangle PyroptĴ j
i = Pyropt(Jki , Jki+1

). In other words, all points

belonging to the triangle PyroptĴ j
i satisfy system (A.3), and no other points do so. Thus, equal-

ity (A.2) is proved for the case |J j
i | = 2. Since the area of the triangle PyroptĴ j

i is the product of

its base and altitude with a factor of 1/2,
(uj

i (s
πk
j )−lji (s

πk
j ))2

2 , equality (A.1) is also established for the

case |J j
i | = 2.

Consider the next set J j
i by cardinality, i.e., |J j

i | = 3. We will demonstrate that, in this case,
the optimality region

OR(Ĵ j
i , T ) = OR

(
(Jki , Jki+1

, Jki+2
), T

)

is the 3-dimensional pyramid PyroptĴ j
i with the altitude

(
uji

(
sπk
j

)
− lji

(
sπk
j

))
and the base in the

form of a triangle with the same altitude
(
uji

(
sπk
j

)
− lji

(
sπk
j

))
and the base

[
lji

(
sπk
j

)
, uji

(
sπk
j

)]
.

Note that this optimality pyramid PyroptĴ1
1 = Pyropt(J2, J3, J4) is shown in Fig. 4b for the condi-

tional optimality subinterval

[9, 13) =
[
l13(J2, J3, J4), u

1
3(J2, J3, J4)

)
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for the permutation π2 = (J1, . . . , J10) in Example 3. From Theorem 1 it follows that the order
(Jki , Jki+1

, Jki+2
) = Ĵ j

i of processing of three jobs is optimal in a permutation πk ∈ Π if and only
if the durations pki , pki+1

, and pki+2
of the jobs Jki , Jki+1

, and Jki+2
, respectively, satisfy the

inequalities pki � pki+1
� pki+2

. In view of the belonging of the admissible scenario (pk1 , . . . , pkn)
to the given set T, the admissible durations pki , pki+1

, and pki+2
must satisfy the final system of

inequalities
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pki � pki+1
� pki+2

pLki � pki � pUki
pLki+1

� pki+1
� pUki+1

pLki+2
� pki+2

� pUki+2
.

(A.4)

System (A.4) determines the 3-dimensional pyramid

PyroptĴ j
i = Pyropt(Jki , Jki+1

, Jki+2
)

with the triangle
[(
pLki , p

L
ki+1

, pUki+2

)
,
(
pLki , p

U
ki+1

, pUki+2

)
,
(
pUki , p

U
ki+1

, pUki+2

)]

as its base and the segment
[(
pLki , p

L
ki+1

, pUki+2

)
,
(
pLki , p

L
ki+1

, pLki+2

)]

as its altitude. Consequently, all points of the pyramid PyroptĴ j
i = Pyropt(Jki , Jki+1

, Jki+2
) satisfy

system (A.4), and no other points do so. Thus, equality (A.2) is proved for the case |J j
i | = 3. The

volume of the 3-dimensional pyramid PyroptĴ j
i is the product of the area of its base (triangle)

[(
pLki , p

L
ki+1

, pUki+2

)
,
(
pLki , p

U
ki+1

, pUki+2

)
,
(
pUki , p

U
ki+1

, pUki+2

)]
,

and its altitude with a factor of 1/3,

(
uji

(
sπk
j

)
− lji

(
sπk
j

))2

2

(
uji

(
sπk
j

)
− lji

(
sπk
j

))

3
=

(
uji

(
sπk
j

)
− lji

(
sπk
j

))3

3!
= Vol

(
Ĵ j
i , T

)
.

Hence, equality (A.1) is also established for the case |J j
i | = 3.

Now, we make an inductive hypothesis, assuming that both equalities (A.1) and (A.2) hold
in the case |J j

i | = d. This means that the optimality region OR(Ĵ j
i , T ) is the d-dimensional

pyramid PyroptĴ j
i = Pyropt(Jki , . . . , Jkt), with a (d− 1)-dimensional pyramid as its base and

(uji (s
πk
j )− lji (s

πk
j )) as the altitude of each of these pyramids. Proceeding from the inductive hy-

pothesis, we will obtain equalities (A.1) and (A.2) for the case |J j
i | = d+ 1.

Consider the conditional optimality subinterval
[
lji

(
sπk
j

)
, uji

(
sπk
j

))
for which

Ĵ j
i =

(

Jki , . . . , Jk|J j
i
|−1

, Jk|J j
i
|

)

and |J j
i | = d+ 1.

Due to the inductive hypothesis, both equalities (A.1) and (A.2) hold for the set of jobs

J j
i \

{

Jk|J j
i
|

}

, and the optimality region OR
((

Jki , . . . , Jk|J j
i
|−1

)

, T

)

is the d-dimensional pyramid

Pyropt (Jki , . . . , Jkt) = OR
((

Jki , . . . , Jk|J j
i
|−1

)

, T

)

.
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Hence, by Theorem 1 the order

(

Jki , . . . , Jk|J j
i
|−1

)

of job processing is optimal in a permutation

πk ∈ Π if and only if the durations pki , . . . , pk|J j
i
|−1

of the jobs Jki , . . . , Jk|J j
i
|−1

satisfy the system

of inequalities
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pki � . . . � pk|J j
i
|−1

pLki � pki � pUki
. . .
pLk|J j

i
|−1

� pk|J j
i
|−1

� pUk|J j
i
|−1

.

(A.5)

Adding the inequalities

pk|J j
i
|−1

� pk|J j
i
|

and pLk|J j
i
|
� pk|J j

i
|
� pUk|J j

i
|

into system (A.5), we obtain the final system of inequalities
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pki � . . . � pk|J j
i
|−1

pk|J j
i
|−1

� pk|J j
i
|

pLki � pki � pUki
. . .
pLk|J j

i
|−1

� pk|J j
i
|−1

� pUk|J j
i
|−1

pLk|J j
i
|
� pk|J j

i
|
� pUk|J j

i
|
.

(A.6)

This system determines the (d+ 1)-dimensional pyramid

PyroptĴ j
i = Pyropt

(

Jki , . . . , Jk|J j
i
|

)

with the d-dimensional pyramid Pyropt
(

Jki , . . . , Jk|J j
i
|−1

)

as its base and the difference
(
uji

(
sπk
j

)
− lji

(
sπk
j

))
as the altitude of each of the two pyramids.

Due to the inductive hypothesis and Theorem 1, the optimality region OR
((

Jki , . . . , Jk|J j
i
|

)

, T

)

is the (d+ 1)-dimensional pyramid Pyropt
(

Jki , . . . , Jk|J j
i
|

)

= OR
((

Jki , . . . , Jk|J j
i
|

)

, T

)

. Thus,

equality (A.2) is proved for the case |J j
i | = d+ 1. The volume of the (d+ 1)-dimensional pyramid

PyroptĴ j
i is the product of the area of its base (d-dimensional pyramid) Pyropt

(

Jki , . . . , Jk|J j
i
|−1

)

=

OR
((

Jki , . . . , Jk|J j
i
|−1

)

, T

)

and its altitude with a factor of 1/(d+ 1),

(
uji

(
sπk
j

)
− lji

(
sπk
j

))d

d!

(
uji

(
sπk
j

)
− lji

(
sπk
j

))

d+ 1
=

(uji (s
πk
j )− lji (s

πk
j ))d+1

(d+ 1)!
= Vol (Ĵ j

i , T ).

Hence, equality (A.1) is also established for the case |J j
i | = d+ 1. Thus, equalities (A.1) and (A.2)

have been proved by mathematical induction.

Equality (14) follows from equality (A.2) and the fact that, for any scenario p ∈ T , each job
Ji ∈ J has a unique duration pi. Next, equality (13) follows from Remark 2 and equality (14).
Finally, equality (15) follows from equalities (13), (14), and (A.1). The proof of Lemma 4 is
complete.
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