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Abstract—We consider a generalization of processes with disorder, namely processes with a
vector disorder. For these problems, we consider a class of optimal control problems that do
not detect the disorder. We propose a computational method for solving control problems on
a finite time interval and with an objective functional defined at the end of the interval, based
on the use of the martingale technique. We consider a computational experiment for a model
with two barriers and two stopping times.
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1. INTRODUCTION

Processes that we consider in this work have been popular for a long time; they are called pro-
cesses with mode switching. Processes with disorder are an important subclass of mode switching
processes. The main problem related to the disorder, which is discussed in most publications, is
the fastest detection of the moment of disorder [1–3]. Let us consider a generalization of processes
with disorder, namely processes with a vector disorder, and an important class of optimal control
problems for such processes without disorder detection. We will consider control problems on a
finite time interval with an objective functional defined at the end of the interval. For these prob-
lems, we propose a computational method of solving them. We will use the martingale technique,
which has been used, e.g., in stochastic financial mathematics [4, 5]. The paper is structured as
follows. Section 2 lays out the basic concepts that are used in the remaining sections, poses the
optimal control problem in question and describes our approach for solving it. In Section 3, we
consider the model for which we solve the control problem. Section 4 discusses the solution to the
quantile hedging problem for the considered model. Section 5 shows experimental results. Section 6
summarizes the work and outlines directions for further research.

2. DEFINITIONS AND PROBLEM SETTING

Consider a stochastic basis
〈
Ω, (Ft)t≥0 , F, P

〉
. The elementary random event space Ω is the

space of continuous trajectories on the segment [0, T ], the filtering (Ft)t≥0 is endowed with a set

of standard properties, the σ-algebra F = σ
(⋃

t∈[0,T ] F t

)
= FT . The main source of randomness is

the standard Wiener process, canonically defined as Wt (ω) = ω (t); moreover, we assume that this
process defines a stochastic basis in the following sense: the probability measure P is the Wiener
measure, the filtering Ft = σ (Ws, s ∈ [0, t]

⋃
N) where N is the σ-algebra containing all sets of

zero measure.
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1420 BELYAVSKII et al.

Consider the Ito process: dX (ω, t) = αX (ω, t) dt+ βX (ω, t) dWt. In the formulas that fol-
low, the trajectory ω will be omitted where it does not lead to confusion. Suppose that
the coefficient βX (t) �= 0 with probability one, then the Ito process X can be written as

dX (t)= βX(t)
(
αX(t)
βX(t) dt+ dWt

)
. Further we will be interested in the process dW= αX(t)

βX(t)dt+ dWt,

which is an Ito process if the existence condition for the integral P
(∫ T

0 |χX (s)| ds < ∞
)
= 1,

χX (t) = αX(t)
βX(t) is fulfilled. In what follows, we need one of the statements of the Girsanov theorem,

see, e.g., [4, p. 833].

Theorem 1. Consider the process

Zt = exp

⎛
⎝−1

2

t∫

0

χ2
X
(s) ds+

t∫

0

χX (s) dWs

⎞
⎠.

If EZt =Eexp
(
−1

2

∫ t
0 χ

2
X
(s) ds+

∫ t
0 χX (s) dWs

)
= 1, then with respect to measure dP T = ZTdPT

the Ito process dW t = χX (t) dt+ dWt is a standard Wiener process, and the density process Zt is
a uniformly integrable martingale.

PT denotes the restriction of a measure to the σ-algebra FT . A sufficient condition for the ex-

pectation equality to hold is the condition P
(∫ T

0 χ2
X
(s) ds < ∞

)
= 1. Since ZT > 0, the new

measure is equivalent to the original measure. Regarding this new measure, the process X
is expressed directly through the standard Wiener process W t in the form of the Ito integral

X (t) = X (0) +
∫ t
0 βX (s) dWs, for whose existence the equality P

(∫ T
0 β2

X (s) ds < ∞
)
= 1 is a suf-

ficient condition. If this condition is fulfilled, the process X is a martingale with a continuous path,
and there is a single measure with respect to which the process X is a martingale. Next we use the
theorem on the representation of martingales [4, p. 313].

Theorem 2. Let Y (t) be a martingale with a continuous trajectory. Then there exists a unique

progressively measurable process βY (t), with P
(∫ T

0 β2
Y (s) ds < ∞

)
= 1, for which Y (t) = Y (0)+

∫ t
0 βY (s) dWs.

Corollary. Given that βX(t) �= 0, the martingale Y can be expressed via the martingale X as fol-
lows: Y (t) = Y (0) +

∫ t
0 βY/X(s)dXs, where βY /X (t)βX (t) = βY (t). Moreover, this representation

is unique.

Consider the optimal control problem on a finite interval [0, T ] of the following form:

min
βY /X ,y0

E (Φ (YT, ξ))

under constraints

Y (t) = y0 +

t∫

0

βY /X (s) dXs,

X (t) = x0 +

t∫

0

αX (s) dXs +

t∫

0

βX (s) dWs,

y0 ≤ a.

(1)

Here, the random variable ξ is measurable with respect to the σ-algebra FT , the function of two
variables Φ(x, y) is a convex function with respect to the first variable for an arbitrary value of the
second variable.
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OPTIMAL CONTROL PROBLEMS WITH DISORDER 1421

In what follows, we call the process X the base process, and the process βY/X is called the

control or strategy. To solve this problem, consider the martingale measure P : dP T = ZTdPT .
The density process Zt has been defined above. With respect to this new measure, processes Xt

and Yt are martingales with continuous trajectories. Suppose that there exists a solution to the
problem

min
η

E (Φ (η,ξ)) given that Eη ≤ a. (2)

Suppose that η∗ is a solution to problem (2). Consider the process

V (t) = E (η∗/Ft) (3)

which is a uniformly integrated martingale with respect to the previously defined filtering and
measure P , so the process (3) can be expressed as

V (t) = Eη∗ +
t∫

0

βV /X (s) dXs. (4)

Since E [η∗] < ∞ and V (T ) = η∗, the process βY/X = βV/X and the initial value y0 = Eη∗ are
the solution to problem (1). In the derivation of decomposition (4) we have used the corollary
shown above. Thus, the following statement is established.

Theorem 3. If there exists a solution of problem (2), then the solution to problem (1) is con-
structed as follows.

1. Find the martingale measure P using the density process Z.

2. Solve problem (2).

3. Calculate the martingale V and martingale decomposition (4) with respect to the process X.

Let us consider the decomposition of the martingale V in more detail. An explicit
way to calculate the decomposition is obtained under the assumption that there exists a
function M (x, t) ∈ C2,1 such that V (ω, t) = M(X(ω, t), t), and the assumption that the in-
tegrand βX(ω, t) = βX(X(ω, t), t). Under these assumptions, one can use the Ito formula
to calculate the decomposition. Indeed, using the Ito formula the differential dV (ω, t) =[
∂M
∂t (X(t), t) + 1

2β
2
X(X(t), t)∂

2M(X(t),t)
∂x2

]
+βX(X(t), t)∂M(X(t),t)

∂x dW t using decomposition (4) is the

same differential dV (ω, t) = βV/X (X (ω, t) , t) βX (X (ω, t) , t) dW t. By comparing the differentials,
we get a fundamental equation for the function M :

∂M

∂t
+

1

2
β2
X

∂2M

∂x2
= 0 (5)

with initial condition M (x, 0) = Eη∗ and the expression for the integrand in the decomposition (4)

βV/X =
∂M

∂x
. (6)

Since βY/X may depend on the entire history of the process W , we will use other relations to
calculate the decomposition (4), for example, if X and Y are quadratically integrable martingales
with quadratic characteristics 〈X〉t and 〈Y 〉t. The use of these characteristics allows us to express
the integrand through them in the decomposition (4):

βV/X (t) =
d 〈XV 〉t
d 〈X〉t

. (7)
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1422 BELYAVSKII et al.

Consider two examples.

In example 1, we need to find

min
βY/X ,y0

E (ξ − YT )
2 (8)

under constraints (1). We assume that the random variable ξ is quadratically integrable. Following
the proposed computational scheme, we need to solve problem (2) in order to find η∗. Next, we
use the result given in [6, Chapter 6], which implies that problem (2) is equivalent to the problem

min
η

E
(
ξ − η

)2
given that EZT η = 0. (9)

In (9), ξ = ξ − a. Solution of problem (9) will be

η∗ = ξ − EZT ξ

EZ2
T

ZT . (10)

Using (10), we calculate the process Yt = a+E(η∗/Ft) and the optimal control using (6) or (7).

In example 2, we need to find

min
βY/X ,y0

(ξ − YT )
+ (11)

under the same constraints. Random variable ξ > 0 and its expectations are Eξ < ∞ and Eξ < ∞.
In (11), we use the notation (x)+ = max(x, 0). According to the proposed scheme, we need to solve
problem (2), which is equivalent to the problem

maxEξς under constraints 0 ≤ ς ≤ 1 and Eξς ≤ a. (12)

Consider two new measures: dP̃ = ξ
Eξ and dP = ξ

Eξ
dP , for which problem (12) will look like

max Ẽς under constraints 0 ≤ ς ≤ 1 and Eς ≤ α, where α =
a

Eξ
. (13)

Problem (13) is a randomized Neyman–Pearson problem. The solution of the randomized prob-
lem is given in [7]. Following [7], we give the solution

ς∗ = I{
dP̃−λ∗dP>0

} + εI{
dP̃−λ∗dP=0

}, (14)

In (14), λ∗ is the smallest value of λ for which EI{
dP̃−λ∗dP>0

} ≤ α and ε =
α−EI{

dP̃−λ∗dP>0
}

EI{
dP̃−λ∗dP=0

} .

Since 0 ≤ α− EI{
dP̃−λ∗dP>0

} < EI{
dP̃−λ∗dP=0

}, 0 ≤ α < 1. After that we find the solution of

problem (2) η∗ = ξς∗, the process Y , and the optimal control.

3. MAIN MODEL

After describing the computational scheme, we consider the main class of models we consider for
the basic process X. The processes αX and βX involved in the definition of process X are defined

AUTOMATION AND REMOTE CONTROL Vol. 80 No. 8 2019



OPTIMAL CONTROL PROBLEMS WITH DISORDER 1423

by the sequence of stopping moments 0 < τ1 < . . . < τn < . . . that go to infinity with probability
one and two deterministic sequences μ and σ with non-zero elements as follows:

αX (t) =
∞∑
i=1

μiI{τi<t≤τi}, βX (t) =
∞∑
i=1

σiI{τi<t≤τi}. (15)

Since we consider a finite segment [0, T ], it makes sense to define the random variable
κT = sup {n : τn ≤ T} and use it as an upper limit of the sums in (15):

αX (t) =
κT∑
i=1

μiI{τi−1<t≤τi} + μκT+1I{τκT <t≤T},

βX (t) =
κT∑
i=1

σiI{τi−1<t≤τi} + σκT+1I{τκT <t≤T}.
(16)

It is obvious that P (κT < ∞) = 1, and the trajectories of processes (16) are left semi-continuous.
This fact and the fact that τi are the stopping moments imply the statement.

Assertion. Processes αX and βX are progressively measurable, and the integrals
∫ T
0 |αX (s)| ds,

∫ T
0 β2

X (s) ds and
∫ T
0

(
αX(s)
βX(s)

)2
ds are finite with probability one.

Consequently, there exists a unique martingale measure with respect to which the process X is
a martingale with density

ZT = exp

(
−1

2
AT +

√
AT ε

)
. (17)

In (17), ε is the standard normal random variable. The random nature of the process A is
determined by the stopping moments. Process A is

At =
∑(

μi

σi

)2

(t ∧ τi − t ∧ τi−1) . (18)

With respect to the martingale measure, the process

W t =
∞∑
i=1

μi

σi
(t ∧ τi − t ∧ τi−1) +Wt (19)

is the Wiener process.

Consider the second problem from Section 2 for this model, using (17), (18), and (19). We
assume that the random variable is ξ = f(XT ). Moreover, the function f is such that f(x) > 0,
Ef (XT ) < ∞ and Ef (XT ) < ∞. Regarding the martingale measure, the random variable XT is
determined by the following equality:

XT = x0 +
√
UT ε. (20)

In (20), Ut =
∑∞

i=1 σ
2
i (t ∧ τi − t ∧ τi−1). Relative to the original measure, the random variable

XT = x0 + CT +
√
UT ε, (21)

where Ct =
∑∞

i=1 μi (t ∧ τi − t ∧ τi−1). We calculate the expectation Ef (XT ) η (XT ) by the original
measure. It follows from (21) that the expectation in question is given by the formula

E (f (XT ) ς (XT )) =
1√
2π

E

⎛
⎝ 1√

UT

∞∫

−∞
f (x) ς (x) exp

(
− 1

2UT
(x− x0 − CT )

2
)
dx

⎞
⎠ . (22)
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From (22) we get that dP̃ (x) = p̃ (x) dx, where

E
(
f (x) exp

(
− 1

2UT
(x− x0 − CT )

2
)

1√
UT

)

∫ ∞
−∞ E

(
f (x) ς exp

(
− 1

2UT
(x− x0 − CT )

2
)

1√
UT

)
dx

. (23)

For the measure P , we get the same result:

p (x) =
E
(
f (x) exp

(
− 1

2UT
(x− x0)

2
)

1√
UT

)

∫ ∞
−∞ E

(
f (x) ς (x) exp

(
− 1

2UT
(x− x0)

2
)

1√
UT

)
dx

. (24)

It follows from (14), (23), and (24) that the optimal value is

ς∗ (x) = I{p̃(x)−λ∗p(x)>0} + εI{p̃(x)−λ∗p(x)=0}, (25)

where

ε =
α− EI{p̃(XT )−λ∗p(XT )>0}
EI{p̃(XT )−λ∗p(XT )=0}

.

It follows from (25) that the random variable η∗ is a function of XT :

η∗ (XT ) = f (XT )
(
I{p̃(XT )−λ∗p(XT )>0} + εI{p̃(XT )−λ∗p(XT )=0}

)
. (26)

Further, using (26), let us consider the calculation of the conditional expectation E (η∗ (XT ) /Ft)
by the martingale measure. To do this, we represent the random variable XT as fol-
lows: XT = Xt +

∫ T
t σ(s)dW s. Therefore, the conditional law Law (XT −Xt/UT − Ut) =

Law
(√

UT − Utε
)
. Since Xt and Ut are measurable with respect to Ft and regularity conditions

hold, it follows that the conditional expectation is a function of t, Xt, and Ut, i.e.,

M (Xt, Ut, t) = E (η∗ (XT ) /Ft)

=
1√
2π

∞∫

−∞
η∗ (x) EUT−Ut

⎛
⎝exp

(
− (x−XT )

2 /2 (UT − Ut)
)

√
UT − Ut

⎞
⎠ dx.

(27)

Formula (27) is significantly simplified if the disorder affects only the shift of the process X (the
classic version of the disorder), i.e., σi = σ. The corresponding formula will become

M (Xt, t) =
1√

2πσ (T − t)

⎛
⎝

∞∫

−∞
η∗ (x) exp

(
− (x−Xt)

2

2σ2 (T − t)

)
dx

⎞
⎠ . (28)

In (28), the function M depends only on two arguments. Next, we calculate the function M (x, t)
by solving Eq. (5) and calculate the control β using formula (6).

4. APPLICATION TO FINANCIAL MATHEMATICS

Let us consider the financial market model as a pair of assets: risky (stock value) S and risk-free
(bank deposit) B. These assets are represented by their own prices S (t) and B (t), t ∈ [0, T ], that
is, we are talking about a (B,S)-market with continuous time.

AUTOMATION AND REMOTE CONTROL Vol. 80 No. 8 2019
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Assets are subject to the following equations:

dS (t) = S (t) dX (t) , dB (t) = rB (t) dt (29)

with initial values S0 and B0. We consider a self-financing portfolio whose capital G(t) satisfies the
equation dG(t) = γ(t)dS(t) + β(t)dB(t). The problem is to calculate

min
γ,β

(f (S (T ))−G (T ))+ (30)

in view of (29) under constraint G0 ≤ a. In (30), the function is f(x) ≥ 0 and is bounded above.
We reduce the problem (30) to the solved problem (11); for this, we consider the discounted

process S(t) = S(t)
B(t) , whose differential is dS(t) = S(t)((αX (t)− r)dt+ βX(t)dWt). At the same

time, the differential of the discounted capital dG(t) = dG(t)
B(t) = γ(t)dS(t). We define f

(
S(T )

)
=

f
(
S (T )B (T )

)
/B (T ), which allows us to consider an equivalent and simpler task:

minγ E
(
f
(
ST

)
−G (T )

)+
under constraints G0 ≤ a

B0
and G (t) = G0 +

∫ t
0 γ (s) dS (s), which coin-

cides with the task (11) if we let X (t) = S (t) and Y (t) = G (t). Further, without loss of generality,
we assume that r = 0.

For the case when the disorder affects only the shift and βX (t) = σ is a constant, solutions of

the first equation from (11) are S (t) = S0 exp
(
C (t)− σWt

)
and S (t) = S0 exp

(
−σ2

2 + σWt

)
for

the original measure and the martingale measure respectively. The process is C (t) = C (t)− σ2

2 t.

5. EXAMPLE. “MODEL WITH TWO BARRIERS AND TWO STOPPING MOMENTS”

The model was presented at the Moscow symposium “Advanced Finance and Stochastics” [8].
This model of behavior for a risky asset value arises in a situation where the “regulator” wants
to keep the cost within a given corridor, and the price trend at the initial moment of time is an
increasing function. On the considered segment [0, T ], the regulator takes part in the bidding at
most twice. The first time, he sells an asset when the asset reaches a top level in order to get a
diminishing trend. The second time, the regulator buys an asset in order to get an increasing trend
when the price reaches a lower level.

Thus, we need to consider a vector stopping moment (τ1, τ2), where τ! = inf(t∈ [0, T ] : S(t) =M1),
where M1 > S0 and τ2 = inf (t ∈ (τ1, T ] : S (t) = M2), where M2 < S0. We define the shift

C(t) =

(
μ1 − σ2

2

)
(t ∧ τ1) +

(
μ2 − σ2

2

)
(t ∧ τ2 − t ∧ τ1) +

(
μ3 − σ2

2

)
(t− t ∧ τ2).

We assume the following inequalities: μ1 − σ2

2 > 0, μ2 − σ2

2 < 0, μ3 − σ2

2 > 0. Let us find the den-
sity p(x, y) for the distribution of the vector stopping moment (τ1, τ2) defined on the set D ={
(x, y) ∈ R2 : 0 ≤ x ≤ y

}
, using the equality for density: p (x, y) = p (y/x)× p (x). To find

the density of the distribution of the first stopping moment p(x), we use the fact that τ1 =

inf
(
t : m1t+ σWt = M1

)
, where m1 = μ1 − σ2

2 and M 1 = ln M1
S0

. To determine the density p (y/x)

of the conditional distribution law, we use the strictly Markov property of the Wiener process.
According to this property, the conditional behavior of the second stopping moment is determined

by the equality τ2 = x+ inf
(
t : m2t+ σWt = M2

)
, where m2 =

σ2

2 − μ2 and M2 = ln M1
M2

. Let

p(m,M,x) be the density of the distribution of the stopping moment τ= inf(t : mt+ σWt = M)
defined on the set R+ = {x ∈ R : x > 0}. Density parameters m and M are positive num-

bers. Density p(m,M,x) = M
σ
√
2π

exp
(
mM
σ2

)
1

x3/2 exp
(
− 1

2σ2

(
m2x+ M2

x

))
, see [4, p. 265]. The

AUTOMATION AND REMOTE CONTROL Vol. 80 No. 8 2019



1426 BELYAVSKII et al.

density of the joint distribution law is expressed in terms of the density p(m,M,x) as follows:

p (x, y) = p
(
m1,M 1, x

)
p
(
m2,M 2, y − x

)
. The explicit form of the density of the joint distribu-

tion law makes it easy to calculate the function ς∗ (x) and solve the quantile hedging problem for
a model with two barriers.

5.1. Computational Experiment

Consider the function f (x) = (x−K)+. The following input data is chosen for the calcula-
tion: μ! = 0.1; μ2 = −0.1; μ3 = 0.1; σ = 0.05; S0 = K = 6; M1 = 7; M2 = 5; α = 0.35. Function

F (λ) =
(∫ ∞

−∞ p (s) I{p̃(s)−λ∗p(s)>0} (s) ds− α
)
is a continuous function, therefore ε = 0 in (25).

Figure 1 shows the plot of F (λ) for the values λ ∈ [0.3; 1.5].

Solution of the equation F (λ) = 0− λ = 0.7.

Further, in the calculations we used the Rademacher approximation ΔSn= Sn−1σ/
√
Nδn,

P (δn = 1) = P (δn = −1) = 1/2.

Results of our calculations are shown on Fig. 2 and in the table. For N = 10 and N = 11, the
calculated values of α are the same and equal to 0.3496. For N = 10 and a random trajectory we
have calculated a portfolio which is shown in the table.

The Rademacher approximation satisfies

γn =
E(ΔYnΔSn/Fn−1)

E
(
(ΔSn)

2 /Fn−1

) =
ΔYn

ΔSn

∣∣∣∣
δn=1

=
ΔYn

ΔSn

∣∣∣∣
δn=−1

.

The second component of the portfolio is βn = Yn−1 − γnSn−1.

Fig. 1. Plot of F (λ) for the values λ ∈ [0.3; 1.5].

Fig. 2. Plots of the calculated α as a function of N (N = 3, . . . , 11) (exact value α = 0.35).
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Portfolio calculation

n

Arbitrarily
chosen

path on a tree
(values of εn)

Values of Sn

in the atoms
of the chosen

path

Values of Yn

in the atoms
of the chosen

path

Values of γn
in the atoms
of the chosen

path

Values of βn

in the atoms
of the chosen

path

0 6 0.07966675650 0.4297220522 –2.498665556
1 1 6.094868328 0.1204337691 0.5907306195 –3.479991574
2 1 6.191236656 0.1773614912 0.7757321767 –4.625379997
3 –1 6.093344609 0.1014234805 0.5837691069 –3.455682860
4 –1 5.997000371 0.04518069073 0.3500031905 –2.053788572
5 –1 5.902179469 0.01199307250 0.1285132911 –0.7465154357
6 –1 5.808857818 0 0 0
7 –1 5.717011711 0 0 0
8 1 5.807405601 0 0 0
9 1 5.899228744 0 0 0
10 –1 5.805953748 0

6. CONCLUSION

We have proposed a model with vector disorder and proposed for this model an algorithm for
solving a wide class of stochastic optimal control problems. As an example, we have solved the
quantile hedging problem for a model with a corridor. We have shown the results of applying the de-
veloped algorithm. Further studies will be directed towards obtaining an acceptable computational
algorithm for solving the considered stochastic optimal control problems for other stopping times.
In this case, we assume that the Wiener process is approximated with the Donsker–Prokhorov
principle.
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