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Abstract—In this paper we propose the quaternion-based control system for quadrotor. Adap-
tive scheme for thrust coefficients identification, based on speed-gradient method, is designed.
Proofs of stability are provided, as well the results of numerical simulations. In existing theo-
retical works, Euler angles are often used as coordinates for describing quadrotor’s coordinates.
Equations using those coordinates, however, have a singularity, which prevents their use near
certain points. We use quaternions instead, which have no such restrictions. The process of
discovering PID-regulator coefficients is known to be tedious, error-prone and specific for each
quadcopter. We propose a control scheme in which most of the parameters are physical values,
and the rest do not depend on the quadcopter and can be found once for the whole class of the
flying machines. An identification algorithm for obtaining physical parameters is also described.
MATLAB modelling is used to test and confirm the performance of the proposed scheme.
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1. INTRODUCTION

Recently, unmanned aerial vehicles, in particular the most accessible of them—quadrotors, are
beginning to play an increasing role in society. In recent years, their popularity has been ensured
by the simplicity of the design and the appearance of a large number of different control systems,
many of which are open-source programs.

There are many problems that can be solved in connection with quadrotors, including scientific
ones. For example, the works [10, 11, 24] demonstrate the training of robots in effective flight
paths, the works [7, 23]—cooperative behavior, [25, 26, 28]—navigation using cameras and RGBD
sensors, and [2, 22]—tracing the trajectory by non-linear regulators. Evaluation of the orientation
of such machines is usually carried out by modifications of a complementary filter [17, 18] or by
an extended Kalman filter [14], and an overview of the mathematical models used to describe a
quadrotor is given in [8].

A review of the main existing solutions to control real quadrotors can be found in [16]. However,
there are two common properties inherent in these systems: they all work on PID-controllers, and
they all use Euler angles (otherwise known as Krylov angles) as state variables.

The problem of using Euler angles is that this method has a singularity, which means that in
some areas of the orientation space it will not work. For example, none of the publicly available
systems can make a fully controlled flip, without disabling the main controller. Unlike Euler angles,
quaternions do not have similar problems, although they are rarely used to create control systems
for quadrotors. An example of a system completely based on quaternions may be found in [9].

The problem with the PID-controller is that you need to re-adjust the coefficients for each
particular robot. Special instructions on how to do this are attached to open-source programs,
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Fig. 1. Test self-made quadrotors: (a) robot Quadracon (FlyMaple); (b) robot Bond (TRIK).

but this approach still reduces the efficiency of the system, since it does not allow to achieve the
optimal parameters. Examples of the synthesis of a PID-controller for a quadrotor can be found in
[13, 19, 21].

In connection with these problems, a stabilization system was created, which uses quaternions as
a state variable for the synthesis of the controller and an idea similar to linearization by feedback.
The result is a controller, most of the parameters of which are exactly the physical parameters
of a particular quadrotor, and the remaining coefficients do not depend on the robot and can be
selected once for the entire class of machines.

Some of the physical parameters of a particular robot are often difficult to measure, or they
can change over time right in flight. Therefore, the system acquires a particularly great value,
which allows identifying unknown parameters and using them in the stabilization system. Existing
adaptive systems, for example [1, 20, 29], rely on Euler angles and, in general, standard PID-
controllers.

This work consists of four parts. The first defines the mathematical model that used. The
second part dealing with the stabilization system and the proof of its stability. The third part
provides a system for the adaptation and identification of quadrotor thrust coefficients, which are
key for stable flight. The last part describes the conducted modeling of the overall system.

It should also be noted that the stabilization system was tested on real, self-made quadrotors
(Fig. 1), one of which worked on the FlyMap controller, the second on the TRIK controller (for
more on this Russian development, see www.trikset.com, [27]).

2. MATHEMATICAL MODEL OF QUADROTOR

2.1. Designations

Let q be a quaternion. Denote by qw the scalar part of q, and by qv—the vector part. Then

q = (qw, qv) = (qw, qx, qy, qz).

Let r and s be two vectors in R
3. Their scalar product is denoted as 〈r, s〉, and the vector one

as r × s. The product of quaternions a = (aw, av) and b = (bw, bv) can be written as

a ∗ b = (awbw − 〈av, bv〉, awbv + bwav + av × bv) .

By multiplying the quaternion a by the vector r, we mean the quaternion product a ∗ (0, r).
The quaternion conjugate to q will be denoted as q∗. If ‖q‖ ≡ 1, then q ∗ q∗ = q∗ ∗ q = (1, 0, 0, 0).
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2.2. Quaternion of Quadrotor Rotation

Suppose we have an absolute (terrestrial) coordinate system XY Z (where XY is a horizontal
plane, and the Z axis is directed upward, against gravity). Then for the system X ′Y ′Z ′ associated
with the quadrotor, there is a single axis u and a single angle φ ∈ [0, π) such that if you turn the
hatched system around the axis u by the angle φ counterclockwise, the original system will be
obtained. Let (ux, uy, uz) be the unit vector in the system XY Z, which is the guiding for axis u.
Then the quaternion describing the rotation of X ′Y ′Z ′ to the position of XY Z is called

q =

(
cos

φ

2
, ux sin

φ

2
, uy sin

φ

2
, uz sin

φ

2

)
.

Note that ‖q‖ ≡ 1 for any u and φ. Now let the vector v′ be given in the system X ′Y ′Z ′. For its
representation v in the system XY Z, the equality v = q ∗ v′ ∗ q∗ will be satisfied.

If the system X ′Y ′Z ′ rotates with respect to the vector of angular velocity ω, then the law of
changing the quaternion of rotation q will be follows:

q̇ =
1

2
q ∗ ω. (1)

This equation uses the coordinates of the vector ω in the system associated with the quadrotor.
Thus, q and ω are part of the state vector of a dynamical system describing a quadrotor. In
addition, we can measure ω using gyroscopes mounted on the robot, and use it to estimate q. The
derivation of Eq. (1), as well as additional information on quaternion arithmetic, can be found
in [4].

2.3. Model

In addition to the Eq. (1), let’s introduce two equations:

Iω̇ =

⎛
⎜⎜⎝

L(F2 − F4)

L(F3 − F1)

ξ(F1 + F3 − F4 − F2)

⎞
⎟⎟⎠− ω × Iω, (2)

Ḧ =
1

m

(
1− 2q2x − 2q2y

)
(F1 + F2 + F3 + F4)− g. (3)

The Eq. (2) is the Newton–Euler equation for a rotating body (see [3]). Here Fi is the thrust
force (N) created by the ith propeller, I is the matrix of inertia moments (kg ×m2), assumed to
be diagonal, L is the distance from the center of mass to the propellers (m), and ξ is the ratio of
the thrust force of the propeller with the reactive moment (m). The correspondence between the
propeller numbers and their positions and directions of rotation can be seen in Fig. 2.

Equation (3) describes the quadrotor dynamics along the vertical axis Z directed against gravity
(movement in the horizontal planeXY is omitted for simplicity, since in this paper we do not observe
or attempt to control the position of the robot in this plane). Here H is the coordinate of the robot
along the Z axis (m), m is the mass of the robot (kg), g is the gravitational acceleration (m/s2).

The multiplier
(
1− 2q2x − 2q2y

)
is equal to the cosine of the angle between the Z and Z ′ axes

and determines how much the total thrust of the quadrotor affects its acceleration in height. For
convenience, this multiplier will be denoted by kmod.

The thrust force Fi is assumed to depend quadratically on the speed of rotation of the propeller
(see [15]), which in turn can be considered linearly dependent on the voltage applied to the ith mo-
tor. Imagine that the control ui is the voltage on the ith motor, while given on a scale from 0 to 1,
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Fig. 2. A schematic image of a quadrotor.

where 0 is the absence of voltage, and 1 is the maximum voltage to the motor. Then it is possible
to enter the coefficient of proportionality of the square of the voltage and the thrust force Ki, which
will also have the meaning of the maximum thrust value of the ith propeller. If Fi = Kiu

2
i , then we

can also replace the control variable by introducing Ui = u2i . Then the relation between the thrust
power and the control is assumed to be linear with the proportionality coefficient Ki. Estimation
of the coefficient Ki is considered in section 5. Section 4 implies that the values of Ki are known,
and, moreover, for simplicity of presentation, they are equal to a single coefficient K.

3. STABILIZATION SYSTEM

3.1. Orientation Stabilization

The main idea of the control design lies in the creation of two successive controllers: first for
the quaternion of rotation, and then for the angular velocity. If the control goal is the coincidence
of the reference systems XY Z and X ′Y ′Z ′ (i.e., static hovering), then the fulfillment of the goal
means that the q quaternion has the value (1, 0, 0, 0). Then we define the relevant quaternion qd,
which will be the control target. In the simplest case, its value will be (1, 0, 0, 0), however, it is
possible to use any other values to implement more complex movements, up to and including flips.

Algorithm.

(1) Define the desired derivative of the quaternion:

τd = kp(qd − 〈qd, q〉 q),

where kp > 0 is the gain, and 〈qd, q〉 is scalar product of quaternions as vectors in R
4.

(2) By inverting Eq. (1), we obtain the target angular velocity:

ωd = 2q∗ ∗ τd.

(3) Determine the desired angular acceleration:

ρd = kd(ωd − ω),

where kd > 0 is the gain.
(4) By inverting Eq. (2), we obtain the target moment:

Md = Iρd + ω × Iω.

As a result, ω̇ ≡ ρd.
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(5) The moment Md gives us 3 linear equations on the controls Ui. Having defined the fourth
control in any way (for example, by setting the total thrust of the four propellers), we can
completely calculate the control Ui.

The scalar product in step 1 is necessary for the orthogonality condition of τd and q in R
4 to be

satisfied, which in turn is a consequence of the condition ‖q‖ ≡ 1. It turns out that it is enough
that, with the quaternion multiplication in step 2, the scalar part of the resulting quaternion would
turn to 0 and ωd would be a vector.

Note that the only parameters of the controller are the coefficients kp and kd, which do not
depend on the physical parameters of the system. That is, once found, the coefficients will be able
to stabilize any quadrotor (provided that there are no errors in determining the physical parameters
of the system).

3.2. Altitude Stabilization

The moment of forces Md defines 3 equations on Ui. One option to fully define controls is to add
an altitude controller. Let the target altitude Hd be given, which the quadrotor needs to withstand.
Apply the PD-controller, setting target acceleration:

Υd = Ap (Hd −H)−AdḢ, (4)

where Ap and Ad are positive. From Eq. (3) we obtain the fourth equation for the control actions:

4∑
i=1

Ui =
m

K

(Υd + g)

kmod
. (5)

3.3. General Control Law

Let us introduce the G matrix connecting the target moments and accelerations with the control
actions Ui:

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 KL 0 −KL
−KL 0 KL 0

Kξ −Kξ Kξ −Kξ
K

m

K

m

K

m

K

m

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1

2KL

1

4Kξ

m

4K

1

2KL
0 − 1

4Kξ

m

4K

0
1

2KL

1

4Kξ

m

4K

− 1

2KL
0 − 1

4Kξ

m

4K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

And then the controls are calculated simply from the matrix multiplication:

⎛
⎜⎜⎜⎜⎜⎝

U1

U2

U3

U4

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1

2KL

1

4Kξ

m

4K

1

2KL
0 − 1

4Kξ

m

4K

0
1

2KL

1

4Kξ

m

4K

− 1

2KL
0 − 1

4Kξ

m

4K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

Mdx

Mdy

Mdz

Υd + g

kmod

⎞
⎟⎟⎟⎟⎟⎟⎠
. (6)
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3.4. Stability of Control Law

The stability of the altitude when using the controller (4) is obvious. Let us now prove that
Algorithm provides the goal of altitude control for almost all initial states. Let qd = (1, 0, 0, 0). This
assumption is non-limiting, because otherwise we can introduce a modified quaternion of rotation
q′ = q∗d ∗ q as a new state. With this choice of qd, the equations of the closed-loop system for
orientation are reduced to

q̇ =
1

2
q ∗ ω,

ω̇ = −2kpkdqv − kdω.
(7)

Theorem 1. Let kp, kd > 0. Then the point L1 = [(1, 0, 0, 0), (0, 0, 0)] is an asymptotically stable
equilibrium point of the system (7), L2 = [(−1, 0, 0, 0), (0, 0, 0)] is an unstable equilibrium point, and
the region of attraction of the point L1 is the domain S

4 × R
3\L2.

Proof. As a candidate for the Lyapunov function, consider the function

V (q, ω) = h11
∥∥∥qv2 + 2h12〈qv, ω〉+ h22

∥∥∥ω2 + 2ν(1− qw). (8)

Obviously, V (L1) = 0 and V (L2) = 4ν. It is necessary to find the coefficients hij and ν so that
the derivative V with respect to the system will be negative everywhere, except for the points L1

and L2, and V itself will be positive definite. For convenience, we denote kq = 2kpkd.

The derivative of the function V with respect to the system can be written as

V̇ = g11(qw)‖qv‖2 + 2g12(qw)〈qv, ω〉+ g22(qw)‖ω‖2, (9)

where the coefficients gij satisfy following equality

G(qw) =

(
g11(qw) g12(qw)

g12(qw) g22(qw)

)
=

⎛
⎜⎝
0

ν

2
ν

2
0

⎞
⎟⎠

+

(
h11 h12
h12 h22

)⎛
⎝ 0

qw
2

−kq −kd

⎞
⎠+

⎛
⎝ 0 −kq
qw
2

−kd

⎞
⎠
(
h11 h12
h12 h22

)
.

(10)

Another way to write Eq. (9)

V̇ =
(
q�v ω�

)
[G(qw)⊗ I3]

(
qv
ω

)
,

shows that the negative definiteness of V̇ is equivalent to the negative definiteness of the matrix G.
It is also obvious that (qv, ω) ≡ (0, 0) only at the points L1 and L2.

Now let’s show that there are coefficients hij and ν such that the matrix G will be negative
definite. The problem is complicated by the fact that, according to Eq. (10), the coefficients of the
matrix, in general, depend on qw. To solve this problem, we use the KYP-lemma (see [6, 12]).

Let

A =

(
0 0

−kq −kd

)
, B =

(
1
0

)
, H =

(
h11 h12
h12 h22

)
, N =

⎛
⎜⎝
0

ν

2
ν

2
0

⎞
⎟⎠ , x =

(
x1
x2

)
.
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Introduce a linear dynamic system

ẋ = Ax+Bu.

The condition of negative definiteness of the matrix G is then written as

(
x1 x2

qw
2
x2
) [(HA+A�H HB

B�H 0

)
+

(
N 0
0 0

)]
⎛
⎜⎜⎜⎝

x1
x2

qw
2
x2

⎞
⎟⎟⎟⎠ < 0,

|x1|+ |x2| 	= 0.

(11)

Let

u =
qw
2
x2, |qw| � 1 ⇒ (x2 + 2u) (x2 − 2u) � 0

⇒
(
x1 x2 u

)
⎛
⎜⎝
0 0 0
0 1 0
0 0 −4

⎞
⎟⎠
⎛
⎜⎝
x1
x2
u

⎞
⎟⎠ � 0.

Define

M =

⎛
⎜⎝
0 0 0
0 1 0
0 0 −4

⎞
⎟⎠ and S =M +

(
N 0
0 0

)
=

⎛
⎜⎜⎜⎜⎝

0
ν

2
0

ν

2
1 0

0 0 −4

⎞
⎟⎟⎟⎟⎠ .

Then condition (11) will follow from the matrix inequality

S +

(
HA+A�H HB

B�H 0

)
< 0. (12)

The KYP-lemma states that the existence of the matrix H = H� such that inequality (12) is
satisfied is equivalent to the fulfillment of the inequality

(
x∗ u∗

)
S

(
x
u

)
< 0 (13)

for all (x, u) ∈ Miω for each ω ∈ R ∪ {∞}, where the sets Mλ for λ ∈ C is defined as

Mλ =

⎧⎨
⎩
(x, u) | x ∈ C

2\{0}, u ∈ C, λx = Ax+Bu, for |λ| <∞

(0, u) | u ∈ C
1\{0}, for |λ| = ∞.

In the case when iω is not an eigenvalue of A, condition (13) can be written in terms of the frequency
response:

(
(iωI −A)−1B

1

)∗
S

(
(iωI −A)−1B

1

)
< 0. (14)
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Expressing frequency response

(iωI −A)−1B =

(
iω 0
kq iω + kd

)−1(
1
0

)
=

1

−ω2 + iωkd

(
iω + kd
−kq

)
=

⎛
⎜⎜⎜⎝

− i

ω
kq(ω + ikd)

ω(ω2 + k2d)

⎞
⎟⎟⎟⎠

and substituting it in (14), we obtain the condition

(
i

ω

kq(ω − ikd)

ω(ω2 + k2d)
1

)
⎛
⎜⎜⎜⎜⎝

0
ν

2
0

ν

2
1 0

0 0 −4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

− i

ω
kq(ω + ikd)

ω(ω2 + k2d)

1

⎞
⎟⎟⎟⎟⎟⎠

=
k2q − νkqkd

ω2(ω2 + k2d)
− 4 < 0,

for which fulfilment it is enough to put

ν >
kq
kd

> 0. (15)

If iω is an eigenvalue of A, then condition (13) should be checked for all vectors of the form
(xω + xs, u) such that

xω ∈ ker(iωI −A), xs ⊥ ker(iωI −A), Axs − iωxs +Bu = 0.

In our case, ω = 0, and for it

xω =
(
kd −kq

)�
.

Moreover,

xs =
(
0 1

)� ⊥ B,

which means (xs, u) = (0, 0). Then the frequency condition reduces to the inequality

(
kd −kq

)⎛⎝0
ν

2ν

2
1

⎞
⎠
(
kd
−kq

)
< 0,

which in turn is equivalent to (15). Thus, the existence of the matrix H and the number ν such
that the derivative of V is negative definite with respect to the system, is proven.

It remains to show that the function V is positive definite. From the negative definiteness of
the matrix G and equality (10), choosing qw = 1, we get:

−2kqh12 = g11 < 0,

−2kdh22 + h12 = g22 < 0,

whence immediately follows the positivity of the coefficient h22. Therefore, since ‖qv‖ � 1 and
|qw| � 1, function V → +∞ with ‖ω‖ → +∞. Therefore, there exists R > 0 such that for any
q ∈ S

4 from ‖ω‖ > R it follows V > 1. Consider the set E = S
4 ×B3(R) containing all pairs of

quaternions of rotation q and angular velocities w such that ‖w‖ � R. The set E is compact, so
there is a point L3 in which

V (L3) = min
x∈E

V (x).
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Since V (L1) = 0 and L1 ∈ E, the value of V (L3) � 0. Thus, L3 cannot be on the boundary of
the set E, which means that there is an open set U ⊂ E containing L3. Denote by ψL3(t) the
solution of system (7), emitted from the point L3. Then there will be Δt > 0 such that ψL3(τ) ∈ U
for all τ ∈ [0,Δt]. Now suppose that V̇ (L3) < 0. Choosing Δt sufficiently small, we get that
V (ψL3(τ)) decreases, which contradicts the minimality of V (L3). So V̇ (L3) cannot be less than
zero. However, there are only two such points: L1 and L2. V (L1) < V (L2), and then L3 ≡ L1.
That is, the function V does not take negative values, and zero is reached only at the point L1.
Hence, the function V is positive definite.

So, we have found a positive definite function V , the derivative of which with respect to the
system is negative definite everywhere, except for two equilibrium points, L1 and L2. By Lyapunov’s
theorem on asymptotic stability, point L1 is asymptotically stable, while its domain of attraction
is the entire space, except for point L2.

4. ADAPTATION SYSTEM

In a real machine, unfortunately, due to small errors in the manufacture of propellers or engines,
as well as due to possible damage, the coefficients K for each propeller will differ slightly. And this
difference has a significant effect, first of all, on the angular stabilization, since the robot begins
to bank one side, and the condition for quaternions q → qd is not satisfied. Further, we consider
the case when each engine has its own thrust coefficient Ki, as well as its own estimate of this
coefficient K̂i. Consider a closed system, which is obtained in this case.

The equations of the model can be written as:

⎛
⎜⎜⎝
Iω̇ + ω × Iω

Ḧ + g

kmod

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 LK2 0 −LK4

−LK1 0 LK3 0

ξK1 −ξK2 ξK3 −ξK4

K1

m

K2

m

K3

m

K4

m

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
U1

U2

U3

U4

⎞
⎟⎟⎟⎠ , (16)

and the controller Eqs. (6) are as follows:

⎛
⎜⎜⎜⎝
U1

U2

U3

U4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1

2K̂1L

1

4K̂1ξ

m

4K̂1

1

2K̂2L
0 − 1

4̂K2ξ

m

4K̂2

0
1

2K̂3L

1

4K̂3ξ

m

4K̂3

− 1

2K̂4L
0 − 1

4K̂4ξ

m

4K̂4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Mdx

Mdy

Mdz

Υd + g

kmod

⎞
⎟⎟⎟⎟⎟⎠
. (17)

Denote 1
K̂i

by Ψi. Substituting (17) into (16) and expressing Md according to Algorithm, we get

⎛
⎜⎜⎝
Iω̇ + ω × Iω

Ḧ + g

kmod

⎞
⎟⎟⎠ = B

⎛
⎜⎝
−Ikdω − Ikqqv + ω × Iω

Υd + g

kmod

⎞
⎟⎠ , (18)
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where the coefficients of the matrix B are as follows:

B[1 : 2, •] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
(K2Ψ2 +K4Ψ4) 0

0
1

2
(K1Ψ1 +K3Ψ3)

− ξ

2L
(K2Ψ2 −K4Ψ4) − ξ

2L
(K1Ψ1 −K3Ψ3)

1

2Lm
(K2Ψ2 −K4Ψ4) − 1

2Lm
(K1Ψ1 −K3Ψ3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B[3, •] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− L

4ξ
(K2Ψ2 −K4Ψ4)

− L

4ξ
(K1Ψ1 −K3Ψ3)

1

4
(K1Ψ1 +K2Ψ2 +K3Ψ3 +K4Ψ4)

1

4ξm
(K1Ψ1 −K2Ψ2 +K3Ψ3 −K4Ψ4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B[4, •] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lm

4
(K2Ψ2 −K4Ψ4)

−Lm
4

(K1Ψ1 −K3Ψ3)

ξm

4
(K1Ψ1 −K2Ψ2 +K3Ψ3 −K4Ψ4)

1

4
(K1Ψ1 +K2Ψ2 +K3Ψ3 +K4Ψ4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As might be expected, in the case of exact coincidence of the estimates of the coefficients with their
real values, i.e., in the case of KiΨi ≡ 1, the matrix B coincides with the identity one.

In Eq. (18) let’s proceed to the linear system

⎛
⎜⎜⎜⎜⎝

Ixω̇x

Iyω̇y

Izω̇z

Ḧ + g

⎞
⎟⎟⎟⎟⎠ = B

⎛
⎜⎜⎜⎜⎝

−Ixkdωx − Ixkqqx

−Iykdωy − Iykqqy

−Izkdωz − Izkqqz

Ap(Hd −H)−AdḢ + g

⎞
⎟⎟⎟⎟⎠ . (19)

Now let’s introduce new notation to go to the full matrix formulation of the problem. Define

the new state vector X =
(
X�

1 ,X
�
2

)�
, where

X1 =
(
2Ixqx, 2Iyqy, 2Izqz, H −Hd

)�
,

X2 =
(
Ixωx, Iyωy, Izωz, Ḣ

)�
,

and denote by the vector g̃ the total effect of gravity on the system:

g̃ = (0, 0, 0, g)� .

AUTOMATION AND REMOTE CONTROL Vol. 80 No. 9 2019



ADAPTIVE QUATERNION-BASED QUADROTOR CONTROL SYSTEM 1727

Then system (19) can be rewritten as

Ẋ1 = X2,

Ẋ2 = B(−T1X1 − T2X2 + g̃)− g̃,
(20)

where the matrices T1 and T2 are the matrices of controller coefficients:

T1 = diag

(
kq
2
,
kq
2
,
kq
2
, Ap

)
, T2 = diag (kd, kd, kd, Ad) .

In fact, they are diagonal, but only their symmetry, positive definiteness and, for the sake of
convenience of computations, the commutability between themselves is assumed below.

Now, to estimate Ψi, we can apply the speed-gradient method in differential form (see [5]). This
method allows one to synthesize a control that ensures that the given objective function Q(X)
tends to zero. For this, the function only has to satisfy four conditions:

1) condition of regularity: Q(X) and Q̇(X,Ψ) are continuous;

2) growth condition: Q(X) � 0 and Q(X) → +∞ at |X| → +∞;

3) the condition of convexity of the derivative with respect to the system:

Q̇(X,Ψ) − Q̇(X,Ψ′) � (Ψ−Ψ′)�∇ΨQ̇(X,Ψ
′);

4) goal reachability condition: ∃Ψ∗ ∈ R
4 and ρ > 0 : Q̇(X,Ψ∗) < −ρQ(X) ∀X.

As an objective function for the speed-gradient method, let’s consider the function

Q(X) = ‖T1X1 + T2X2‖2 +X�
1 T

2
1X1 =

(
X�

1 X�
2

)( 2T 2
1 T1T2

T1T2 T 2
2

)(
X1

X2

)
. (21)

Due to the positive definiteness of the matrices T1 and T2, Q(X) is also a positive definite quadratic
form, which means that its tendency to zero ensures that X also tends to zero, moreover, the growth
and regularity conditions are obviously satisfied.

Take the derivative with respect to the system for the function Q(X):

Q̇(X,B) = 2
(
X�

2 −X�
1 T1B

� −X�
2 T2B

� + g�(B� − I)
)( 2T 2

1 T1T2

T1T2 T 2
2

)(
X1

X2

)
. (22)

The convexity condition of the function Q̇ is satisfied, since it is linear in the B matrix, which in
turn is linear in the estimates of Ψi.

Let us introduce an auxiliary function Z(X,J) such that Z(X,J) = −∇ΨiQ̇(X,B), where
J = ∂B

∂Ψi
:

Z(X,J) =
(
X�

1 X�
2 g̃�

)
⎛
⎜⎜⎝

2T1T2JT1 T1T2JT2 + T1J
�T 2

2 −J�T1T2
T2J

�T1T2 + T 2
2 JT1 2T 2

2 JT2 −J�T 2
2

−T1T2J −T 2
2 J 0

⎞
⎟⎟⎠
⎛
⎜⎝
X1

X2

g̃

⎞
⎟⎠ .

Theorem 2. Let T 2
2 > T1. Then the algorithm

˙̂
Ki = −γK̂2

i Z

(
X,

∂B

∂Ψi

)
(23)

ensures the stability of the linearized system and the tendency of K̂i → Ki.
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Proof. We have already shown that for the function Q(X) the conditions of regularity, growth
and convexity of the speed-gradient method are satisfied. It remains to check the last condition—
the condition of the reachability of the goal. To do this, we substitute B ≡ I in function (22),
which corresponds to ideally found estimates of Ψi. We shall obtain

Q̇I(X) = −
(
X�

1 X�
2

)⎛⎝ 2T 2
1 T2 2T1T

2
2 − 2T 2

1

2T1T
2
2 − 2T 2

1 2T 3
2 − 2T1T2

⎞
⎠
(
X1

X2

)
= −X�RX.

It suffices to show that the matrix of this quadratic form R is positive definite. Let us try to find
a non-singular coordinate transformation that turns this matrix into a block-diagonal one. One
such transformation may be

R =

⎛
⎝ 2T 2

1 T2 2T1T
2
2 − 2T 2

1

2T1T
2
2 − 2T 2

1 2T 3
2 − 2T1T2

⎞
⎠

=

⎛
⎝T1 T1T

−1
2

0 I

⎞
⎠
⎛
⎝2T1T

−1
2 0

0 2T 3
2 − 2T1T2

⎞
⎠
⎛
⎝ T1 0

T1T
−1
2 I

⎞
⎠ ,

from where the criterion of positive definiteness of a matrix of R follows:

T1T
−1
2 > 0,

T 3
2 − T1T2 > 0,

which, taking into account the positivity of the matrices T1 and T2, is transformed into the condition

T 2
2 > T1. (24)

So, if condition (24) is fulfilled for the coefficient matrices, then the adaptation of the coeffi-
cients Ψi according to the speed-gradient method will lead to the limit Q(X,B) → 0 and, therefore,
X → 0, which proves statement about the stability of the linearized system. Does this mean that
the estimates of Ψi converge to their true values 1

Ki
? To prove this fact, consider the system (20).

Since the point X = 0 is a stable equilibrium point for an adaptive system, in the limit the following
equality should be satisfied

g̃ = Bg̃,

which means that the matrix B in the limit has an eigenvector (0, 0, 0, 1)� with an eigenvalue 1.
Expanding this equality as a system of equations, we get

K2Ψ2 −K4Ψ4 = 0,

K1Ψ1 −K3Ψ3 = 0,

K1Ψ1 −K2Ψ2 +K3Ψ3 −K4Ψ4 = 0,

K1Ψ1 +K2Ψ2 +K3Ψ3 +K4Ψ4 = 4,

whence a set of equalities follows immediately: KiΨi = 1 and, accordingly, Ψi =
1
Ki

for all
i ∈ {1, . . . , 4}.

The adaptation by the speed-gradient method can be written as:

Ψ̇i = −
˙̂
Ki

K̂2
i

= γZ

(
X,

∂B

∂Ψi

)
.
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Unknown, but constant values of the real thrust coefficients Ki enter the corresponding partial
derivative ∂B

∂Ψi
linearly, and therefore can be taken out of the function Z into the factor γ. Expressing

from here
˙̂
Ki, we obtain (23).

For the completeness of the algorithm, we present the concrete values of the used derivatives ∂B
∂Ψi

,
while counting the coefficients Ki taken as a factor of γ:

∂B

∂Ψ1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0
1

2
− L

4ξ
−Lm

4

0 − ξ

2L

1

4

ξm

4

0 − 1

2Lm

1

4ξm

1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
∂B

∂Ψ2
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
0 − L

4ξ

Lm

4

0 0 0 0

− ξ

2L
0

1

4
−ξm

4

1

2Lm
0 − 1

4ξm

1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∂B

∂Ψ3
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0
1

2

L

4ξ

Lm

4

0
ξ

2L

1

4

ξm

4

0
1

2Lm

1

4ξm

1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
∂B

∂Ψ4
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
0

L

4ξ
−Lm

4

0 0 0 0

ξ

2L
0

1

4
−ξm

4

− 1

2Lm
0 − 1

4ξm

1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(25)

5. MODELING

The verification of the algorithm presented in the previous section was carried out using the
simulation of a quadrotor flight in the MATLAB R2016a system. For this, a quadrotor model, a
control system and an adaptation system were implemented. The physical parameters for the sim-
ulation were approximately measured in one of the real manufactured quadrotor (robot FlyMaple),
and they are listed in the table.

It also shows the applied coefficients of the controllers, which satisfy condition (24), and the
“true” thrust coefficients chosen for the simulation, which are unknown for the control algorithm.
In the initial position, the robot is assumed to be at rest on a horizontal surface, its coordinate in
altitude is taken as 0.

To test the algorithm, 3 experiments were carried out, in the first of them there was no adap-
tation (γ = 0), in the second—γ = 0.0005, in the third—γ = 0.005. The initial estimates of the
coefficients K̂i are 8.6 N, the simulation time is 10 s.

Parameter values in the simulation

Physical parameters Parameters of controllers Thrust coefficients

m = 1.3 kg
L = 0.22 m kp = 2.6 K1 = 12.6 N
ξ = 0.017 m kd = 10.0 K2 = 18.6 N

Ix = 0.12 kg×m2 Ap = 2.0 K3 = 4.6 N
Iy = 0.12 kg×m2 Ad = 5.0 K4 = 7.0 N
Iz = 0.22 kg×m2 Hd = 3 m
g = 9.8 m/s2
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Fig. 3. Lack of adaptation, γ = 0: (a) orientation, Euler angles; (b) altitude H .

Fig. 4. Slow adaptation, γ = 0.0005: (a) orientation, Euler angles; (b) altitude H ; (c) estimates of the
coefficients K̂i; (d) values KiΨi.

In the first case (Fig. 3), in the absence of adaptation, the robot enters a stable movement, but
does not achieve the control goal, in particular, it has a nonzero roll and pitch values, which in a
real system would result in acceleration in the XY plane.

In the case of slow adaptation (Fig. 4), the state of the robot asymptotically reaches its target
values, as well as the thrust coefficients. It can also be noted that in the absence of adaptation, the
error in roll and pitch was 10–15 degrees, whereas in its presence it did not exceed 5, and after 10
seconds it was already 2 degrees. Errors of this order may already be acceptable in a real system.
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Fig. 5. Fast adaptation, γ = 0.005: (a) orientation, Euler angles; (b) altitude H ; (c) estimates of the coeffi-
cients K̂i; (d) values KiΨi.

With fast adaptation (Fig. 5), the coefficients converge to their true values much faster, and the
roll and pitch error does not exceed 1 degree. However, it can be noted that in the initial period
the coefficients, and with them the orientation, experience strong fluctuations. A further increase
in the coefficient γ causes the calculations to become unstable.

6. CONCLUSIONS

In this paper, a quaternion-based parametric controller for stabilizing a quadrotor, as well as a
system for identifying thrust coefficients on each propeller, was described. A numerical simulation
was also performed, confirming the efficiency of the proposed algorithms.

ACKNOWLEDGMENTS

This research was supported by the Russian Science Foundation, project no. 14-29-00142 in
the Institute for Problems of Mechanical Engineering, of the Russian Academy of Sciences (IPME
RAS).

REFERENCES

1. Belyavskyi, A.O. and Tomashevich, S.I., Passivity-Based Method for Quadrotor Control, Upravlen.
Bol’sh. Sist., 2016, no. 63, pp. 155–181.

2. Kanatnikov, A.N. and Akopyan, K.R., The Plane Motion Control of the Quadrocopter, Mat. Mat.
Modelir., 2015, no. 2, pp. 23–36.

AUTOMATION AND REMOTE CONTROL Vol. 80 No. 9 2019



1732 NIKITIN

3. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika, tom 1: Mekhanika (Theoretical Physics, vol. 1:
Mechanics), Moscow: Fizmatlit, 2013, 5th ed.

4. Matveev, V.V. and Raspopov, V.Ya., Osnovy postroeniya besplatformennykh inertsial’nykh navigatsion-
nykh sistem (Fundamentals of Designing Strapdown Inertial Navigation Systems), St. Petersburg: TsNII
“Elektropribor,” 2009.

5. Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi di-
namicheskimi sistemami (Nonlinear and Adaptive Control for Complex Dynamical Systems), St. Pe-
tersburg: Nauka, 2000.

6. Yakubovich, V.A., Frequency Theorem in the Control Theory, Sib. Mat. Zh., 1973, vol. 14, no. 2,
pp. 384–419.

7. Augugliaro, F., Schoellig, A.P., and D’Andrea, R., Generation of Collision-Free Trajectories for a Quadro-
copter Fleet: A Sequential Convex Programming Approach, IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), Vilamoura-Algarve, Portugal, October 7–11, 2012, pp. 1917–1922.
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