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Abstract—We consider a closed network consisting of two queuing systems: the main system
simulates a packet transmission queue over an unreliable communication channel, and the auxil-
iary multiserver system contains lost packets for resending. The service rate in the main system
is controllable and is supposed to be optimized with the aim of minimizing the time of successful
transmission, taking into account the cost of using network resources. We obtain optimality
conditions in two cases: 1) in the model based on fluid approximation in the presence of heavy
load; 2) in the steady state using stationary strategies.
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1. INTRODUCTION

This work continues the general theme of the studies [1–8] devoted to the optimization of con-
trollable infocommunication systems and networks, and is largely based on the work [9] published
by R.Sh. Liptser and coauthors in connection with the problem of fluid and diffusion approximation
of a closed Markov queuing network in heavy traffic conditions.

The first studies of closed queuing networks were conducted in [10]. Mathematical foundations
of the theory of queuing networks are presented in [11]. The basic results in the field of queuing
systems (QS) control are shown in [12, 13], while the works [14, 15] are devoted to diffusion and
fluid approximations of QS and networks.

Optimization methods for Markov processes describing QS operation in stationary mode are
described in [16]. The methodology of constrained optimization for discrete Markov models has
been developed in [17]. In a nonstationary formulation, the problem of controlling a Markov process
under constraints was studied in [18].

The work [19] proved the threshold structure of the optimal decentralized strategy for controlling
service rate at each node of a closed network by the criterion of minimum total cost for holding
and operating a job. In [20], the same result was extended to the more general case of an affine
loss function.

In this work, we study the Markov model of a closed network [9] that models the process of
transmitting data over an unreliable communication channel. The network in question consists of
two QS: the main system models the queue for packet transmission, and the auxiliary multiserver
system receives lost packets for repeated sending. Just like in [6], the transmission rate is con-
trollable, but now the model has a mechanism for resending lost packets. QS models with retrials
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are relevant when modeling the work of contact centers, where customer calls can be repeated due
to busy operators or due to the end of waiting time [21]. In the model under consideration, we
distinguish two performance indices for optimizing the system operation: the time of successfully
sending out a packet and the amount of resources used. To develop an approximate control strat-
egy, we apply a fluid approximation, which allows one to study the controlled system on average
in the presence of heavy traffic.

2. MODEL DESCRIPTION AND PROBLEM SETTING

Consider a queuing network consisting of two systems: main and auxiliary. The main system
contains a queue and describes the sequential transmission of unified packets over an unreliable
communication channel in the presence of constant input traffic. The auxiliary system is multiserver
and is used to simulate the re-sending of packets in the event of their loss.

We assume that a constant number of packets N circulate in this network, which reflects a stable
load level of the data transmission network.

Let �(t) be the probability of packet loss, where 0 � �(t) < 1, let μ(t, x) be the transmission rate
chosen from the range

mmin � μ(t, x) � mmax, where 0 < mmin < mmax <∞, (1)

and let α(t)(N − x) be the rate of sending out a packet from the auxiliary system to the main one
for retrying transmission, where x indicates the number of packets in the main system at time t.
Thus, μ(t, x) and α(t) are service rates in the main and auxiliary systems respectively. The func-
tion α(t) > 0 defines the resources that the network can allocate to process requests for resending
packets taking into account the load of computational resources which is changing over time. The
variable nature of this load and the nonstationarity of the flow of packet losses can be used to
describe the process of transmitting data from an unmanned aerial vehicle, which should provide
stable control of its movement and transfer useful information during autonomous mission in a
changing environment.

Figure 1 shows a diagram of the considered data transmission network. The loop corresponds
to a successful transmission that occurs with probability 1− �(t). If a packet has been successfully
transmitted, it leaves the main system and at the same moment a new packet subject to transmission
enters it. Thus, in case of successful transmission the number of jobs in the main system does not
change.

Transmission loss occurs with intensity �(t)μ(t, x) if x > 0. In this case, the number of jobs in
the main system decreases, and the number of jobs in the auxiliary system increases by one. The
external packet is blocked in this case since in order to enter the system it must wait for the first
successful transmission.

In the zero state of the main system x = 0, incoming traffic is also blocked. But this happens
with the purpose that a new packet has the opportunity to get into the auxiliary system in the

Fig. 1. Network model with two systems: on the left—auxiliary system, on the right—main system.
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event of an unsuccessful transmission without changing the total number of packets circulating in
the network.

The return of a packet from the auxiliary system to the main system occurs with intensity α(t)
and in a way independent of the network state. In this case, the number of packets in the main
system increases by one, and in the auxiliary system, decreases by one.

It is important to note that we mention incoming traffic here only to interpret a closed network
as a model of packet data transmission: the input stream does not directly affect the state of both
systems. Therefore, the number of packets N should not be interpreted as the size of the space
available for storing packets but rather as a fixed load level.

Over the time interval [0, T ], we will describe the operation of the data transmission net-
work with the help of an inhomogeneous Markov birth and death process X(t) with values in
the set E = {0, 1, . . . , N}. Then the number of packets in the main and auxiliary systems is
X(t) and N −X(t) respectively. The process X(t) has generator Λ(t) = {λx,y(t)}x,y∈E uniquely
determined by the two transition rates x→ x± 1: λx,x+1(t) = α(t)(N − x) is the intensity of pack-
ets coming from the auxiliary system for a resending when the main system has x < N jobs;
λx,x−1(t) = �(t)μ(t, x) is the intensity of packets being forwarded to the auxiliary system in case of
an unsuccessful attempt to transmit it when the main system contains x > 0 jobs.

In what follows, we assume that functions �(t) and α(t) are continuous.

The network operation quality will be described using two characteristics

ST =
1

T

T∫

0

MS(t) dt and RT =
1

T

T∫

0

MR(t) dt,

where S(t) is the time of fully transmitting a packet arriving at time moment t, and R(t) is the
instantaneous power spent by the network for data transmission and resending process.

Thus, ST determines the average time of successful transmission, and RT represents the average
power consumption of resources. Both criteria will be considered as functionals ST [μ], RT [μ] that
depend on the controlled transmission rate μ from a particular class M.

Next, we will consider the optimal control problem for the transmission rate μ with respect to
the extended functional

LT [μ, λ] = ST [μ] + λRT [μ] → min
μ

: μ ∈ M (2)

for a given value of the factor λ � 0.

The purpose of this work is to analyze this optimization model on two levels of description:
studying the dynamics “on average” using a fluid approximation and considering the network
in stationary mode for the corresponding homogeneous Markov process.

3. QUALITY FUNCTIONALS

Let c be a non-negative parameter that determines the relative cost of loading one server of the
auxiliary system based on the cost of loading the main system. Then the functional RT [μ] takes
the form

RT [μ] =
1

T

T∫

0

M
{
μ(t,X(t)) I{X(t) > 0}+ cα(t)(N −X(t))

}
dt. (3)

To define the functional ST [μ], consider the value S(t) equal to the total transmission time of
an external packet starting from the moment t. This value can be represented as

S(t) =W +B1 +A2 +B2 + . . . +Aν +Bν , (4)
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where W is the timeout to enter the system; Ak and Bk, the time spent by the packet in the
auxiliary and main systems, respectively, on the kth attempt (k = 1, 2, . . . , with A1 = 0); ν is the
number of attempts after which the packet will be successfully transmitted.

We will consider S(t) as the virtual sojourn time (including waiting for entry into the system),
and therefore all probability characteristics will be calculated based on a fixed moment t.

The value W can be represented as

W =W0 I{X(t) = 0}+ (τ1 + . . .+ τκ) I{X(t) > 0},

whereW0 is the waiting time for when the auxiliary system is fully loaded; τ1, τ2, . . .—service times
for jobs located in the main system at the time t; κ—number of the first successfully transmitted
packet; I{. . . }—random event indicator.

If rates α(t) and μ(t, x) change slowly with time, the conditional distribution laws
Law{W0 | X(t) = 0} and Law{τk | X(t) = x} with x > 0 can be treated as exponential E(α(t)N)
and E(μ(t, x)) respectively. In addition, X(t),κ, τ1, τ2, . . . are mutually independent, and the
value κ has the geometric distribution G(1 − �(t)). Then, using the formula of iterated expecta-
tions, we obtain the average waiting time for entering the system

W =
P{X(t) = 0}

α(t)N
+

N∑
x=1

∞∑
k=1

k

μ(t, x)
P{τ = k}P{X(t) = x}

=
P{X(t) = 0}

α(t)N
+

1

1− �(t)
M

{
I{X(t) > 0}
μ(t,X(t))

}
.

The time spent in the main system during a single attempt has the form

Bk = τ1 + . . .+ τx for X(t) = x > 0.

Moreover, Bk = 0 when x = 0, since the packet in question is already in the main system. In a
similar way, we obtain the average sojourn time of a packet in the main system

B = M

{
X(t) I{X(t) > 0}

μ(t,X(t))

}
.

For the average time spent in the auxiliary system, we have

A =
P{X(t) < N}

α(t)

due to the fact that Law{Ak | X(t) = x} = E(α(t)) for x < N and Ak = 0 for x = N .

We take into account that ν ∼ G(1− �(t)) and the independence of random variables included
in (4). Applying the formula of iterated expectations, we obtain the average time required for the
successful transmission of an external packet arriving at time t:

S(t) =W +B + (A+B)M{ν − 1} =W +
A�(t) +B

1− �(t)
.

Now the functional ST [μ] takes its final form:

ST [μ] =
1

T

T∫

0

M

{
I{X(t) = 0}
α(t)N

+
I{X(t) < N}�(t)
(1− �(t))α(t)

+
(X(t) + 1) I{X(t) > 0}
(1− �(t))μ(t,X(t))

}
dt. (5)
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4. FLUID APPROXIMATIONS

Let us describe the behavior of the network on average using the fluid approximation method.
To do this, we represent the process X(t) as

X(t) = X(0) +A(t)−D(t), (6)

where A(t) is the number of packets arriving in the main system from the auxiliary, and D(t) is
the number of packets sent in the opposite direction (over time t). Due to the independence of this
pair of events, jumps in processes A(t), D(t) occur at different times, i.e.,

ΔA(t)ΔD(t) = 0, (7)

and, moreover, A(0) = D(0) = 0.

Counting processes A(t),D(t) allow martingale representations [22, Ch. 18]

dA(t) = α(t)(N −X(t)) dt + dMA(t) and dD(t) = �(t)μ(t,X(t)) dt + dMD(t),

where quadratically integrable martingales MA(t),MD(t) are orthogonal by virtue of (7) and have
the following quadratic characteristics:

<MA>(t) =

t∫

0

α(s)(N −X(s)) ds, <MD>(t) =

t∫

0

�(s)μ(s,X(s)) ds.

Due to (6), the process X(t) admits the representation

dX(t) = {α(t)(N −X(t))− �(t)μ(t,X(t))} dt + dM(t), (8)

where M(t) is a quadratic integrable martingale with quadratic characteristic

<M>(t) =

t∫

0

{α(s)(N −X(s)) + �(s)μ(s,X(s))} ds.

Following [9], we define a fluid approximation of the discrete process X(t).

The fluid approximation x(t), being a deterministic process, describes the behavior of the main
system on average with a large number N of packets operating in the network. Suppose that μ(t, x)
is given as a function of continuous arguments t � 0 and x ∈ [0, N ]. Then x(t) satisfies the ordinary
differential equation

ẋ = α(t)(N − x)− �(t)μ(t, x), (9)

which is obtained from (8) by removing the martingale component.

According to Theorem 1 from [9], it suffices for the correctness of the fluid approximation (9)
that μ(t, x) is Lipschitz and x(t) satisfies the condition

∃ ε > 0: ε � x(t) � N − ε ∀ t ∈ [0, T ]. (10)

The meaning of this condition is obvious: the average number of packets should be in the inter-
val (0, N) except for the idle mode of the main or auxiliary system.
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Lemma. If there exists ε > 0 such that

ε/mmin � �(t)/α(t) � (N − ε)/mmax, (11)

then condition (10) is valid for any choice of a Lipschitz function μ(t, x) satisfying the con-
straints (1).

Proofs of the lemma and the statements below are given in the Appendix.

Given the approximation X(t) ≈ x(t), we obtain the representation of functionals (3) and (5):

ST [μ] =
1

T

T∫

0

{
�(t)

(1− �(t))α(t)
+

x(t) + 1

(1− �(t))μ(t, x(t))

}
dt,

RT [μ] =
1

T

T∫

0

{
μ(t, x(t)) + cα(t)(N − x(t))

}
dt.

Then the extended functional (2) takes the form

LT [μ, λ] =
1

T

T∫

0

g(t, x(t), μ(t, x(t)), λ) dt,

g(t, x, μ, λ) =
�(t)

(1− �(t))α(t)
+

x+ 1

(1− �(t))μ
+ λ

[
μ+ cα(t)(N − x)

]
.

To synthesize the optimal data transmission rate μ̂(t, x) by the minimum criterion for the ex-
tended functional LT [μ, λ], we first consider the problem

LT [u, λ] =
1

T

T∫

0

g(t, x(t), u(t), λ) dt → min
u∈U

(12)

on the class U of open-loop controls, i.e., piecewise continuous functions u(t), t ∈ [0, T ], with values
in the set U = [mmin,mmax]. In this case, the state x(t) satisfies the differential Eq. (9), where in-
stead of the feedback control μ(t, x) an open-loop control is used, namely

ẋ = f(t, x, u(t)), f(t, x, u) = α(t)(N − x)− �(t)u. (13)

We define the Hamiltonian

H(t, x, ψ, u, λ) = ψf(t, x, u) − g(t, x, u, λ),

where ψ is the conjugate variable. Then it is easy to get the representation

H(t, x, ψ, u, λ) = . . .− (
au+ b/u

)
,

where a and b are abbreviated notation for the coefficients

a = �(t)ψ + λ, b = (x+ 1)/(1 − �(t)),

and the ellipsis denotes terms that are independent of the variable u. If it is known that condition
x � 0 can be guaranteed for the state of the system (13), then coefficient b will be positive and the
maximum of the Hamiltonian in the variable u ∈ U will be achieved at a unique point:

Q(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mmax, a/b � 1/m2
max√

b/a, 1/m2
max � a/b � 1/m2

min

mmin, a/b � 1/m2
min.

(14)

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 3 2020



436 KUZNETSOV, SEMENIKHIN

Now we define the equation for the conjugate variable taking into account the terminal condition

ψ̇ = −Hx(t, x, ψ, u(t), λ), t ∈ [0, T ], ψ(T ) = 0, (15)

where the right-hand side of the differential equation is defined as

−Hx(t, x, ψ, u, λ) = α(t)ψ +
1

(1− �(t))u
− λcα(t).

Let x(t), ψ(t) be a solution of the system of differential Eqs. (13), (15), where as u(t) we take
the control

û(t) = Q
(
�(t)ψ(t) + λ, (x(t) + 1)/(1 − �(t))

)
, (16)

where it is assumed that x(t) � 0 everywhere on [0, T ].

We formulate the result in Theorem 1.

Theorem 1. If for some ε � 0 the right inequality in (11) holds, then for any initial condition
x(0) � 0 the control (16) is a solution to the problem (12). If, in addition, the following inequality
holds:

λ(c/4 + 1) �
(
1/mmax + 1/(4α(t))

)
/mmax, t ∈ [0, T ], (17)

then the optimal control coincides with the upper bound, i.e., û(t) ≡ mmax.

Theorem 1 allows us to describe a scheme for finding the optimal feedback control μ̂(t, x). For
each xT ∈ (0, N), it is necessary to integrate the system (13), (15) in reverse time, taking into
account u(t) = û(t) and terminal conditions x(T ) = xT , ψ(T ) = 0 up to the moment t0, at which
one of the following conditions will be satisfied: x(t0) = 0, x(t0) = N , or t0 = 0. Now the control
in question is determined along each obtained trajectory according to the rule μ̂(t, x(t)) = û(t).

The structure of the optimal control û from (16) can be explained as follows. The choice between
the two boundaries mmin and mmax is determined by the relation r = (1− �)(�ψ + λ)/(x + 1). If
energy costs expressed by the parameter λ are insignificant compared to the system load level x,
then r is small and in this case it is more preferable to transmit at maximum rate, i.e., û = mmax.
Inequality (17) describes a sufficient condition under which such a conclusion can be drawn. If, on
the contrary, resource conservation is critical, which is expressed by a large value of r, then the
optimal transmission rate is set to a minimum level: û = mmin.

Remark. The expression (16) allows us to propose a constant strategy that can be used to get
a preliminary solution for the problem in a model with constant parameters α and �.

Assume that the value of the conjugate variable ψ(t) is negligible. This is true at least at the
end of the interval, since ψ(T ) = 0. If we assume that by this moment the state x(t) is established
at some equilibrium value x, then in the case of a fairly wide range [1/m2

max, 1/m
2
min] by virtue of

(13) and (14) and due to 1 
 x we get the following system of equations:

α(N − x)− �û = 0, û =
√
x/(λ(1 − �)).

Then the corresponding solution x has the form

x = N − κ

2

(√
1 +

4N

κ

− 1

)
, κ =

�2

λ(1− �)α2
,

and obviously 0 < x < N .
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5. STATIONARY MODE

Now suppose that the network parameters �, α are constant, and the desired control is described
by a stationary strategy

μ = {μx : x = 1, . . . , N} ∈ UN , U = [mmin,mmax], (18)

where μx is the transmission rate from the main system in case when it contains x packets. When
the main system is idle, its server is idle, so the corresponding transmission rate is zero: μ0 = 0.
Strategies (18) will be called admissible.

Under these assumptions, the Markov process X(t) will be homogeneous, and its transition rates
will take the form λx−1,x = α(N + 1− x) and λx,x−1 = �μx for x = 1, . . . , N . The process X(t), as
a finite birth and death process, is ergodic. This means that regardless of the choice of the initial
distributionX(0) for any x ∈ E, the limit probabilities πx = limt→∞ P{X(t) = x} are defined. They
satisfy a known recurrent representation:

πx =
α(N + 1− x)

�μx
πx−1, x = 1, . . . , N. (19)

If π0 is found from the normalization condition, then the stationary distribution π = {π0, π1,
. . . , πN} will thus be determined.

Let us show the expressions for the performance indices. The average time for successful trans-
mission (5) takes the form

S[μ] =
π0
αN

+
(1− πN )�

(1− �)α
+

N∑
x=1

(x+ 1)πx
(1− �)μx

.

From (3) we get an expression for the functional that determines the average power of resource
consumption:

R[μ] =
N∑
x=0

{μx + cα(N − x)}πx.

Then, taking into account the equality 1− πN = π0 + . . . + πN−1, the extended functional (2)
is equal to

L[μ, λ] = h0π0 +
N∑
x=1

(
hx + bx/μx + λμx

)
πx, (20)

hx =
1

αN
I{x = 0} + �

(1− �)α
I{x < N}+ λcα(N − x), bx =

x+ 1

(1− �)
.

We solve the problem of minimizing the extended functional in the stationary mode

L[μ, λ] → min
μ

(21)

on the class of strategies (18).

To do this, we introduce the functional

J[π, μ, ν] = L[μ, λ]− ν(π0 + π1 + . . .+ πN − 1),

including the normalization condition in the form of a term with factor ν ∈ R. The sequence
π = {πx: x = 0, 1, . . . , N} will be considered as the trajectory of the discrete system (19) with an
arbitrary initial condition π0 � 0 and control μ = {μx}.

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 3 2020



438 KUZNETSOV, SEMENIKHIN

Functional J is separable, so the dynamic programming method can be applied to minimize it.
To do this, we rewrite J due to (19) and (20):

J[π, μ, ν] = ν + π0(h0 − ν) +
N∑

x=1

πx−1gx(μx, ν),

gx(u, ν) =
(
hx + bx/u+ λu− ν

)
γx/u, γx = α(N + 1− x)/�.

Next we define the Bellman function:

Bn(p, ν) = inf
(π,μ)∈Sn(p)

N∑
x=n

πx−1gx(μx, ν), n = N,N − 1, . . . , 1, (22)

where Sn(p) is the set of pairs (π, μ) such that π = {πx: x = n, . . . ,N} satisfies the re-
current equation πx = πx−1γx/μx with initial condition πn−1 = p and admissible strategy μ =
{μx : x = n, . . . ,N}.

The dynamic programming equation takes the form

Bn(p, ν) = inf
u∈U

{
pgn(u, ν) +Bn+1

(
pγn/u, ν

)}
, n = N,N − 1, . . . , 1,

where BN+1 ≡ 0. Moreover,

inf
(π,μ)∈S0

J[π, μ, ν] = inf
π0�0

{
ν + π0(h0 − ν) +B1(π0, ν)

}
, (23)

where S0 contains (π, μ) ∈ S1(π0) for an arbitrary choice of the initial condition π0 � 0.

It is easy to verify that the Bellman function has the formBn(p, ν) = pβn(ν), where the sequence
{βn(ν)} is determined from the recurrence relation

βn(ν) = inf
u∈U

{
gn(u, ν) + γnβn+1(ν)/u

}
, n = N,N − 1, . . . , 1, βN+1 ≡ 0.

After a change of variables w = 1/u, the latter equation takes the form

βn(ν) = inf
1/mmax�w�1/mmin

{
λ+ (hn − ν + βn+1(ν))w + bnw

2}γn.

If we find the absolute minimum point of this quadratic function

w∗
n = −hn − ν + βn+1(ν)

2bn
,

then it can be argued that the strategy

μ∗x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mmax, w∗
x � 1/mmax

1/w∗
x, 1/mmax � w∗

x � 1/mmin

mmin, w∗
x � 1/mmin,

x = 1, . . . , N, (24)

is a minimizer of (22) for a fixed ν � 0.

We choose the parameter ν so that the minimized expression on the right-hand side of (23) does
not depend on π0. Since B1(π0, ν) = π0β1(ν), this condition is equivalent to the equation

h0 − ν + β1(ν) = 0. (25)

Now we can describe a way to solve the problem (21).
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Table 1. Value of the extended functional depending on the choice of the factor

i λi0 λi L[μ∗, λi] L[û, λi] L[mmin, λ
i] L[mmed, λ

i] L[mmax, λ
i]

1 0.2 0.324 8.616 8.755 36.215 11.204 8.616
2 0.8 1.298 16.686 16.906 37.676 16.805 18.358
3 1.4 2.271 22.079 22.249 39.137 22.407 28.100
4 2.0 3.244 26.393 26.537 40.599 28.009 37.843
5 2.6 4.217 30.094 30.222 42.060 33.611 47.585
6 3.2 5.191 33.388 33.504 43.521 39.213 57.327
7 3.8 6.164 36.385 36.491 44.983 44.815 67.070
8 4.4 7.137 39.152 39.251 46.444 50.416 76.812
9 5.0 8.110 41.736 41.829 47.905 56.018 86.554

Table 2. Time of successful transmission and volume
of resources at the strategies μ∗ and û

i λi0 λi S[μ∗] S[û] R[μ∗] R[û]

1 0.2 0.324 5.3684 5.6916 10.0099 9.4416
2 0.8 1.298 8.3332 9.7654 6.4365 5.5029
3 1.4 2.271 11.0310 12.4353 4.8649 4.3214
4 2.0 3.244 13.1885 14.5780 4.0701 3.6862
5 2.6 4.217 15.0402 16.4194 3.5695 3.2727
6 3.2 5.191 16.6888 18.0591 3.2171 2.9754
7 3.8 6.164 18.1890 19.5514 2.9519 2.7482
8 4.4 7.137 19.5757 20.9300 2.7429 2.5670
9 5.0 8.110 20.8711 22.2173 2.5726 2.4181

Theorem 2. A solution ν∗ of the Eq. (25) exists and is uniquely defined, it is positive and does
not exceed the value of the functional L[μ, λ] at any admissible strategy μ.

The strategy μ∗, defined in (24) at ν = ν∗ is the steady-state optimal control in the problem of
minimizing the extended functional (21), with L[μ∗, λ] = ν∗.

If follows from the proof of Theorem 2 that the function on the right-hand side of Eq. (25) is
continuous and does not increase monotonically. Therefore, the solution ν∗ can be found by the
interval bisection method or by the golden ratio method on the segment [0,L[μ, λ]], where μ is any
admissible strategy, for example μx = mmin or μx = mmax.

Let us give an example of numerically finding the optimal control of a closed data transmission
network considered in a stationary mode.

Example. We make the following assumptions: the network contains N = 50 packets; the range
of admissible values of the transmission rate is defined by the boundariesmmin = 1.5 andmmax = 10;
α = 0.02 is the servicing intensity in the auxiliary system; � = 0.05 is the probability of packet loss;
c = 0.02 is the relative cost of using the auxiliary system server.

Table 1 shows the values of the extended functional depending on the choice of the factor λ
given several controls: μ∗ is the optimal control described in Theorem 2; û is a constant control
whose value is chosen according to the Remark; mmin, mmed, mmax are constant controls equal to
the lower bound, middle point, and upper bound of the range of admissible values respectively.
For the factor λ, which determines the weight of the energy criterion, we take several values of
λi = λi0S[mmed]/R[mmed], where λ

i
0 are dimensionless coefficients, i = 1, . . . , 9.

As can be seen from Table 1, values of the extended functional at the optimal control μ∗ and the
constant strategy û obtained on the basis of the fluid approximation differ little. Nevertheless, a
comparison of the functionals of the successful transmission time S and the amount of resources R
allows us to see quite serious differences in the quality characteristics (see Table 2).
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Fig. 2. Boundary of the attainable set (solid curve) on the plane of criteria (S,R) with optimal control μ∗

(circles), constant control û (crosses), and randomly generated strategies (dots).

Fig. 3. Optimal control {μ∗
x} as a function of the state x = 1, 2, . . . , N for several values of the factor λ = λi.

On the plane of criteria (S,R), the optimal control μ∗ must lie on the boundary of the attainable
set

A = {(s, r) : ∃μ ∈ UN : s � S[μ], r � R[μ]}.
This fact is confirmed by Fig. 2, where points (S[μ∗],R[μ∗]) are shown by circles, and the bound-
ary A is a solid curve.

For a constant strategy û, due to L[û] ≈ L[μ∗] the points (S[û],R[û]), indicated by crosses, also
visually lie on the border. However, the points (S[μ∗],R[μ∗]) and (S[û],R[û]) do not coincide,
since the difference is significant according to at least one of the two criteria (see Table 2).
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Fig. 4. Probabilities {π∗
x} of states x = 0, 1, . . . , N of the main system when using several optimal controls μ∗

depending on the choice of the factor λ = λi.

Other strategies μ (more precisely, the corresponding values of criteria S[μ],R[μ]) are shown
by dots on Fig. 2. These strategies μ = {μx}, 1000 in total, were obtained as independent samples
{μ1, . . . , μN} from the uniform distribution R(mmin,mmax).

Figure 3 shows the optimal controls {μ∗x} for the same values of the factor λ as listed in Tables 1
and 2. The corresponding stationary distributions π∗ = {π∗x} are presented in Fig. 4. For unlikely
states x, an instability effect was observed when numerically finding the optimal strategies μ∗x.
Therefore, Fig. 3 shows for every control μ∗ only the part of the plot that remained unchanged while
increasing the precision of solving Eq. (25). The corresponding values of the optimal control were
found with acceptable precision for the interval where the state X ∼ π∗ falls with probability 0.999.

6. CONCLUSION

In this work, we have studied the optimal control problem for the data transmission rate in
the model with an unreliable communication channel and a resending mechanism according to the
criterion of the minimum total transmission time, taking into account the transmitter’s energy
consumption. The data transmission network is modeled by a closed queuing network with the
main transmitter node (in the form of a finite single-server system) and an auxiliary node for
resending the packets (in the form of a multiserver QS). We have obtained optimality conditions
for the desired control in an approximate model based on fluid approximation, as well as in the
steady state mode using stationary strategies.

APPENDIX

Proof of Lemma. If μ(t, x) is Lipschitz, then for any initial condition x(0) Eq. (9) has a so-
lution x(t) defined over the entire interval [0, T ]. Taking into account the notation β(t) = N−
�(t)μ(t, x(t))/α(t), we get ẋ = −α(t)x+ α(t)β(t), which implies the representation

x(t) = ϕ(t)x(0) +

t∫

0

ϕ(t)

ϕ(s)
α(s)β(s) ds, ϕ(t) = exp

⎧⎨
⎩−

t∫

0

α(τ) dτ

⎫⎬
⎭ . (A.1)

Due to (11), the inequality ε � β(t) � N − ε holds. If in (A.1) instead of β we take β1 = ε and
β2 = N − ε, then the corresponding solutions xk(t) = ϕ(t)x(0) + (1−ϕ(t))βk , k = 1, 2, will satisfy
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the inequalities x1(t) � x(t) � x2(t). Since 0 < ϕ(t) < 1, we get that x(t) is a convex combination
of the numbers x(0), β1 and β2, each of which belongs to the segment [ε,N − ε]. This entails
x(t) ∈ [ε,N − ε], as required. This completes the proof of the lemma.

Proof of Theorem 1. First, let us establish the existence of an optimal control in problem (12).
To do this, it suffices to check the conditions of Theorem III.4.1 from [23], namely the Lipschitz
property in (x, u) for the function f(t, x, u) on the right-hand side of the differential Eq. (13),
continuity of the integrand g(t, x, u, λ), compactness of the set of admissible control values U , and
convexity of the sets

F (t, x) = {(p, z) : ∃u ∈ U : p = f(t, x, u), z � g(t, x, u, λ)}.

The last condition is fulfilled if f(t, x, u) is linear, and g(t, x, u, λ) is convex in u. The convexity
of the second function in u > 0 follows from the lemma, and therefore it can be guaranteed that
x � 0.

A formulation of the necessary optimality conditions in the form of the maximum principle can
be found, for example, in Sections 2.4.1 and 2.4.2 in [24]. Due to the existence of an optimal
control and the fact that the maximum of the Hamiltonian is reached at a single point (14), it can
be argued that the control (16) is a solution for problem (12).

Now we derive a sufficient condition for the optimal control û(t) to coincide with the upper
bound mmax. Since û(t) is uniquely determined by the expressions (14) and (16), we find out
in what case it holds that a/b � 1/m2

max. Omitting the time dependence, this inequality can be
rewritten in the form

�(1− �)ψ + λ(1− �) � (x+ 1)/m2
max.

Taking into account that 0 � � < 1 and x � 0, the above inequality is obviously satisfied for

ψ/4 + λ � 1/m2
max. (A.2)

Next, let us bound the conjugate variable ψ(t) from above. To do this, we write Eq. (15) in the
form ψ̇ = α(t)ψ − α(t)γ(t), where γ(t) = λc− ((1 − �(t))α(t)û(t))−1. We use the inequality

γ(t) � γmax = λc− 1

αmaxmmax
, αmax = max

t∈[0,T ]
α(t),

and a representation similar to (A.1). Then by virtue of ψ(T ) = 0 we have that

ψ(t) =

T∫

t

ϕ(s)

ϕ(t)
α(s)γ(s) ds =

γmax

ϕ(t)

(
ϕ(t)− ϕ(T )

)
� γmax.

Now, substituting ψ = γmax into (A.2), we obtain the required inequality (17). This completes the
proof of Theorem 1.

Proof of Theorem 2. Let us prove that the solution (25) exists, is unique and positive. By defini-
tion, βn is a minimum with respect to w for a function that continuously depends on w, βn+1, ν, and
w spans a segment. Then, by the continuity theorem of the marginal function [25, Section 3.1.23],
βn is a continuous function of the variables βn+1, ν. Therefore, β1(ν) is a continuous function as
well. At ν = 0, the function h0 − ν + β1(ν) from the right-hand side of Eq. (25) will be positive. If
one can choose νmax > 0 such that h0 − ν + β1(ν) < 0 for ν = νmax, then due to the continuity of
this function it can be argued that on the interval (0, νmax) Eq. (25) will have a solution ν∗.
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To find νmax, note that for any choice of an acceptable strategy μ the following inequality holds:

ν + π0(h0 − ν + β1(ν)) � J[π, μ, ν],

where the right-hand side is L[μ, λ] if the sequence {πx} satisfies the normalization condition.
Therefore, h0 − ν + β1(ν) < 0 for ν > L[μ, λ]. Therefore, it suffices to take the desired νmax a little
larger than L[μ, λ].

To prove the uniqueness of ν∗, we note that β1(ν) is a non-increasing and concave function
as a minimum of such functions. Therefore, the function h0 − ν + β1(ν), for which zero is an
intermediate value, has the same properties. Therefore, the function takes this value at a unique
point.

To establish the optimality of the strategy μ∗ in problem (21), it suffices to verify that if π∗ is a
stationary distribution corresponding to the strategy μ∗ then (π∗, μ∗) and ν∗ form a saddle point
of the functional J[π, μ, ν]:

J[π∗, μ∗, ν] � J[π∗, μ∗, ν∗] � J[π, μ, ν∗] ∀ (π, μ) ∈ S0, ∀ ν ∈ R. (A.3)

The left inequality in (A.3) turns into equality since both of its parts are equal to L[μ∗, λ]
due to the normalization condition. The right inequality follows from (23) due to the fact that
π0(h0 − ν) +B1(π0, ν) = π0(h0 − ν + β1(ν)) = 0 with ν = ν∗.

In this case, J[π∗, μ∗, ν∗] = L[μ∗, λ] = ν∗, as required. This completes the proof of Theorem 2.
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