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Abstract—We address a cloud spot bidding problem for user cost optimization. We propose
stochastic optimization model to minimize the expected resource rental cost in the presence
of spot price uncertainty. The model is based on the well-known full-information best-choice
problem. Based on the model, we derive the strategy for cloud spots bidding. The strategy
allows to minimize the expected cost for a spot instance in a specific period of time with quality
of service guarantee. Our simulation analysis based on realistic settings clearly demonstrates
the advantages of the proposed optimization solutions.
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1. INTRODUCTION

Cloud computing providing on-demand access to resources (servers, storage, applications, and
services) becomes a crucial part of the IT industry [17]. Cloud providers reoffer the models of
access and monetization of computing resources. These business-approaches require new studies to
analyze the rational (or optimal) behavior both of customers and cloud providers.

One of the major trend-setters of the cloud computing market is Amazon. Its Elastic Compute
Cloud (Amazon EC2) platform provides several options for virtual servers renting [4]. In addition
to On-demand and Reserved Instances, in 2009, Amazon has introduced Spot Instances (SIs) [3].
It had become a new approach to pricing and new way to obtain compute capacity with reduced
prices.

With SIs, customers can bid on unused Amazon EC2 compute capacity. The current spot price
can be changed on periodic basis reflecting current supply and demand. SIs are aimed to non-
interactive applications with a flexible start time, which could be easily paused. The examples
of such applications are video rendering/converting, data analysis, scientific modeling, and so on.
Comparing to on-demand prices, auctions on SIs allow to save 50–90% off the customers costs.

We consider the following general problem. A cloud provider uses a flat auction to sell computing
instances. At discrete moments of time, he generates a spot price, and grants computing instances
to all the customers whose price levels are higher than the spot price. The customers who granted
computing instances pay the same value, which is the lowest winning bid price level. Our objective
is to find a computing slot in a specific period of time to minimize the expected cost.
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We reduce this problem to a well-known full-information best-choice problem. The solution of
the problem is a set of thresholds. The threshold values depend on spot prices distribution and
remaining period. This strategy guarantees to a customer minimization of the expected prices.

The rest of the paper is organized as follows. In Section 2, we review several papers dealing
with cloud auctions. In Section 3, we briefly describe Amazon spot auctions mechanism. In
Section 4, we propose a mathematical model of SI auctions, and derive the strategies to minimize
the expected spot price. We validate the proposed model and our strategy through simulation
in Section 5. Section 6 shows an example of deriving the strategy based on Amazon SI auctions
data. Finally, in Section 7, we summarize our contribution, discuss the results and describe future
improvements.

2. RELATED WORKS

Cloud computing becomes a vital part of the modern information industry. It has received
much attention from the scientific community. Zheng Li et al. 2014 [16] provide an overview of the
researches on cloud spot market. The more recent and extended survey is given by D. Kumar et al.
2018 [14]. The authors explore two main research directions: investigation of the existing pricing
mechanisms based on real examples of cloud providers politics and proposing new mechanisms for
pricing and resources provisioning. They highlight different models describing spot prices distri-
bution. Among probabilistic models several researches use Markovian or semi-Markovian models,
develop Price Transition Probability Matrix, while others assume that spot prices are independent
identically distributed random variables having normal distribution or mixture of Gaussians. In the
latter model, there are also different approaches: statistics-based, economic-inspired, etc. In our
work, we assume spot prices are independent identically distributed random variables having known
probability distribution.

One of the research questions is the most profitable pricing policy for cloud provider.

Abhishek et al. 2012 [1] discuss the choice between fixed and market-defined prices. The authors
show that the dynamic price approach is flexible but more complex. Based on queueing theory, they
propose models of spot and pay as you go markets. These models are used to provide theoretical
analysis and simulation results, which show that isolated pay as you go market is more profitable
for a cloud provider than mixed with spot market. But this is true only for a monopolistic provider.

Xu and Li, 2012 [30] describe the mathematical model aimed to maximization of revenue of
a cloud provider. The authors consider a scenario where cloud provider affects on spots demand
varying the price of its service. The demand itself is characterized by stochastic processes of arrivals
and departures with underlying Poisson distributions with parameters depending on price. The
system, in general, is considered as continuous time birth-death Markov process. The authors derive
the optimal cloud provider pricing policy, which maximizes revenue in the infinite time horizon.
It should be mentioned that based on the proposed model, in some cases, dynamic pricing is the
most profitable.

Song et al. 2012 [22] develop a bidding strategy for cloud service brokers. A special profit aware
dynamic bidding algorithm is proposed. The authors demonstrate that the algorithm shows a near
optimal performance. It also can be used with other cost objective functions of the cloud service
brokers.

As it is mentioned above, Amazon has introduced their SIs in 2009, and sells them at auctions,
where customers make bids on desired resources. As announced, the actual price depends on
the whole amount of available resources and demand. SIs attracted much interest from research
community as a new price model. One of the most interesting issues of SI auctions is dynamic
pricing paradigm. Its characterization is fundamental from the point of view of effective stochastic
scheduling algorithms development and fault tolerant mechanisms.
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Ben-Yehuda et al. 2011 [5] analyze real pricing based on historic data of Amazon auctions on
SIs. They prove that spot prices are usually not market-driven, but instead, they are typically
generated by Amazon randomly within a tight price interval via a dynamic hidden reserve price.
The authors notice that prices on different types of instances show similar behavior. This conclusion
is made by analysis of Amazon EC2 spot prices of first half of 2010.

Cheng et al. 2016 [7] study price differentials between West and East SIs markets of Amazon
EC2, and pricing dynamics.

Javadi et al. 2013 [9] show that spot price dynamics of each SI is characterized by a mixture
of Gaussian distribution with three or four components. The authors perform a comprehensive
analysis of SIs based on one year price history in four data centers of Amazon EC2. They analyzed
all different types of SIs and determined the time dynamics for spot price in hour-in-day and day-
of-week. They highlighted bi-modality of spot price probability distribution functions, and propose
to use a mixture of Gaussians distribution with three or four components to model spot price
dynamics. Several methods are used to estimate the parameters of this distribution. The proposed
model is validated through extensive simulations.

Wallace et al. 2013 [28] use neural networks to predict spot prices. For the experiments, they
used spot price data points for seven months starting December 2009 and ending June 2010. To
predict spot prices standard Multi-Layer Perceptron model with a back propagation error training
algorithm and an adaptive learning rate is used. The authors perform simulations based on Amazon
EC2 spot prices data. The simulations demonstrate very good results even for sudden price changes,
and show that neural networks are well suited for prediction of spot prices. The results of these
works can be used by customers to choose the best bidding strategy.

Time series-based analysis is a popular method to analyze spot prices. M.B. Chhetri et al.
2018 [8] first decompose the Spot price history into time series components; each component, which
can exhibit deterministic or non-deterministic qualities, is then separately forecast using different
standard forecasting techniques and look back periods; and finally, the individual forecasts are
aggregated to form the Spot price forecast. S. Alkharif et al. 2018 [2] use LSTM model to forecast
time series for EC2 cloud price.

Information on spot price dynamics is used to design bidding strategies, addressing, for example,
cost minimization and reliability maximization.

Karunakaran et al. 2015 [12] compare four simple bidding strategies: (1) bidding close to
the reserved instance price; (2) bidding above the average spot price, which is deduced from the
spot-price history; (3) bidding close to the on-demand price; and (4) bidding above the on-demand
price. The strategies are considered from the point of view of several customer performance metrics,
which are (1) cost of job completion; (2) wait time; and (3) interruption during job execution. The
authors conclude that first strategy is well-suited for price-sensitive users who have flexible job-
completion times, and are capable of frequent checkpointing. The second and third strategies
show good tradeoff between costs, waiting times, and interruption rates. Finally, fourth strategy
demonstrates cost increase that does not accompanied with a significant reduction in wait times or
interruption rates. Thus, bidding above on-demand, though attractive, is not useful.

Voorsluys, 2014 [27] proposes an approach to run deadline-constrained computational jobs on
a pool of computational resources composed solely by low-cost SI. The author builds a resource
management and scheduling policy system, which is called SpotRMS. The policy uses job runtime
estimations to decide both the best types of instances to run each job, and when jobs should be
run to meet their deadlines. In particular, the author studies techniques to run computational
jobs on intermittent SI. These techniques include the use of different bidding strategies and fault
tolerance techniques to tolerate unplanned unavailability of SI. The proposed approach is verified
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Table 1. Related papers comparison

Persp. Mechanism Theoret. Data Amazon Prices
Paper/Parameter (user/ (existing analysis (real/ SI charact.

cloud) /new) synthetic)

V. Abhishek et al., 2012 [1] cloud new + synthetic
H. Xu, B. Li, 2012 [30] cloud new + synthetic
W. Voorsluys, 2014 [27] cloud new + synthetic
O. Agmon Ben-Yehuda, et al., 2011 [5] existing + real + +
B. Javadi, et al., 2013 [9] real + +
R.M. Wallace et al., 2013 [28] existing real + +
S. Karunakaran, R.P. Sundarraj, 2015 [12] user existing real +
K. Sowmya, R.P. Sundarraj, 2013 [23] user existing + real +
Y. Song, et al., 2012 [22] cloud new + real +

synthetic +
S. Tang, et al., 2012 [25] user existing + real + +
B. Kaminski, P. Szufel, 2015 [10] real + +
W. Wang, et al., 2013 [29] cloud new + synthetic
A.N. Toosi, et al., 2016 [26] cloud new + synthetic
I. Menache, et al., 2014 [18] cloud new +

on trace-driven simulation based on Amazon data and demonstrates price effectiveness. Petcu,
2014 [20] describes solutions to consume resources and services from multiple clouds.

Menache et al. 2014 [18] introduce a self-learning algorithm of costs optimization based on
adaptive rent on-demand and spot instances. The authors introduce an algorithm for resource allo-
cation to address the tradeoff between computation cost of on-demand instances and performance
of SIs issues. The algorithm uses machine learning approaches to dynamically adapt resource al-
location based on its performance on prior job executions, history of spot prices, and workload
characteristics.

Kokkinos et al. 2014 [13] presented Cost and Utilization Optimization mechanism, formulated
as an Integer Linear Programming problem, for optimizing the cost and the utilization of a set of
running Amazon EC2 instances.

Sowmya and Sundarraj, 2013 [23] model the bidding strategies in a spot market as a well-known
from game theory a prisoner dilemma game. The authors check their discoveries against real
time data from Amazon EC2 spot market. Considering that most of the spot market bidders are
repetitive bidders, the authors implement a Co-operation strategy which is in-line with the Iterated
Prisoner Dilemma Game.

Tang et al. 2012 [25] propose bidding strategies to minimize the cost and provide good reliability.
The authors use Constrained Markov Decision Process, Price Transition Probability Matrix, and
linear programming to obtain an optimal randomized bidding strategy (which is called AMAZING).
The authors evaluate the model and demonstrate how users should bid optimally on SIs to reach
different objectives with desired levels of confidence.

Kamitski and Szufel, 2015 [10] introduce EC2 cloud pricing simulator. It operates on historical
data and emulates the Amazon EC2 pricing mechanism, so that it could be used to evaluate different
spot bidding strategies.

Wang et al. 2013 [29] and Toosi et al. 2016 [26] propose new auction mechanisms addressing
truthfulness and revenue maximization.

Wang et al. 2013 [29] design a special type of dynamic auctions. This design determines the
amount of instances to be auctioned in each period, as well as the underlying auction mecha-
nisms based on dynamic payment schemes. The authors prove that the proposed design is two-
dimensionally truthful and asymptotically optimal for high demands.
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Toosi et al. 2016 [26] adapt the Consensus Revenue Estimate auction mechanism to the setting of
a multi-unit online auction for cloud resources. They also combine it with a scheme for dynamically
calculating reserve prices based on data center Power Usage Effectiveness and electricity costs. The
authors notice that the final mechanism is envy-free, has a high probability of being truthful, and
generates a near optimal profit for the provider. It also maximizes revenue without requiring prior
knowledge on the bid distributions. Based on the simulations the authors show that the proposed
mechanism outperforms the uniform price auction.

In Table 1, we summarize related papers considering their main characteristics: user or cloud
provider oriented study; existing or new mechanism are used, theoretical or experimental analysis
is conducted, real or synthetic data are applied, Amazon Spot Instance auction or others are
considered; prices characterization is included or not.

3. AMAZON SPOT AUCTIONS

Amazon offers its customers three renting mechanisms: reserved instances, on-demand instances,
and spot auctions. They provide different assurances regarding when instances can be launched
and terminated, and with what costs. Reserved instance gives a client ability to launch reserved
instance whenever they wish. A client can purchase an on-demand instance when he needs it, at a
higher hourly fee, but with no guarantee that launching will be possible at any given time. Both
reserved and on-demand instances remain active until terminated by the client.

The third type is a Vickrey-style auction on unused capacity. It provides no guarantee regarding
either launch time or termination time. Clients bid the maximum hourly price they are ready to pay
for a SI. The request on the instance is granted, if the bid is higher than the spot price, otherwise, it
waits. All winning customers pay the same price, which is equal to the value of the lowest winning
bid. The spot price changes periodically based on supply and demand. The instance runs until the
client terminates it, or the spot price increases above clients maximum price.

Fig. 1. Spot pricing structure.
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Fig. 2. Spot pricing dynamics.

Amazon EC2 is charging based on full hours, unless the instance is terminated due to a spot
price change. In this case, the last fraction of an hour is free of charge.

Figure 2 shows an example of three months spot price dynamics (see Amazon Spot Instance
Pricing History [24]).

Clearly, lower bidding prices usually provide lower cost. However, they degrade other metrics
such as job completion time and number of interruptions. Therefore, spot auction is a trade-off
between reliability of service and cost of SIs.

4. PROPOSED STRATEGY

4.1. Mathematical Model

There is a following well-known best-choice problem proposed by Cayley [6]. Moser, 1956 [19]
reformulated the Cayley’s problem as follows: a user observes, one by one, random variables
X1, . . . ,Xk known to be independent identical distributed (iid) from a uniform distribution on
the interval (0, 1). If he stops after observing Xj, then he receives Xj as a reward. The aim is to
maximize the reward.

It is proved that the optimal strategy is to stop when there are m observations left, if the value
of the present observation is greater than Em, where the Em is defined recursively by

En = 0 and Em =

(
1 + E2

m+1

)

2
, m = 1, . . . , n− 1.

We will call thresholds values Em used for the such kind of strategy.

The sequence of thresholds is decreasing as it shown in Fig. 3.

We use these results to reformulate previously described problem of optimal bidding strategy at
SIs auction.

4.2. Solution

As one can see, the best-choice problem has clear similarities with the best-bidding problem
at cloud auction. We assume that a client would like to rent an instance in a specific period

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 4 2020



COST-EFFICIENT STRATEGY IN CLOUDS 737

Fig. 3. The sequence of thresholds.

of time. As in the best-choice problem, the client observes one by one cloud spot prices which
are distributed from 0 to the maximum price, pmax value. Therefore he can use a threshold-
based strategy to minimize the expected cost for a spot instance. Assuming that the prices are
independent identically distributed with a known continuous probability function, the best strategy
could be derived using the same procedure as is used in the best-choice problem.

Let us give the formal definition of the problem. There is a spot auction, where spot prices are
independent identical distributed (iid) random variables x1, x2, x3, . . . with a continuous probability
function (pdf) F (x) on the interval [0, pmax]. pmax corresponds to a maximal possible SI price at
the auction. Obviously, it is equal to on-demand price. A customer has n periods to win a SI. If he
fail to get a spot earlier, he has to buy on-demand instance on the maximum price pmax on the last
period.

Let the customer sets his bid τi before the ith SIs auctioning. He aims to minimize expected spot
price rent with a given period of time. The considered problem is a well-known full-information
best-choice problem solved by the method of backward induction [19]. Failing to win a SI at the
period n, the customer have to buy it on the maximum price pmax. So, any price less or equal
of pmax is good for the customer: τn = pmax.

Taking into account that spot prices are iid random variables with continuous pdf F (x), the
expected cost at the period n is equal to

∫ τn
0 xdF (x), Lebesgue–Stieltjes integral with respect to

the distribution function F (x), see [11].

At step n− 1, the customer price level is the minimum from the current SI price, and expected
cost at the nth period:

τn−1 = E
[
min {τn, x}

]
=

pmax∫

0

min {τn, x}dF (x) =

τn∫

0

xdF (x) +

pmax∫

τn

τndF (x).

Here E[X] denotes an expectation of random variable X.
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Continuing the backward induction, we get the following solution as a system of recurrent
equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τn = pmax

τi = E[min {τi+1, x}] =
τi+1∫

0

xdF (x) +

pmax∫

τi+1

τi+1dF (x).
(4.1)

Using formula (4.1), one can get the optimal bid τi value at any step i for a given period n. At
first step, a customer should use the first (the lowest) price. If this bid τ1 does not win, the next
bid τ2 should be used at the next step. Following this process, the customer is guaranteed to win
an instance in a period n with the lowest possible expected spot price.

5. EXPERIMENTAL ANALYSIS

As it was mention above, formula (4.1) describes the solution for any continuous pdf F (x).
However, according to many researches the real distribution of Amazon spot prices is composite. For
example, following Javadi et al. 2013 [9], spot prices has a mixture of Gaussian distributions with
three or four components. However, it is known that any continuous distribution can be reduced
to uniform one on [0, 1] by appropriate scaling (see, for example, Law and Kelton. 1999 [15]). For
standard uniform distribution, formula (4.1) is transformed to the simpler one:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τn = 1

τi = E[min {τi+1, x}] =
τi+1∫

0

xdx+

1∫

τi+1

τi+1dx, i = 1, . . . , n− 1.
(5.1)

Based on formula (5.1), Table 2 and Fig. 4 show the optimal bid values for the case of 10 steps
period. We perform the numerical simulation to compare proposed strategy (Strategy 1) with three
others:

• Strategy 2: constant strategy—a customer defines a constant value and bids it at every step.
If he loses all n bids, he buys a spot for on-demand price.

• Strategy 3: random strategy—a customer simulates a random variable uniformly distributed
on [0, 1] at each step and uses it as a threshold. If he loses all n bids, he buys a spot for
on-demand price.

• Strategy 4: linear strategy—a customer uses thresholds defined by formula

τ = kn+ b,

where n is a step number and coefficients k and b depend on the overall steps number.

We enumerate all the possible events to discover the best constant threshold. Given a specific
threshold x the expected spot price is defined by following formula:

P (x) =

x∫

0

ydy +

1∫

x

dy

x∫

0

ydy + . . .+

1∫

x

dy . . .

1∫

x︸ ︷︷ ︸
n−1

dy

x∫

0

ydy +

1∫

x

dy . . .

1∫

x

dy

︸ ︷︷ ︸
n

= (1− x)n +
x2

2

n−1∑

i=0

(1− x)i.

(5.2)
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Fig. 4. The optimal bid values for the case of 10 steps period and standard uniform distribution.

Table 2. Optimal bid values, n = 10

step 1 2 3 4 5 6 7 8 9 10

price 0.150 0.164 0.180 0.20 0.225 0.258 0.305 0.375 0.5 1.0

Here, first additive component corresponds to an event of appearing spot price lower than x at
first step; second component—at second step; and so on. Finally, the last component corresponds
to an event of missing low spot price.

Obviously, the greater x the more chance to rent a spot, but the expected price of the rented
spot is higher. The lower x, the lower price of the rented spot, but at the same time the less chance
to hire it. So, the best constant threshold for the case of uniform on [0, 1] prices distribution is
defined by the following formula:

x∗ = argmin

(

(1− x)n +
x2

2

n−1∑

i=0

(1− x)i
)

. (5.3)

For the case of n = 10, formulae (3) and (4) give threshold value x∗ = 0.275 and mean price
P (x∗) = 0.17.

The best coefficients k and b of the linear strategy are derived from the numerical simulation;
they are k = 0.04 and b = 0.09 for the case of n = 10 steps, and k = 0.001 and b = 0.01 for the case
of n = 100.

The thresholds for all four strategies are given in Table 3, and shown in Fig. 5. Note that
Strategy 3 gives only an example of the threshold values. As Strategy 3 uses random threshold,
Table 3 and Fig. 5 show pseudo random numbers generated with uniform distribution on [0, 1]
interval. The same is also true for the case of n = 100.

The simulation results are given in Table 4.

Spot prices are generated as pseudo random values uniform on [0, 1]. At the second step, the
spot price is lower than threshold of Strategy 2. So, using Strategy 2 at step 2 one could be
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Fig. 5. Bid values generated by strategies for 10 steps period.

able to get an instance at price 0.253. Using Strategy 3, one could be able to get an instance at
step 4, when pseudorandomly generated threshold become higher than spot price (so, acceptance
step is 4 and spot price is 0.302). Spot price appeared lower than the linear strategy’s threshold at
step 5 (acceptance step is 5 and spot price is 0.283). Finally, the last winning bid corresponds to

Table 3. Bid values generated by strategies for 10 steps period

Threshold/
1 2 3 4 5 6 7 8 9 10strategy

Strategy 1 0.15 0.164 0.18 0.2 0.225 0.258 0.305 0.375 0.5 1.0
Strategy 2 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275
Strategy 3 0.214 0.159 0.207 0.589 0.346 0.626 0.412 0.777 0.078 0.577
Strategy 4 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49

Table 4. Simulation results (n = 10)

Step 1 2 3 4 5 6 7 8 9 10 Acceptance Spot
Strategy step price

Strategy 1 0.150 0.164 0.18 0.2 0.225 0.258 6 0.161
Strategy 2 0.275 0.275 2 0.253
Strategy 3 0.214 0.159 0.207 0.589 4 0.302
Strategy 4 0.13 0.17 0.21 0.25 0.29 5 0.283

spot price 0.359 0.253 0.721 0.302 0.283 0.161

Table 5. Strategies comparison (n = 10)

Mean acceptance step Mean spot price

Strategy 1 4.604 0.139
Strategy 2 3.546 0.185
Strategy 3 1.999 0.334
Strategy 4 4.365 0.148
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Fig. 6. Bid values generated by strategies for 100 steps period.

Table 6. Strategies comparison (n = 100)

Mean acceptance step Mean spot price

Strategy 1 35.294 0.019
Strategy 2 19.182 0.031
Strategy 3 2.0 0.333
Strategy 4 31.127 0.022

Strategy 1. The threshold value which exceeded spot price is 0.258. So, acceptance step is 6 and
spot price is 0.161.

Note, that Table 4 presents only an example of stochastic process realization. To estimate the
expected values, we performed numerical simulation 106 times experiments. Mean acceptance step
and mean spot price are given in Table 5.

As one can see, Strategy 1 defined by recurrent formula (2) provides better results than three
other strategies from the point of view of mean spot price.

The same experiments are performed for a period of 100 steps. The strategies are visualized in
Fig. 6. Table 6 gives the mean acceptance steps and mean spot prices comparison.

Strategy 3 does not depend on step number and, in the most cases, gives much higher thresh-
olds, than three other strategies. It is obvious that following this strategy one gets much higher
spot prices and rents an instance much earlier comparing to the results of three other strategies.
Following the problem statements, a client has a specific period to rent an instance. So, if the given
period is long enough, it is more wisely to hold a low threshold relying on low spot price.

As one can see, our recurrent thresholds minimize the expected spot price. Also, the longer
period promises the more profit in spot price.

6. AMAZON SPOT INSTANCES BIDDING MODELLING

In this section, we discuss a method to derive the optimal strategy using the real Amazon spot
prices data [24]. We build a prices distribution function and derive the optimal thresholds using
formula (4.1).
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Fig. 7. Histogram and distribution function of spot prices.

First, using statistics of spot prices construct a prices distribution function. For example, we
use statistics of Linux p3.8xlarge instance in a period of February 1–22, 2019. Having the data
we construct a histogram of prices. Analyzing the data one can construct the prices distribution
function (using the appropriate statistical methods [21]), see Fig. 7. We used the following truncated
Gaussian distribution:

fb1,b2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

C√
2πσ

e
−(x−a)2

2σ2 , x ∈ [b1, b2]

0, x /∈ [b1, b2],

(6.1)

here

C =
1

b2∫

b1

1√
2πσ

e
−(x−a)2

2σ2 dx

,

b1 = pmin = 3.672, b2 = pmax = 4.307 and a = 4.002, σ = 0.141.

Using formula (4.1) we derive the optimal thresholds τi, i = 1, . . . , n (see Table 7).

We perform the numerical simulation to compare proposed strategy (Strategy 1) with three
others described in Section 5 (their parameters are adopted to the distribution (6.1), see Table 8).

As one can see, Strategy 1 (the optimal one) gives the lowest prices of an instance. The same
procedure can be used for any other time period where the prices have a probabilistic continuous
distribution.

7. CONCLUSION AND DISCUSSION

We consider a spot bidding problem for cost minimization of an instance renting from a client
point of view. We suppose that the client does not have to rent an instance immediately, and
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Table 7. Bid values generated by optimal strategy τi for 10 steps period

i 1 2 3 4 5 6 7 8 9 10

τi 3.838 3.846 3.855 3.866 3.879 3.895 3.916 3.947 4.0 4.307

Table 8. Results of the numerical simulations, n = 10

Step 1 2 3 4 5 6 7 8 9 10
Mean Mean
step price

Strategy 1 3.838 3.846 3.855 3.866 3.879 3.895 3.916 3.947 4.000 4.307 8.364 3.990
Strategy 2 3.916 3.916 3.916 3.916 3.916 3.916 3.916 3.916 3.916 3.916 7.364 4.094
Strategy 3 3.862 3.936 3.890 3.913 3.873 3.895 4.051 3.950 3.973 4.013 7.273 4.073
Strategy 4 3.819 3.843 3.866 3.890 3.914 3.938 3.962 3.985 4.010 4.033 7.727 4.018

has a specific period to make a decision. We demonstrate similarities between cloud SIs auctions
and well-known full-information best-choice problem. Based on this analysis, we propose a novel
threshold-based bidding strategy, which minimizes the expected cost of an instance renting.

We perform a joint analysis of the proposed strategy with three heuristic strategies. Corre-
sponding results indicate that our algorithm provide the best cost and waiting time trade-offs. We
also propose a method to derive the optimal strategy using the real Amazon spot prices data.

However, further study is required to assess its actual efficiency and effectiveness on other spot
price distributions. This will be subject of future work requiring a better understanding of the
impact of a probability distribution on effectiveness of bidding strategies. The distribution is
complex, its parameters are changing over the time. Its form is dependent on instance type, region,
seasonality and so on. Our model can be integrated with dynamic analysis of the current spot
prices probability distribution.

Other direction of research is to take into account possible interruption of the instance. When
we renting an instance, there is no guarantee that the instance will not be interrupted, and the
client will complete his task. This can be achieved by a special set of thresholds. These thresholds
should be increasing in time to guarantee instance renting in a specific period of time. From the
other side, the thresholds should be low enough to provide low expected instance renting cost. But
low thresholds result to high probability of the instance interruption. If it is important to take into
an account the probability of the instance interruption in mathematical model.
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