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Abstract—We consider continuous and impulse control of a Markov chain (MC) with a finite set
of states in continuous time. Continuous control determines the intensity of transitions between
MC states, while transition times and their directions are random. Nevertheless, sometimes it
is necessary to ensure a transition that leads to an instantaneous change in the state of the MC.
Since such transitions require different influences and can produce different effects on the state of
the MC, such controls can be interpreted as impulse controls. In this work, we use the martingale
representation of a controllable MC and give an optimality condition, which, using the principle
of dynamic programming, is reduced to a form of quasi-variational inequality. The solution to
this inequality can be obtained in the form of a dynamic programming equation, which for an
MC with a finite set of states reduces to a system of ordinary differential equations with one
switching line. We prove a sufficient optimality condition and give examples of problems with
deterministic and random impulse action.
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1. INTRODUCTION

Impulse control as an effect producing instantaneous (in fact, very fast) changes in the state
of a dynamical system has been studied in detail since the 1970s. In a series of pioneering works,
A. Bensoussan and J.-L. Lions developed the theory of stochastic impulse control, where they gen-
eralized the principle of dynamic programming and formulated optimality conditions in the form
of a so-called quasi-variational inequality [1]. Their ideas led to the emergence of a new class of
discrete-continuous stochastic systems that operate continuously (deterministically or stochasti-
cally) between jumps that occur at the moments of application of impulse actions. In stochastic
analysis, these ideas were picked up by many researchers who developed the theory of piecewise-
deterministic Markov models (PDMM), whose behavior between random possibly controlled mo-
ments of jumps is subject to continuous dynamics (see, e.g., [2–4]). Further studies in the field of
impulse control led to the emergence of a new class of controlled dynamical systems described by
differential equations with measure, which describe in a universal way both impulse and continuous
actions. For this class of systems, conditions for the existence of optimal generalized solutions
and generalized control measures and simultaneously continuous controls [5, 6] were obtained and
optimality conditions were obtained in the form of a generalized maximum principle [7, 8]. Recent
years have seen greatly increased interest in the control of Markov chains (MC) and, in particular,
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in PDMM since these models are better suited for solving optimization problems and are much
easier for modeling [9–11]. Moreover, a whole new direction has arisen, namely Markov Decision
Processes (MDP), which is very popular in many applied areas, among them being, for instance,
the following: control of reservoir systems [12, 13], where impulse effects are manifested in the form
of a controlled discharge of water, for example, to avoid overflows; control over the extraction and
use of natural resources [14, 15]; control over the Internet to avoid overloads [16, 17]; continuous
control of the distribution of water resources by monitoring the prices of water consumed in var-
ious sectors of the economy [18, 19]; distribution of gas flows in the gas supply system when it
becomes necessary to smooth out seasonal fluctuations in consumption [20]. In all of these areas,
impulse actions, as well as continuous ones, arise quite naturally as controls that lead to rapid
controlled changes in state; in the control of data transfer this is the release of memory in the
event of an overflow risk [21]; in the control of reservoir systems, a controlled discharge of excess
water [19, 22].

Another reason for the growing interest in MDP is the relative simplicity and flexibility of
modeling continuous and discrete stochastic dynamical systems using MCs with a finite set of
states [23]. Since approximation accuracy directly depends on the number of states, the ever-
increasing capabilities of available computers allow us to achieve the necessary accuracy in solving
optimal control problems without too much complications. In addition, optimal control theory for
MCs both in discrete and continuous time is sufficiently developed both for ordinary problems [24]
and for problems with state constraints [25–27], so the corresponding numerical procedures are
easy to implement. We also note here specifically that for stochastic systems with a continuous
set of states, impulse control optimization leads to a special type of optimality condition, namely
the quasi-variational inequality [1], which plays the role of a dynamic programming equation.
This inequality, even if the existence of its solution is established, is very difficult to solve even
numerically since it requires smooth conjugation of solutions for two partial differential equations
on an unknown surface. Moreover, the optimal control is a random measure localized on this
surface, whose distribution function is singular with respect to the Lebesgue measure, therefore
it is possible to determine the characteristics of such a control only with modeling. However, in
case of MCs with a finite set of states this problem does not arise. In this case, impulse control is
a collection of time pairs and intensity of impulse actions application separated in time, and the
problem of solving the corresponding quasi-variational inequality is reduced to solving a system of
ordinary differential equations with one switching surface.

This paper is organized as follows. In Section 2, we describe the MC model with continuous
and impulse controls; in Section 3 we derive optimality conditions in the form of a quasivariational
inequality and provide its solving method. Section 3 gives a proof of the optimality condition suffi-
ciency. Section 4 discusses a numerical example, and Section 5 provides conclusions and directions
for further research.

2. MODEL DESCRIPTION AND PROBLEM SETTING

We use the martingale representation of a controlled MC, following the description given in [16,
24, Cpt. 12] for continuous control, supplemented by terms describing impulse effects. All processes
are considered on the probability space {Ω,F , P}.

Definition. The process {Xt, t ∈ [0, T ]} is a controlled Markov process with piecewise constant
right-continuous trajectories. The state space of this process is a finite set of unit vectors S of the
form ei = (0, 0, . . . , 0, 1, 0, . . . , 0)T ∈ R

n, i.e., ei consists of zero elements except for the ith, which
is equal to one; the symbol “T” here and below denotes the transposition of vectors and matrices.
Thus, Xt ∈ S.
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2.1. Continuous MC Control

Assumption 1. The matrix function A(t, u) with elements aij(t, u) is a family of MC genera-
tors depending on time t ∈ [0, T ], such that the state probability vector pt = (p1t , . . . , p

n
t )

T, where
pit = P (Xt = ei), satisfies the direct Kolmogorov equations

dpt
dt

= A(t, u)pt. (2.1)

Here the control is u ∈ U, where U is some compact subset of a complete metric space and A(t, u)
is continuous on [0, T ] × U .

We introduce a right-continuous family of complete σ-algebras generated by the process Xt:

FX
t = σ{Xs : s ∈ [0, t]}.

Assumption 2. The set U of admissible controls {u(·)} is the set of FX
t -predictable processes

with values in U. This means that if Nt is the number of state changes for process X, a Xt
0 is a

sequence of states starting from time point t = 0 until the current time t ∈ [0, T ], i.e.,

Xt
0 = {(X0, 0), (Xτ1 , τ1), . . . , (XτNt

, τNt)}
is a collection of states and times of jumps, then for τNt < t � τNt+1 the control ut = u(t,Xt

0) is a
function of Xt

0 and current time t [24, 28].

For every control u(·) ∈ U the process {Xt} satisfies the stochastic differential equation

Xt = X0 +

t∫

0

A(s, us)Xs ds+Wt, (2.2)

where X0 is the initial condition, and Wt := {W 1
t , . . . ,W

n
t } is a square integrable (FX

t , P ) martin-
gale with quadratic characteristic [24, 28, 29]:

〈
W
〉
t
=

t∫

0

diag (A(s, us)Xs) ds+

t∫

0

[
A(s, us)(diag Xs) + (diag Xs)A

T(s, us)
]
ds, (2.3)

where diag(X) denotes a diagonal matrix with elements X1, . . . ,Xn.

Remark 1. In other words, the process X(t) is a solution to the martingale problem (2.2), (2.3)
for a controlled Markov chain [24].

2.2. Impulse Control of MC

Impulse control is a set I = {(Vi, τi), i = 1, 2, . . . , N}, where τi < τi+1 � T , Vi ∈ V(X) and the
number of impulses is at most countable. The use of impulse control at time τi leads to an
instantaneous random change of state X, so that

ΔXτi = ψ(τi, Vi,Xτi−) = Ā(τi, Vi)Xτi− +ΔWτi , (2.4)

where

E
[
ΔWτi |FX

τi−
]
= E[ΔWτi |Xτi−] = 0,

〈
ΔWτi

〉
= diag(Ā(τi, Vi)Xτi−)− Ā(τi, Vi) diag(Xτi−)Ā

T(τi, Vi).
(2.5)

Here and below, E[·] denotes mathematical expectation.
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Assumption 3. In (2.4) ψ(τi, Vi,Xτi−) is a random operator such that for any Xτi−∈S, Vi ∈
V(Xτi−) and τi ∈ [0, T ]

Xτi = ΔXτi− +Xτi− ∈ S. (2.6)

The set V(X) is compact, the function Ā(t, V ) is continuous in t and Ā(t, 0) = 0, and therefore
ψ(τ, 0,X) = 0 for any τ ∈ [0, T ] and X ∈ S.

2.3. Joint Continuous and Impulse Control for an MC

Combining the Eqs. (2.2) and (2.4), we obtain an equation for the joint continuous and impulse
control

Xt = X0 +

t∫

0

A(s, u(s))Xsds+
∑
τi�t

Ā(τi, Vi)Xτi− +W
′
t , (2.7)

where W
′
t is a square integrable martingale with quadratic characteristic

〈Wt〉 =
∑
τi�t

〈ΔWτi〉 −
t∫

0

(diagXs−)AT(s, u(s))ds

−
t∫

0

A(s, u(s))(diagXs−)ds+ diag

t∫

0

A(s, u(s))Xs−ds.

(2.8)

The control objective is to minimize the performance criterion (2.9)

J0[u(·),I] = E

⎧⎨
⎩〈φ0,XT 〉+

T∫

0

〈g0(s, u(s)),Xs〉ds+
∑
τi�T

〈ψ0(τi, Vi),Xτi−〉
⎫⎬
⎭

= E

⎧⎨
⎩

N∑
k=1

φk0I{XT = ek}+
T∫

0

gk0 (s, u(s))I{Xs = ek}ds+
∑
τi�T

N∑
k=1

ψk
0 (τi, Vi)I{Xτi− = ek}

⎫⎬
⎭

(2.9)

over the set of FX
t -predictable controls u(t) ∈ U and impulse controls I. In (2.9), I{·} denotes the

indicator function, i.e., I{A} = 1 if event A occurs and I{A} = 0 otherwise.

Assumption 4. The vector function g0 is continuous in t and u. The vector function ψ0(t, V ) is
continuous in t and V and satisfies the inequality ψl

0(t, V ) � C > 0 for all l and admissible V �= 0.
The sets U and V are compact.

Remark 2. Components of the vector φ0 determine the cost of the terminal state XT , the vector
function g0 is the integral cost of intermediate states, and ψ0 is the cost of impulse controls.

Remark 3. In this work, we assume the simplest formulation of the control problem; it can be
extended to:

(1) systems with random response to impulse effects;

(2) problems with other types of criteria, such as discounting or averaging over an infinite time
interval [21];

(3) problems with state constraints similar to [25–27];

(4) problems with incomplete information [24, 30].
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3. DYNAMIC PROGRAMMING EQUATION IN THE FORM
OF A QUASIVARIATIONAL INEQUALITY

3.1. Optimality Condition for Joint Continuous and Impulse Control

The cost function in the problem (2.7)–(2.9) has the form

φ(t,X) = inf
u(·),I

E

⎧⎨
⎩
〈
φ0,XT

〉
+

T∫

t

〈
g0(s, u(s)),Xs

〉
ds

+
∑

t<τi�T

〈
ψ0(τi, Vi),Xτi−

〉∣∣∣∣∣Xt− = X

⎫⎬
⎭ =

〈
φ(t),X

〉
,

where the function φ(t) ∈ R
N is the solution of the quasi-variational inequality⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Q1(t, φ(t),X) =

〈
dφ(t)

dt
,X

〉
+min

u∈U

〈
AT(t, u)φ(t) + g0(t, u),X

〉
� 0

Q2(t, φ(t),X) =

〈
φ(t),X

〉
− min

V ∈V(X)

〈 [
E + ĀT(t, V )

]
φ(t) + ψ0(t, V ),X

〉
� 0

min {Q1(t, φ(t),X), Q2(t, φ(t),X)} = 0

(3.1)

with boundary condition φ(T ) = φ0. Here and below, E means the identity matrix of the corre-
sponding dimension, and E[·] still denotes the expectation operator.

Remark 4. Note that relations (3.1) must be satisfied for all values ofX ∈ S, i.e., (3.1) is a system
of inequalities that define the value of the cost function for all possible initial conditions t,X.

3.2. Method for Solving the Quasi-Variational Inequality

The quasi-variational inequality (3.1) for a system with a finite set of states allows for a fairly
simple method of solution, in contrast to the general case of a system with a continuous part
described by the diffusion stochastic equation [1]. The solution, as in the case of a simple dynamic
programming equation, is found in inverse time [25–27] with the boundary condition φ(T ) = φ0 for
all components of the vector φ0 satisfying conditions (3.1). Function φ(t) is determined from the
first equation of system (3.1), solving it from the terminal point φ(T ) = φ0 to the switching line

0 = 〈φ(t),X〉 − min
V ∈V(X)

{〈φ(t), [E + Ā(t, V )]X〉+ 〈ψ0(t, V ),X〉} or

G(t,X) = min
V ∈V(X)

〈ĀT(t, V )φ(t) + ψ0(t, V ),X〉 = 0.
(3.2)

In impulse control problems, the existence and uniqueness of the solution of the quasi-variational
inequality (3.1) play a fundamental role [1]. In the case of control for MCs with a finite set of states,
the system of inequalities (3.1) decomposes into a finite number of differential-difference equations
corresponding to the number of states. For each value l = 1, . . . , N we define the switching function
Gl(φ, t) : RN × [0, T ] → R

1 as follows:

Gl(φ, t) = min
V ∈V(el)

{
N∑
k=1

φkĀl,k(t, V ) + ψl
0(t, V )

}
. (3.3)

Due to the continuity of Ā and ψ0 with respect to t, the switching function is continuous with
respect to the pair (φ, t) and defines for every l a switching line

Swl =
{
(φ, t, l) : Gl(φ, t) = 0

}
. (3.4)
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Thus, if

φ(t) = {φ1(t), . . . , φN (t)}T,
then the elements φl(t), l = 1, . . . , N, satisfy the system of equations

dφl(t)

dt
+min

u∈U

{
N∑
k=1

φk(t)Al,k(t, u) + gl0(t, u)

}
= 0, if Gl(φ(t), t) > 0. (3.5)

When solving the first equation of system (3.5) in inverse time with boundary conditions φ(T ) = φ0
for each l = 1, . . . , N , the switching line is reached at time {tl : Gl(φ(tl), tl) = 0}. Due to the con-
dition (3.2), function φ remains continuous when crossing the switching line, but the following
condition on φ allows to determine the value of the impulse control:

0 = min
V ∈V(X )

{〈
ĀT(t, V )φ(t),X

〉
+

〈
ψ0(t, V ),X

〉}
. (3.6)

The minimizing impulse action in the relation

V = argmin
V ∈V(X )

{〈
ĀT(t, V )φ(t),X

〉
+

〈
ψ0(t, V ),X

〉}
(3.7)

exists, and then the solution of system (3.5) continues in reverse time until the next intersection with
a switching line. Thus, at the point Ti we use the impulse control Vi defined by relations (3.6), (3.7),
and the functions φ(t) remain continuous. The above procedure determines the solutions of the
quasi-variational inequality (3.1).

3.3. A Sufficient Optimality Condition for Joint Impulse and Continuous Control

Proposition 1. Suppose that :

a) functions φ(t) ∈ R
n are determined using the procedure described in Section 3.2 and satisfy the

equation
〈
dφ(t)

dt
,X

〉
+ min

u∈U(X)

〈
AT(t, u)φ(t) + g0(t, u),X

〉
= 0 (3.8)

on each of the subintervals [Ti, Ti+1) with terminal condition φ(T ) = φ0;
b) controls u∗(t) on [Ti, Ti+1) are chosen to be Markov, u∗(t) = u∗(t,Xt), and they minimize the

right-hand part of the relation (3.8);
c) moments of applying the impulse actions T ∗

i = t∗(X) are chosen according to the relation

min
V ∈V(X)

〈
[ĀT(t∗(X), V )]φ(t∗(X)) + ψ0(t

∗(X), V ),X

〉
= 0, (3.9)

and impulse action V ∗
i are chosen according to relation (3.7).

Then the joint continuous and impulse control {u∗(·), T ∗
i , V

∗
i } is optimal.

Proof. Consider an arbitrary continuous and impulse control {u(·),I} and the corresponding
trajectory that satisfies the initial condition Xu,I

t = X, and calculate the value

ΔJT
t =

〈
φ(T ),Xu,I

T

〉
−
〈
φ(t),X

〉
+

T∫

t

〈
g0(s, u(s)),X

u,I
s

〉
ds

+
∑

t�Ti�T

〈
ψ0(Ti, Vi),X

u,I
Ti

〉
=
〈
φ(T ),Xu,I

T

〉
−
〈
φ(t),X

〉
+ I1 + I2,

(3.10)
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where φ(t) is the solution of the quasi-variational inequality (3.1), and Xu,I
t is the solution of

Eq. (2.7) with initial condition Xt = X. Then, using the Ito formula for Xu,I
t , we get the relation

ΔJT
t =

T∫

t

〈
dφ(s)

ds
,Xu,I

s

〉
ds+ I1 + I2 +

T∫

t

〈
φ(s), dXu,I

s

〉
.

However,

T∫

t

〈
φ(s), dXu,I

s

〉
=

T∫

t

〈
φ(s), A(s, u(s))Xu,I

s

〉
ds+

∑
t�Ti�T

〈
φ(Ti), Ā(Ti, Vi)XTi−

〉
+

T∫

t

φ(s)dW
′
(s).

Further, for an arbitrary control u,I according to the relations (3.8), (3.9) we get that

〈
dφ(t)

dt
,Xu,I

〉
+

〈
AT(t, u)φ(t) + g0(t, u),X

u,I
〉
� 0, (3.11)

〈
φ(Ti), Ā(Ti, Vi)XTi− + ψ0(Ti, Vi),XTi−

〉
� 0. (3.12)

Since the integral over the martingale has zero expectation, combining (3.11) and (3.12) and sub-
stituting into (3.10), we obtain for an arbitrary control the inequality

E

⎧⎨
⎩
〈
φ(T ),Xu,I

T

〉
+

T∫

t

〈
g0(s), u(s)),X

u,I
s

〉
ds+

∑
t�Ti�T

〈
ψ0(Ti, Vi),X

u,I
Ti

〉⎫⎬
⎭ �

〈
φ(t),X

〉
. (3.13)

But if we use a control satisfying the optimality conditions, equality is achieved in the inequal-
ity (3.13). This completes the proof of the proposition.

3.4. Problems with Constraints

Problems with constraints undoubtedly deserve a separate publication; here we show only a
sketch of a possible approach. Suppose that a set of criteria (3.14) is given, and a feasible solution
must satisfy the constraints

Jk[u(·),I] � 0 for all k = 1, . . . ,M,

where

Jk[u(·),I] = E

⎧⎨
⎩
〈
φk,XT

〉
+

T∫

0

〈
gk(s.u(s)),Xs

〉
ds+

∑
τi�T

〈
ψk((τi, Vi),Xτi−

〉⎫⎬
⎭ . (3.14)

Assuming that the set of admissible trajectories is nonempty, and assuming that the set of controls is
extended to the set of control measures, we can use the Lagrangian minimization procedure, which
is applicable if the set of admissible values of the criteria {Jk} ∈ R

M is convex. This property, as
shown in [25–27], holds for control problems with continuous controls; however, for the problem
of joint continuous and impulse control it can also be established for an extended class of control
measures. A rather lengthy proof mainly repeats the arguments given in [25, 26], and will be the
subject of a separate publication.
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4. EXAMPLES WITH IMPULSE CONTROLS

4.1. Deterministic Continuous Control

In this work we consider the model of a service system with an extension that allows impulse
control, with N = 4 states:

• 1—“load is below normal,”

• 2—“normal,”

• 3—“critically high, immediate buffer cleaning required,”

• 4—“overflow, leading to a service outage or requiring immediate cleaning of the claim queue
and reducing the load to normal.”

Admissible transitions corresponding to continuous dynamics:

• 1 → 2, 2 → 3, 3 → 4, which occur with intensity λ(t) of the input stream of claims;

• 2 → 1, 3 → 2, 4 → 3, which occur with the intensity μ(t) ∈ [0, U(Xt)] of service claims;

• transitions corresponding to impulse control are admissible in states 3, 4 and transfer the
system from state 3 → 2 and 4 → 2;

• random transitions are possible, for example, when using impulse control from state 4 → 2 or
4 → 3 with probabilities p1 and 1− p1 respectively.

State 4 is critical, and the time spent in it should be minimized. The control objective is to
“maintain” the system in state 2, while keeping the time spent in states 3, 4 at an acceptable level.
The state vector X ∈ R

4 and the matrix of transition intensities A(t, μ), which depends on the
“continuous” control μ, has the form (for simplicity we omit the dependencies on time t)

A(t, μ) =

⎛
⎜⎜⎜⎝

−λ μ2 0 0
λ −(λ+ μ2) μ3 0
0 λ −(λ+ μ3) μ4
0 0 λ −μ4

⎞
⎟⎟⎟⎠ .

Variables μ2, μ3, μ4 correspond to the intensity of claim processing in states 2–4 respectively.

The model proposed in this work is similar both to the problems of managing the water level in
a reservoir [19, 31, 32] and problems of managing data flows in the Internet [16, 17]. This analogy
is not so artificial, since in both cases the increase in the level (of water or load) occurs randomly
due to rains or the input flow of claims, and decrease in the level occurs due to evaporation and/or
consumption by various consumers: industry, agriculture or settlements, if we are talking about
water, or by completing tasks if we are talking about a service system. In the former case, impulse
control corresponds to a controlled discharge to avoid the overflow of the reservoir; in the latter
case, to flushing the task buffer in order to avoid the congestion. In addition to impulse control,
“continuous” control is also used, which reduces the level in the former case due to the supply of
consumers and in the latter, by reducing the number of claims awaiting processing. Both models
have certain features, for example, service intensity may depend on the length of the queue, but
in the case of reservoirs the intensity of the reduction due to evaporation may depend on seasonal
changes and the current level.

4.2. Deterministic Impulse Control

We assume that impulse control can be used in states 3 and 4 with transitions 3 → 2 and 4 → 2.
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The transition matrix corresponding to the application of control V3, in state 3 at some time
moment τi is equal to

E + Ā(τi, V3) =

⎛
⎜⎜⎜⎝
1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎠ ,

and the matrix corresponding to the application of control V4, in state 4 at some time moment τi
is respectively

E + Ā(τi, V4) =

⎛
⎜⎜⎜⎝
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 0

⎞
⎟⎟⎟⎠ .

If the impulse control cost is chosen as

ψ0(t, V ) = (0, 0, 1, 1)T , (4.1)

then the condition for applying impulse control at the point Ti as a function of φ(Ti) according
to (3.2) is given by

0 � 〈φ(Ti), Ā(Ti, Vi)X〉 + 〈ψ0(Ti, Vi),X〉,
which yields relations for the values φ2, φ3, φ4

φ3(Ti) � φ2(Ti) + 1, if X = e3,

φ4(Ti) � φ2(Ti) + 1, if X = e4.
(4.2)

The current cost characterizing a deviation from the “normal” state 2 and service cost is

g0(t, μ) =

⎛
⎜⎜⎜⎜⎝

1
0 + μ22

1 + μ23

2 + μ24

⎞
⎟⎟⎟⎟⎠ . (4.3)

Here μi ∈ [0, U(ei)] for i = 2, 3, 4, which corresponds to constraints on the controls, i.e., service
intensities in the corresponding states.

Thus, the continuous part of the system of Eqs. (3.1) has the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dφ1
dt

= −λφ1 + μ2φ2 + 1

dφ2
dt

= min
μ2∈[0,U(e2)]

[λφ1 − (λ+ μ2)φ2 + μ3φ3 + μ22]

dφ3
dt

= min
μ3∈[0,U(e3)]

[λφ2 − (λ+ μ3)φ3 + μ4φ4 + μ23 + 1]

dφ4
dt

= min
μ4∈[0,U(e4)]

[λφ3 − μ4φ4 + 2 + μ24].

(4.4)

System (4.4) is solved from the terminal point T with the boundary condition (4.1) and, even if
the condition for applying the impulse control is satisfied, its solution remains continuous. Further,
when implementing the solution, if the system is in state 3 or 4 and condition (4.2) holds, then
impulse control is applied and the system goes into state 2. Since in state 2 impulse control is
inadmissible, continuous control is applied until the system goes into state 3 or 4 and the condition
for applying impulse control is met. State 1 is not unreachable. The system can appear in it both
because of the initial conditions and due to the “natural” dynamics.
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4.3. Stochastic Impulse Control

In this case, after applying impulse control, transitions from state 4 to states 2 and 3 are possible
with probabilities p1 and 1 − p1 respectively. We assume that the rest of the parameters do not
change. Then the matrix corresponding to the application of impulse control has the form

E + Ā(τi, Vi) =

⎛
⎜⎜⎜⎝
1 0 0 0
0 1 0 p1
0 0 1 1− p1
0 0 0 0

⎞
⎟⎟⎟⎠ .

The condition for the possibility of using impulse action is

φ4(Ti) � p1φ2(Ti) + (1− p1)φ3(Ti) + 1.

Remark 5. We note the remarkable fact that the function φ(t) remains continuous at the points
where impulse control is applied. This, however, is not all that surprising since, as shown in [25–27],
components of this function coincide with the conjugate variables in the maximum principle, and
therefore they are independent of the control, as in the case of the usual impulse control prob-
lem [6–8].

A similar example was considered in [33].

4.4. Implementation of Joint Continuous and Impulse Control

We have to emphasize the difference between systems with continuous and discrete sets of states.
In the first case, impulse control is usually applied at the initial moment of time if the system is
located above the switching surface. If then, as a result of random evolution, the system again
comes to the discontinuity surface, then the impulse control acts to keep the system below the
switching surface, implementing the so-called singular repulsion control [34]. In this case, the
impulses are not separated and a singular control of the Cantor ladder type arises. Controls of this
type are characteristic of impulse control problems for stochastic diffusion type processes. In the
case of Markov chain control, if the condition

V(Xτi) = ∅
holds, then after a jump instantaneous application of impulse control is impossible, and the next
impulse control is possible only when the system again falls into a state where

V(Xt−) �= ∅.
However, if as a result of impulse control having a random or deterministic character, the system
either remains on the switching surface or falls into a state where impulse control is again possible,
then the impulses can be repeated until the system enters a state where impulse action is impossible.
Thus, the effect of a “multiple” impulse (burst of impulses) arises [21]. In the considered example,
upon transition from state 4 to 3, this effect is possible if in state 3 the impulse action is again
admissible. In this case, the transition from state 4 to 2 occurs in two jumps 4 → 3 → 2, but the
cost of such an impulse effect is equal to the total cost of two transitions, i.e., 1 + 1 = 2.

4.5. Examples of Finding “Continuous” and Impulse Controls

As an illustrative example, consider the deterministic impulse control system described in Sec-
tion 2.3 with the following parameters:

• T = 1;
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Fig. 1. Solution of the system (4.6) in reverse time with terminal conditions (4.5). 1—φ1(t),
2— φ2(t), 3—φ3(t),4—φ4(t).

• terminal conditions corresponding to the “penalty” for staying in states 1–4 at a finite time
moment are equal to

φ0 = φ(T ) = (2.0; 1.5; 3.5; 5.0)T ; (4.5)

• constraints on the control or service rate μmax
2 =U(e2)=0.2, μmax

3 = U(e3) = 0.4 are imposed
only for states 2 and 3, and state 4 corresponds to stopping the service, therefore state 4 is
assumed to be absorbing.

Thus, the continuous part of the system of Eqs. (3.1) in this case has the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dφ1
dt

= −λφ1 + μ2φ2 + 1

dφ2
dt

= min
μ2∈[0,μmax

2 ]
[λφ1 − (λ+ μ2)φ2 + μ3φ3 + μ22]

dφ3
dt

= min
μ3∈[0,μmax

3 ]
[λφ2 − (λ+ μ3)φ3 + μ4φ4 + μ23 + 1]

dφ4
dt

= λφ3 + 2.

(4.6)

Solution of system (4.6) in inverse time for the intensity of the input stream of claims defined
by the relation

λ(t) = 0.25 cos(2πt) + 0.5, (4.7)

is shown in Fig. 1.

The switching line (3.2) for an admissible impulse control is calculated as SW (t) = φ3(t)−
φ2(t)− 1 = 0 and is shown in Fig. 2. Thus, if the system is in state 3 and condition SW (t) � 0 is
fulfilled, then impulse control should be used, which will transfer the system to state 2. Thus, the
domain of impulse control is simultaneously state 3 and time interval ≈ [0.8; 1.0].
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Fig. 2. Switching line for impulse control in state 3. The area where SW (t) � 0 is the domain of impulse control.

Note that the use of impulse control allows to reduce the value of the quality criterion, although
this depends on the probability of getting into state 3 on the interval [0.8; 1.0]. If this happens, for
example, at time point t = 0.8, then the value of the quality criterion for state 3 at the end time of
the process t = 1.0 is φ2(1.0) + 1 ≈ 2.5, which is less than without applying impulse control, i.e.,
φ3(1.0) ≈ 3.5. However, in order to calculate the value of the performance criterion when using
both continuous and impulse controls it is necessary to calculate the value of the problem cost
taking into account the random nature of the impulse control application, which should be the
subject of another publication. Another important issue requiring separate consideration is the
calculation of the state distribution function under impulse control; this leads to the need to solve
direct Kolmogorov equations, which in this case are no longer ordinary differential equations but
rather discrete-continuous equations with random switching times.

5. CONCLUSION

In this work, we have developed an approach to the numerical solution of the stochastic control
problem for MCs with “continuous” and impulse controls. An important feature of the MC model
is a simpler procedure for determining optimality conditions than for stochastic systems with a
continuous set of states. Further research will be aimed at solving the applied problems of natural
resource management using MC models, for example, to control the water supply [19], the distribu-
tion of natural gas [20], control the transmission of data through telecommunication networks with
unstable characteristics, and, in particular, for communication and data transfer with unmanned
aerial vehicles [30, 35].
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