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Abstract—We present the results of the analysis and comparison of the properties of two con-
cepts in state filtering problems for nonlinear stochastic dynamic observation systems with
discrete time: sigma-point Kalman filter based on a discrete approximation of continuous dis-
tributions and conditionally minimax nonlinear filter that implements the conditionally optimal
filtering method based on simulation modeling. A brief discussion of the structure and prop-
erties of the estimates and justifications of the corresponding algorithms is accompanied by a
significant number of model examples illustrating both positive applications and limitations of
the efficiency for the estimation procedures. The simplicity and clarity of the considered exam-
ples (scalar autonomous regressions in the state equation and linear observations) allow us to
objectively characterize the considered estimation methods. We propose a new modification of
the nonlinear filter that combines the ideas of both considered approaches.
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1. INTRODUCTION

Stochastic filtering, state estimation, and identification of parameters for dynamic observation
systems are problems important both for numerous applications and for the fundamental theory;
they have attracted considerable research interest over many years. Nonlinear models and filtering
algorithms occupy their own place in these studies. Due to the fact that nonlinear systems are ex-
tremely difficult to study by general rigorous methods, a certain mathematical freedom is allowed
in this area, consisting in the possibility of informal justification of proposed solutions by consid-
erations of reasonableness, engineering explanations, and approximate relations. Results obtained
in this way are generally covered by the term “suboptimal filtering.” In contrast with fundamental
results in the field of optimal stochastic filtering, suboptimal filters have real prospects for practical
application; for example, they allow to perform calculations for complex multidimensional models.
And although estimates obtained with the help of these methods do not possess guaranteed prop-
erties characterizing their quality, there are examples that confirm their practical applicability and
usefulness. A simple classic example of a suboptimal algorithm—the extended Kalman filter—is
successfully used for a number of nonlinear problems; however, it exhibits divergence in other,
less “successful” examples. A detailed review of suboptimal filtering algorithms goes beyond the
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scope of this article; here we will focus on only one successful and developed area that has gained
significant popularity: unscented Kalman filtering.

The concept of this modification of the Kalman filter (unscented Kalman Filter, UKF), first
described in [1], has not undergone significant changes since then and has been successfully used
to date, turning into a whole direction of research that finds applications in very different areas.
The basic idea of UKF is to approximate continuous distributions of parameters in a nonlinear
observation system by discrete ones using a specially chosen “basis,” a set of sigma-points. This
approximation allows to approximately calculate the moment characteristics of parameters that are
used in recurrent equations of a Kalman structure filter. A good overview of the techniques, meth-
ods, and modifications related to unscented Kalman filtering algorithms can be found in [2], where
significant effort has been made to systematize the results in this field. We also mention separately
the work [3], which complements the original method with a solution to the high dimensionality
problem (scaled unscented transformation), and also the works [4, 5] that explore the properties
of unscented Kalman filter for systems of special type, approaches to filter robustification [6, 7],
parameter optimization [8–10], improvements in computational efficiency [11], and generalization
to continuous time [12]. The popularity of this research direction has been confirmed by a large
number of practical publications devoted to using the UKF and adapting it to new models [13–18].

The heuristic approach, common for the suboptimal filtering direction, has alternatives that, on
the one hand, provide a rigorous mathematical justification and, on the other hand, are suitable
for widespread practical applications due to simplicity of implementation. Such an alternative is
provided by the theory of Pugachev’s conditionally optimal filtering and its development in relation
to dynamical systems with discrete time, the theory of conditionally minimax nonlinear filtering
(CMNF) [19–22]. At present, these results do not have as wide a scope as UKF. The purpose of
this work is to provide a qualitative comparison of the concepts underlying these two practically
important approaches and to illustrate the results of this analysis by a series of model experiments.
A separate task is the development of the conditionally minimax approach based on ideas embodied
in the UKF method.

2. BASIC MODEL

Consider a non-linear observation system defined by the following difference equations:

xt = ϕ
(1)
t (xt−1) + ϕ

(2)
t (xt−1)wt, t = 1, 2, . . . , x0 = η,

yt = ψ
(1)
t (xt) + ψ

(2)
t (xt)vt.

(1)

Here xt ∈ R
p is a random process that defines the system state; yt ∈ R

q are indirect observa-
tions; wt and vt are second-order discrete white noises; the random vector of initial conditions η also
has a finite second moment; processes wt and vt together with the vector η are mutually indepen-
dent. We denote their expectations and covariance matrices by mw(t),Dw(t),mv(t),Dv(t),mη ,Dη

respectively.

Consider the problem of estimating the state xt from observations yτ , τ = 1, . . . , t, using the
mean squared difference as the evaluation criterion for the estimate x̂t:

E
{
||xt − x̂t||2

}
.

Model (1) is a compromise description of the observation system, suitable for both unscented

Kalman and conditionally minimax filters. Moreover, an additional assumption ψ
(2)
t (x) = 1 and/or

requirement that all moments exist for the processes wt and vt often proves to be of practical
importance. For the purposes of this work, it suffices to note that under constraints on the linear
growth rate of functions at infinity and given the existence of second moments for all noises, the
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processes defined by (1) are Hilbert processes. Accordingly, under such assumptions the filtering
problem under consideration is well-posed and therefore we can speak of its solution, both the
optimal solution in the form of the conditional expectation of xt for all observations as well as
various approximations of this solution.

3. METHODS AND APPROACHES

Both concepts for synthesizing nonlinear filtering algorithms that we study in this work are
based on two simple static problems.

First, consider the problem whose solution illustrates the essence of the CMNF approach.
Consider a random vector z = col (x, y), x ∈ R

p, y ∈ R
q with known expectation mz = E {z} =

col (mx,my) and covariance matrix Dz = cov (z, z) =

(
Dx Dxy

Dyx Dy

)
. The distribution function Fz

of vector z is unknown, and it is assumed that Fz ∈ Φ(mz,Dz), i.e., it belongs to the class of
all probability distributions with mean mz and covariance matrix Dz. The problem is to find an
estimate x̂ = θ (y) of the unobservable vector x given observations y, based on the mean squares
criterion and a given uncertainty set Φ. We treat any Borel-measurable functions θ(y) as admissible
estimators. We denote the estimation accuracy, provided by θ(y) if vector z has distribution Fz,
by J(θ,Fz) = E{||x− x̂||2}.

The solution to this problem is given by a saddle point defined by inequalities J (θ∗,Fz) ≤
J (θ∗,F∗

z ) ≤ J (θ,F∗
z ), where F∗

z is the Gaussian distribution with parametersmz,Dz , x
∗ = θ∗ (y) =

DxyD
+
y y+ (mx −DxyD

+
y my) is the best linear estimate x given observations y with respect to the

mean squares criterion [21, 22]. At the same time, J (θ∗,F∗
z ) = Dx−DxyD

+
y Dyx. Above and below

we denote by cov (x, y) the covariance matrix of random vectors x and y; by E{x}, the expectation
of a random vector x; by +, the matrix pseudo-inverse operation.

This result implies that when, in the estimation problem defined above, we construct the esti-
mate x by observation y the justified in the minimax sense linear estimator is one whose parameters
are determined by the moment characteristics of the joint distribution. This result underlies the
CMNF method. Namely, the filtering estimate x̂t of system state xt is obtained by solving the
following minimax problems with respect to the prediction x̃t and its correction:

x̃t = θ̃t (ξt) , θ̃t = argmin
θ̃t

max
Fz

E
{
||xt − θ̃t (ξt) ||2

}
, z = col (xt, ξt) ,

x̂t = x̃t + θ̂t(ζt), θ̂t = argmin
θ̂t

max
Fz

E
{
||xt − x̃t − θ̂t(ζt)||2

}
, z = col(xt − x̃t, ζt).

(2)

Here and below, ξt = ξt (x) and ζt = ζt (x, y) are some structural filter functions whose choice
constitutes the practical part of the method.

Further, the actual description of the CMNF algorithm is as follows. Suppose that we have x̂t−1,
the CMNF estimate of state xt−1 by observations yτ , τ = 1, . . . , t− 1. We search for a prediction x̃t
in the form

x̃t = Ftξt + ft, ξt = ξt (x̂t−1) , ξt (x) = ϕ
(1)
t (x) + ϕ

(2)
t (x)mw (t) . (3)

The prediction structure “by virtue of the system” is determined by the structural function ξt (x)
and coefficients Ft and ft (the matrix and vector of the corresponding dimensions), determined by
solving problem (2), namely θ̃t (ξt) = Ftξt + ft.

We search for the estimate x̂t of the state xt as

x̂t = x̃t +Htζt + ht, ζt = ζt (x̃t, yt) ,

ζt (x, y) = y − ψ
(1)
t (x)− ψ

(2)
t (x)mv (t) .

(4)
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The structure of the correction in the form of a residual is determined by the structural function
ζt (x, y) (residual) and coefficients Ht and ht (matrix and vector of the corresponding dimensions)
determined by solving problem (2), namely θ̂t (ζt) = Htζt + ht.

Solutions of both problems in (2) under the assumption that all necessary second moments are
finite obviously exist, but may not be unique. Uniqueness is provided by an additional assumption
on the minimum of the Euclidean norm of the solution and, therefore, by using the Moore–Penrose
pseudo-inversion operation. Thus, the required coefficients are given in the form

Ft = cov (xt, ξt) cov
+ (ξt, ξt) , ft = E {xt} − FtE {ξt} ,

Ht = cov (xt − x̃t, ζt) cov
+ (ζt, ζt) , ht = −HtE {ζt} .

(5)

Prediction x̃t and filtering estimate x̂t are unbiased and provide the following estimation quality:

K̃t = cov (xt − x̃t, xt − x̃t) = cov (xt, xt)− Ftcov (ξt, xt) ,

K̂t = cov (xt − x̂t, xt − x̂t) = K̃t −Htcov (ζt, xt − x̃t) ,
(6)

i.e., we ensure non-divergence and “meaningfulness” of the estimates, where “meaningfulness” is
understood in the sense that both prediction and estimate have a guaranteed advantage as compared
to the trivial estimate, since Ftcov (ξt, xt) ≥ 0, Htcov (ζt, xt − x̃t) ≥ 0.

Relations (3)–(5) define a conditionally optimal Pugachev filter, and the CMNF paradigm sup-
plements it with a minimax justification for the filter structure. In addition, an indispensable
attribute of CMNF is a practical way to find the coefficients Ft, ft, Ht and ht by the Monte Carlo
method, i.e., by computer simulation. The filter itself is obtained by replacing in (5) the expec-
tations and covariances by their statistical estimates obtained as a result of computer simulation.
For other questions, including existence conditions for the filters, we refer to the work [23], which
additionally gives a more detailed overview of the method and directions of its further develop-
ment. Note that the filter’s structural functions, namely prediction ξt (x) and correction ζt (x, y),
can be defined in a flexible way: the presented structure of prediction “by virtue of the system”
and correction in the form of a residual are, of course, only the simplest versions, and depending
on the properties of a particular observation system ξt (x) and ζt (x, y) can vary significantly.

Note also that, in principle, CMNF can be thought of as non-linear Kalman filters or, as we
have mentioned in Section 1, as filters of Kalman structure. Let us clarify this by writing down the
simplest of such filters: the extended Kalman filter (EKF). Here and below, we do not introduce
additional notation but use already existing, for example, x̃t and x̂t to denote the prediction and
the filtering estimate, ξt for the prediction by virtue of the system,” and ζt for the residual. The
exact algorithms that we mean will be clear from context. For EKF, the relations are as follows:

x̃t = ξt, ξt = ξt (x̂t−1) , ξt (x) = ϕ
(1)
t (x) + ϕ

(2)
t (x)mw(t) ,

K̃t = ftK̂t−1f
T
t + ϕ

(2)
t Dw (t)ϕ

(2)
t

T
, ft =

∂ϕ
(1)
t (x)

∂x

∣∣∣∣∣x = x̃t,

ϕ
(2)
t = ϕ

(2)
t (x̃t) , x̂t = x̃t +Htζt, ζt = y − ψ

(1)
t (x)− ψ

(2)
t (x)mv (t) ,

Ht = K̃th
T
t

(
htK̃th

T
t + ψ

(2)
t Dv (t)ψ

(2)
t

T
)+

,

ht =
∂ψ

(1)
t (x)

∂x

∣∣∣∣∣x = x̃t, ψ
(2)
t = ψ

(2)
t (x̃t) ,

K̂t = K̃t −HthtK̃t.

(7)
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The rest of the notation that we reuse also makes sense. For instance, ft, ht are some estimates
of the moments, that is, more precisely, their approximations obtained by linearization, Ht has the
same meaning as in (5), K̃t and K̂t are the covariances of the prediction error and estimation error,

only here, unlike (6), this approximation is due to elementary linearization of nonlinearities ϕ
(1)
t (x)

and ψ
(1)
t (x), while CMNF uses exact values or their statistical estimates.

Now we turn to UKF. The Kalman filter structure is preserved in this method, but the main idea
is fundamentally different. Namely, the conceptual basis of UKF is the unscented transform that
consists of the following. Suppose, as above, that there exists a vector z = col (x, y) ∈ R

p+q, such
that y = ϕ (x). Regarding the distribution Fx of the vector x we assume that Fx ∈ Φ (mx,Dx),
i.e., its first two moments are known. Informally, we can say regarding Fx that this distribution
is assumed to be continuous with a form “similar” to Gaussian. Moreover, in many publications
on this topic, following the original assumptions [1], the discussion of CT filtering is illustrated
by an example of calculation with a Gaussian vector x. Note that the reasoning here, as in the
publications directly devoted to this subject, does not pretend to be formal and does not imply
mathematical rigor of the assumptions and the results. As in any research on suboptimal estimate,
it is the conceptual component that is important—the idea based on empirical considerations and
supported by model examples. The transformation in question consists of representing Fx with
its discrete counterpart. Namely, instead of the assumption that x can take arbitrary values, we
assume that the range of values of x is constrained to a finite number of sigma-points x0, x1, . . . , x2p,
each of which is associated with the corresponding probability W 0,W 1, . . . ,W 2p. Let us consider
the relation between the dimension p of the vector x and the number of sigma-points 2p+ 1. This
is a fundamental point that emphasizes that the number of sigma-points, which should be few, are
substantially bounded. Otherwise, choosing an unlimited number of xi and selecting values of W i,
one can obviously achieve any given accuracy of approximation. The notation introduced above
yields simple approximate relations for the moments of the vector y:

my ≈ ŷ =
2p∑
i=0

W iyi, Dy ≈ D̂y =
2p∑
i=0

W i(yi − ŷ)(yi − ŷ)T,

Dxy ≈ D̂xy =
2p∑
i=0

W i(xi −mx)(y
i − ŷ)T, yi = ϕ

(
xi
)
.

(8)

The proximity of the momentsmy and ŷ, Dy and D̂y, Dxy and D̂xy in (8) is exactly the goal of the
unscented transform. This goal becomes more clear from the point of view of the next step: estimat-
ing the vector x from observations y. Indeed, the best linear estimate of x by y is θ∗ (y) = DxyD

+
y y+

(mx −DxyD
+
y my), the unscented transform yields x̂ = D̂xyD̂

+
y y + (mx − D̂xyD̂

+
y ŷ). In this case,

it is intuitively clear that the more precisely D̂xy, D̂y, ŷ approximate the moments Dxy,Dy,my,
the more accurate the estimate x̂ will be. On the other hand, this method is not burdened with
any optimization settings regarding the best choice of sigma-points and the weights themselves,
although it contains a fair number of reasonable, physically justified, and practically illustrated
options for their choice (for more detail on this, see the survey [2]).

Note that the proposed interpretation of the unscented transform is needed only for illustration.
Usually publications on UKF do not speak of a discrete distribution but rather only about sigma-
points and “weights,” which can even be negative. The choice of these weights can be quite diverse
and non-universal even within the same model and can vary depending on the purpose of the
transformation. One of the options used in the calculations below is as follows. We define the
transformation parameters α, β, γ (recommendations on their choice and a physical interpretation
are given, for example, in [24]) and define the “scale parameter” λ = α2 (p+ γ)− p. Sigma-points
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are constructed as follows:

x0 = mx, xi = mx +

(√
(p+ λ)Dx

)

i
, i = 1, . . . , p,

xi = mx −
(√

(p+ λ)Dx

)

i
, i = p+ 1, . . . , 2p,

(9)

where
(√

(p+ λ)Dx

)
i
is the ith column of the matrix

√
(p+ λ)Dx, and the square root of a matrix-

valued argument denotes the result of the Cholesky decomposition. The weights are defined as

W 0 =
λ

p+ λ
for computing ŷ,

W 0 =
λ

p+ λ
+ 1− α2 + β for computing D̂y and D̂xy,

W i =
1

2(p + λ)
, i = 1, . . . , 2p.

(10)

In the examples below, the above-mentioned recommendations from [24] were used to choose
the basic values of parameters α∗, β∗, γ∗. In addition, in every problem we additionally performed
optimization where the basic values acted as initial conditions, and calculations were repeated many
times for different values of the parameters, choosing the ones that resulted in a UKF with the
greatest accuracy. It was possible to implement such an operation within the framework of this
work only because of the simplicity of the chosen examples with scalar states and observations, and
at the same time we had no limit on the simulation time. In practice, of course, such optimization
of parameters will not always be possible.

We make two important remarks. First, by presenting the estimate of the unscented transform
in the form x̂ = mx + D̂xyD̂

+
y (y − ŷ), we draw attention to the similarity, the functional identity

of the difference y − ŷ and residue ζt, as well as the coefficients D̂xyD̂
+
y and Ht in ratios (7) of the

EKF. This similarity provides an empirical justification for the use of unscented transform in the
relations of the non-linear Kalman filter.

The second point concerns the interpretation of the momentsDxy, Dy,my and the corresponding
approximations D̂xy, D̂y, ŷ. This description of the unscented transform is based on a static
estimation model, where these parameters are just first and second moments. If we presume that
the state xt of dynamical system (1) will play the role of the vector x, and the assumption on
its distribution will change depending on the observations yt that play the role of y, then it is
appropriate to characterize Fx as a conditional distribution of x whose shape is unknown, but the
mean value and covariance are the results of estimation made from previously obtained observations.
In this sense, Dxy, Dy, my should be interpreted as conditional moments.

Now the exposition can be summarized by UKF relations for system (1). These relations are
given according to [24].

Suppose that we have x̂t−1, an estimate of the UKF for the state xt−1 according to observa-
tions yτ , τ = 1, . . . , t− 1, and K̂t−1 is an estimate of the conditional covariance matrix of the error
xt−1 − x̂t−1. We choose sigma-points x̂it−1 according to (9) and weights W i according to (10), using

Dx = K̂t−1, and recalculate the sigma-points x̃it = ϕ1
t

(
x̂it−1

)
+ ϕ2

t

(
x̂it−1

)
mw (t), i = 0, . . . , 2p. We

are looking for a prediction x̃t in the following form:

x̃t =
2p∑
i=0

W ix̃it,

K̃t =
2p∑
i=0

W i
(
x̃it − x̃t

)
(x̃it − x̃t)

T + ϕ2
t

(
x̂it−1

)
Dw (t)

(
ϕ2
t

(
x̂it−1

))T
,

(11)
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where K̃t is the UKF estimate of the conditional covariance matrix of the prediction error xt − x̃t.
Next, the following sigma-points are recalculated:

yit = ψ1
t

(
x̃it

)
+ ψ2

t

(
x̃it

)
mv (t) .

We look for an estimate x̂t of the state xt in the form

ŷt =
2p∑
i=0

W iyit, K̂y
t =

2p∑
i=0

W i
(
yit − ŷt

)
(yit − ŷt)

T + ψ2
t

(
x̃it

)
Dv (t)

(
ψ2
t

(
x̃it

))T
,

K̂xy
t =

2p∑
i=0

W i
(
x̃it − x̃t

)
(yit − ŷt)

T, (12)

Ht = K̂xy
t (K̂y

t )
+, x̂t = x̃t +Htζt, ζt = yt − ŷt, K̂t = K̃t −HtK̂

y
tH

T
t .

Here we note the values K̂y
t and K̂xy

t , which are UKF estimates of the conditional covariances
of the residual ζt and the mixed prediction covariance of the prediction x̃t and the residual ζt,
respectively. Note that the above statements regarding conditional moments are based on a specific

condition, the assumption that the state xt−1 has the distribution Fxt−1 ∈Φ
(
x̂t−1, K̂t−1

)
, i.e.,

the values x̂t−1 and K̂t−1 computed at the previous filtering step are interpreted as conditional
expectation and conditional covariance, or at least their approximations. This is the reason why
a remark was made earlier regarding the interpretation of approximations D̂xy, D̂y, ŷ obtained as
a result of the unscented transform. In our opinion, this is an extremely important observation
regarding UKF methodology, which explains the practical efficiency of filtering algorithms and
high accuracy of the estimates in specific experiments. The term “conditional” here is in no
way connected with the “truly” conditional distribution of xt with respect to observations yτ ,
τ = 1, . . . , t, or some other set of random variables. But the meaning of this sentence is intuitively
clear, and its form is illustrated by the strict relations of the linear Kalman filter and the normal
correlation theorem [25].

Finally, we note that notation used in (11) and (12) was specifically chosen to be similar to the
notation used in relations (3)–(6) of CMNF and (7) of EKF in order to emphasize the similarity
and even identity in their interpretation.

4. MODEL CALCULATIONS

4.1. Static Regression and Polar Coordinates

Let us consider a series of model examples that allow us to illustrate the presence of both “good”
and “unsuccessful” conditions for using UKF and analyze the behavior of CMNF under the same
conditions. Note that, in general, the concept of a UKF estimate seems to be quite viable and
useful, it has visible advantages and even prospects that have not yet been realized. But at the
same time there are limitations whose systematic study has so far escaped proper attention from
the researchers in this field. One of the goals of this work is to reveal the limitations of UKF, at
least with examples of an academic nature, and make sure that such models have the possibility of
practical filtering (for this, we use the CMNF).

Let us consider a simple static example whose model has been used in many publications to
illustrate the results of the unscented transform (the full argument is well illustrated in [24]).
Consider a Gaussian vector col (x, y) , where the values x, y are interpreted as Cartesian coordinates
of a point on the plane. We will assume these coordinates to be independent, unknown, and
observable indirectly. By ρ and φ we denote the observations of the corresponding polar coordinates
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of x and y together with Gaussian additive noise:

ρ =
√
x2 + y2 + vρ, φ = arctan(x/y) + vφ, (13)

where vρ, vφ are independent centered values with standard deviations σvρ = 30 m, σvφ = 5 deg.
The problem is to estimate x and y given ρ and φ. We use the following algorithms for estimation.

1. Best linear estimate

θ∗ (ρ, φ) = Dx,y,ρ,φD
+
ρ,φcol(ρ, φ) +

(
col(mx,my)−Dx,y,ρ,φD

+
ρ,φcol(mρ,mφ)

)
,

Dx,y,ρ,φ =

(
cov(x, ρ) cov(x, φ)

cov(y, ρ) cov(y, φ)

)
, Dρ,φ =

(
cov(ρ, ρ) cov(ρ, φ)

cov(φ, ρ) cov(φ, φ)

)
.

All moment characteristics appearing in these relations are calculated with the Monte Carlo method
for a sample size of 10 000.

2. UKF estimate. It is calculated with exactly the same formulas, the only difference being that
the moments mρ, mφ, Dx,y,ρ,φ, Dρ,φ are computed by the UKF formulas (12) (prediction (11) is
not needed here because of the static nature of the problem), the sigma-points needed for this, by
formulas (9), the weights, by (10). At the same time, parameters α, β, γ are subject to additional
optimization, namely, we choose the best values of these parameters from the point of view of
estimation quality in the considered problem.

Remark. Here and below, by the optimization of parameters α, β, and γ in a UKF we mean
the following computational procedure. According to the recommendations from [24], we choose
the following basic parameter values: α∗ = 0.5, β∗ = 2.0, γ∗ = 3− p. Then we form a uniform
grid of possible values of α, β, γ around these base values, and then choose out of the grid the
best in the sense of minimizing the second moment of the error for the UKF estimate at the last
filtering step (the only step in the static task of recalculating polar coordinates). In the vicinity
of this combination of parameters, we then perform Nelder–Mead optimization. As a result, we
consider about 10 000–20 000 combinations of possible values for α, β, γ. We note that in some
cases, variation of the unscented transform parameters relative to the basic α∗, β∗, γ∗ does not
lead to visible changes in estimation quality. In such cases, namely when the difference between the
minimum and maximum values of the second moment of the estimation error at the last filtering
step does not exceed 0.1%, the base values are used for UKF estimation.

3. CMNF estimation. Let us first note that the best linear estimate in this problem is also
a CMNF estimate if we assume that the structure function (in this static example, there is only
one structure function) is ζ = col(ρ, φ). But as a “truly” conditional-minimax estimate we will use
ζ = col (ζx, ζy), ζx = ρ cosφ, ζy = ρ sinφ, i.e., relations of the transition from polar to Cartesian
coordinates, “inverse” in the sense of the observation model (13). This is a typical example of
choosing the CNMF evaluation structure using the physical meaning of the model.

In the model (13), only conditions for the location of the initial point remain undefined, i.e.,

parameters col (mx,my) and

(
Dx 0
0 Dy

)
. The second moments will not add any fundamental variety

in the experiment, so we assume Dx = Dy = 302 everywhere. But the values of mx and my will
reflect the understanding of the physical property of “nearness” and “farness.” As “near” we let
mx = 30 and my = 40; as “far,” mx = 300 and my = 400. The results are presented in the table,
where D[x− x̂] and D[y − ŷ] denote error variances of the estimates for coordinates x and y by the
corresponding algorithms. For the UKF, in addition, we show in parentheses the estimate of the
corresponding variance, obtained by averaging the values of K̂t from (12). Similar “theoretical”
values for linear estimation and CMNF are not given, since they are close to the “statistical” ones
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Fig. 1. Fragments of the surface ρ =
√

x2 + y2: (a) the “far” model; (b) the “near” model.

given in the table and become closer as we carry out more experiments within the framework of
the Monte Carlo method.

For calculations in the “near” model, we used the following parameters of the unscented trans-
form: α = 1.06, β = 1.35, γ = 0.91. These parameters significantly improve the accuracy of esti-
mation compared to the baseline, for which D[x− x̂] = 711, D[y − ŷ] = 477. Optimization in the
“far” model did not have a significant effect on estimation quality, therefore, for the unscented
transform we used the basic values of α∗, β∗ and γ∗.

The first thing that attracts attention in the results above is the fact that properties of the
estimates in the “far” model are identical, a small loss of CMNF is well within statistical error. In
this case, accuracy estimates for the UKF are also quite close, which suggests that the estimates
of conditional moments used in (12) can also be approximated well with sigma-points. The second
interesting observation is that the UKF loses by a factor of more than two in the “near” model,
together with a significant error in approximating the variance of the estimation error. At the
same time, the linear estimate’s error is a little less but also too large. CMNF copes with the
task much better and, which is especially interesting, much more successful than in the “far”
model. The reason for such results, in our opinion, is quite simple. The “far” model shows
“close to linear” behavior, while the “near” model is essentially nonlinear. This is confirmed
by Fig. 1, which shows fragments of the surface ρ =

√
x2 + y2 for x ∈ [mx − 2

√
Dx,mx + 2

√
Dx]

and y ∈ [my − 2
√
Dy,my + 2

√
Dy]; you can see that in the “far” model (Fig. 1a) this fragment is

visually indistinguishable from the plane, and in the “near” model (Fig. 1b) it is not a plane at all,
and this nonlinearity is very informative, as CNMF convincingly demonstrates.

Table

Comparison for model (13) “Near” “Far”

1. Linear estimate
D[x− x̂] 585 562

D[y − ŷ] 456 514

2. UKF estimate
D[x− x̂] 614 (444) 562 (553)

D[y − ŷ] 467 (395) 514 (508)

3. CMNF estimate
D[x− x̂] 276 564

D[y − ŷ] 323 516
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Note that this behavior of the UKF estimate is not unexpected, many researchers have noted it,
stating the efficiency condition for the unscented transform as the “conservatism” of the covariance
of estimation error, which in this example is provided by the linear behavior of the “far” model
and violated by the non-linear behavior in the “near” model.

4.2. Rational Function Regression and the Cubic Sensor

Below we will consider examples of autonomous scalar dynamical systems. In such examples, it
is easy to analyze the clearly expressed properties of the model and their influence, ultimately, on
the accuracy of the estimates. The first model in this series is:

xt =
xt−1

1 + x2t−1

+wt, t = 1, . . . , T, T = 50, x0 = η,

yt = xt + x3t + vt.

(14)

Noises wt and vt are assumed to be standard Gaussian, the initial condition η is also Gaussian
with mη = 0.1 and Dη = 1. The observations in (14) are well known under the name “cubic
sensor,” and they are very convenient (informative) for estimation since for large values of xt they
significantly increase the signal-to-noise ratio, while for small values of xt they are close to linear.
As for the dynamics, the regression function x/(1 + x2), albeit non-linear (Fig. 2a), demonstrates
rather inert behavior: it has only two extremes, smooth derivatives, and asymptotically tends to
zero at infinity.

Note also that the phase process xt has one useful property. It is obviously ergodic (it is easy
to show this following basic results on nonlinear regression, as described, for example, in [26]), and
convergence to the limit distribution is almost instantaneous: already at the second step, under the
initial conditions very different from the limit, we obtain moments close to the limit distribution:
E[xT ] = 0, D[xT ] = 1.16 (on Fig. 2b the limit distribution is illustrated by the histogram xT ). Thus,
system (14) actually has no transition process, and therefore it seems perfect for both UKF and
CMNF.

Here and everywhere below, the UKF is implemented according to relations (11), (12), supple-
mented by the optimization of parameters α, β, γ mentioned in the first example. The structure
of CMNF is basic: ξt (x) = x/(1 + x2), i.e., the prediction is constructed “by virtue of the system,”

Fig. 2. Characterization of model (14): (a) regression function; (b) histogram for xT , E[xT ] = 0, D[xT ] = 1.16.
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Fig. 3. Sample trajectories and quality indicators of estimates in the model (14): (a) sample trajectories xt

(solid line), yt (dotted line); (b) filtering error trajectories x̂t−xt for the CMNF (black line), UKF (gray line);
(c) and (d) accuracy indicators of CMNF and UKF on the background of the variance of the process D[xt]
(upper boundary of the gray area): E[xt − x̂t] (solid lines), D[xt − x̂t] (dashed lines), K̂t (dotted lines).

ζt (x, y) = y − x− x3 is the correction in the form of residual. The CMNF parameters were calcu-
lated using the Monte Carlo method for a bundle of 105 trajectories (it would be appropriate to
call it the training set), and the same bundle was used to optimize the parameters of the UKF. The
quality of filtering estimates and moment characteristics of xt were estimated on another bundle of
106 trajectories. The above conditions of calculations were used in all the following examples.

Figure 3 shows sample trajectories (states, observations—Fig. 3a), estimation errors for the UKF
and CMNF—Fig. 3b, quality indicators for the estimates—mean and variances of the estimates
and process errors are shown for CMNF on Fig. 3c, for the UKF—on Fig. 3d. Sample moments of
the limit distributions of estimation errors are E[xT − x̂T ] = 0, D[xT − x̂T ] = 0.35 for CMNF and
E[xT − x̂T ] = 0, D[xT − x̂T ] = 0.34 for UKF. In addition, Fig. 3c shows a priori CMNF accuracy,
i.e., the value K̂t from (6), calculated by the Monte Carlo method, K̂T = 0.35; Fig. 3d shows the
“theoretical” accuracy, i.e., the average value K̂t from (12), K̂T = 0.11. The best found values of
the unscented transform parameters in this model are α = 0.20, β = 1.99, γ = 1.23. For the basic
values of the parameters α∗ = 0.5, β∗ = 2.0, γ∗ = 2.0, the UKF estimate turned out to be worse
than trivial, providing the accuracy of D[xT − x̂T ] = 1.57 with D[xT ] = 1.16.

As we can see, both estimates exhibit similar qualities, both are unbiased and meaningful in the
sense that the variance of the error estimates are less, and significantly so, than the variance of the
process itself and the noise variance in the observations. Note also that the UKF works slightly
better than the CMNF, but the latter has a simpler structure (the prediction is “by virtue of the
system,” with a correction in the form of residual), and we have made no attempts to improve
it although they are easy to imagine. For example, an increase in the dimension of the basic
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correction ζt (x, y) will improve CMNF estimation quality due to “additional” observations y2t , y
3
t .

Also note that the “theoretical” accuracy of the UKF is far from reality, which does not prevent it
from solving the problem successfully.

4.3. Inverse Proportional Regression

We now turn to models that represent less comfortable conditions for nonlinear estimation. In
this case, as before, states are described by scalar autonomous regressions with Gaussian pertur-
bations that have the ergodic property. In this subsection, we consider two models that use the
function of inverse proportionality, while observations are straight linear:

xt =
1

3
√
xt−1

+ 100wt, t = 1, . . . , T, T = 50, x0 = η,

yt = xt + 100vt,

(15)

xt = min

(
105,

1

x2t−1

)
+ 100wt, t = 1, . . . , T, T = 50, x0 = η,

yt = xt + 100vt.

(16)

The noises wt and vt are assumed to be standard Gaussian, the initial condition η is also
Gaussian with mη = 3 and Dη = 1. For correctness, relations (15), (16) must be supplemented
with the equation xt = 105, if xt−1 = 0. In both models, the regression function of one class 1/xδ ,

Fig. 4. Sample trajectories and quality indicators of estimates in the model (15): (a) sample trajectories xt

(solid line), yt (dotted line); (b) filtering error trajectories x̂t − xt for the CMNF (black line) and UKF (gray
line); (c) and (d) accuracy indicators of CMNF and UKF on the background of the process variance D[xt]
(upper boundary of the gray area): E[xt − x̂t] (solid lines), D[xt − x̂t] (dotted lines), K̂t (dotted lines).
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Fig. 5. Sample trajectories and quality indicators of estimates in the model (16): (a) sample trajectories xt

(solid line), yt (dotted line); (b) filtering error trajectories x̂t − xt for the CMNF (black line) and UKF (gray
line); (c) and (d) accuracy indicators of CMNF and UKF on the background of the process variance D[xt]
(upper boundary of the gray area): E[xt − x̂t] (solid lines), D[xt − x̂t] (dotted lines), K̂t (dotted lines).

δ = 1
3 in (15), δ = 2 in (16). The difference, as is easy to see, is that the degree of δ in (15) ensures

the existence of the second moments of xt, and in (16), on the contrary, even the first moment may
not exist. That is why, in order to make the filtering problem correct, an upper bound 105 was
added to (16), which ensures the existence of all moments. The limit distributions for processes xt
in (15) and (16) are characterized by typical unimodal probability densities, the limit sample mean
values E[xT ] are equal to 0.18 and 6.06, variances D[xT ] are equal to 10 314.41 and 361 201.04
respectively.

Both processes xt have a similar behavior: close to zero expectation and “many” samples near
zero, large variance provided by the intermittently appearing “large” values, when the realizations
are xt−1 ≈ 0. Note that both models do not fall into the scope of robust estimation, there are
no “missing” or “incorrect” observations, outliers, etc. Robustification in the traditional sense
will not give a good result in this model since in this case we do need to evaluate rare bursts,
as they represent the actual state of the process being evaluated and cannot be ignored. The
results of the calculations are illustrated by the following figures. For (15), examples of char-
acteristic trajectories (states, observations—on Fig. 4a), error estimates for UKF and CMNF on
Fig. 4b), quality indicators for the estimates—means and variances of the estimates and process
errors are shown for CMNF on Fig. 4c, for the UKF, on Fig. 4d. Sample moments of the limit
distributions of estimation errors are E[xT − x̂T ] = −1.87, D[xT − x̂T ] = 5107.98 for CMNF and
E[xT − x̂T ] = −1.62, D[xT − x̂T ] = 5109.28 for UKF. In addition, Fig. 4c shows the value K̂t from
(6), K̂T = 5000.11; Fig. 4d shows the averaged value K̂t from (12), K̂T = 5000.04. For the model
(16), similar results are shown in Fig. 5. Sample moments of the limit distributions of estima-
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tion errors here are E[xT − x̂T ] = −0.78, D[xT − x̂T ] = 9667.38 for CMNF and E[xT − x̂T ] = 2.51,
D[xT − x̂T ] = 92 521.33 for UKF. In addition, Fig. 5c shows the value K̂t from (6), K̂T = 9804.96;
Fig. 5d shows the average value K̂t from (12), K̂T = 5007.19. In both models (15), (16), variation of
the basic values of the unscented transform parameters α∗, β∗, γ∗ does not lead to an improvement
in the estimation quality.

The obtained results are in line with the expectations: under comfortable conditions for the
model (15), both estimates behave equally well, and only the CMNF works in the “inconvenient”
model (16), its accuracy, albeit not much, is higher than the accuracy of direct observations. The
reason for this is not a poor implementation of the UKF, but the inapplicability in this model of the
very concept of sigma-points, since such nonlinearity as in (16) apparently cannot be characterized
by a small finite set of transformation samples (sigma-points). But the worst thing, in our opinion,
for UKF in this model is the following. In this simple model example, it is possible to predict in
advance its bad behavior simply by visually analyzing the nature of the nonlinearity in the state
equation. In practice, this kind of behavior is unlikely to be predicted a priori, since it is hardly
possible to count on successful visual analysis of equations that are even slightly more complex
than the presented scalar autonomous regression.

4.4. Logistic Model

Next, we consider a model based on a discrete counterpart of the well-known logistic model
(population size model), the logistic mapping or Feigenbaum mapping xt = δxt−1(1− xt−1) [27].
Adding a Gaussian perturbation to this model, we obtain the dynamics of the observation system.
The model thus turns out to be unstable and, as before, it has to be artificially constrained.
Moreover, upon reaching the boundary we propose to return the process to its original state so
that the explosive phenomena would be repeated time after time. Thus, in this section we will
consider the following observation system:

xt =

{
xt−1 (1− xt−1) , if xt−1 (1− xt−1) > −103

0, otherwise
+ wt, t = 1, . . . , 50, x0 = η,

yt = xt + 100vt.

(17)

Here, the dynamics is based on the logistic mapping with δ = 1, so if the lower bound (−103),
did not appear in (17), then there would be a “explosion” to the negative infinity: xt → −∞. But
at the same time, even if we remove from (17) the limit (−103), formally the state xt has all finite
moments at any given time, so the solution to the filtering problem exists for every t. Another
thing is that the moments and absolute values of xt grow exponentially, and therefore in computer
calculations any trajectory in the model without a boundary will exceed the computer maximum
in a short time.

The results are illustrated on Fig. 6. Sample moments of the marginal distributions of estima-
tion errors are E[xT − x̂T ] = −0.83, D[xT − x̂T ] = 6208.12 for CMNF and E[xT − x̂T ] = −17.07,
D[xT − x̂T ] = 13 527.82 for UKF, whereas the sample variance of the process is D[xT ] = 16 341.25.
In addition, Fig. 6c shows the value K̂t from (6), K̂T = 6300.53; Fig. 6d shows the averaged value K̂t

from (12), K̂T = 3068.76. In this model, optimization of the unscented transform parameters also
gives no advantage, therefore the basic α∗, β∗, γ∗ are used.

This example is a vivid illustration of the potential difficulties in practical applications of UKF.
It is a simple polynomial regression that ensures the formal existence of all moments and informative
linear observations, but the phase process has an “explosive” character that cannot be tracked by
the sigma-point method. The UKF turns out to be significantly biased, and the accuracy of the
estimate is close to trivial and does not stand to comparison with the accuracy of CMNF. The
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Fig. 6. Sample trajectories and quality indicators of estimates in the model (17): (a) sample trajectories xt

(solid line), yt (dotted line); (b) filtering error trajectories x̂t − xt for the CMNF (black line) and the UKF
(gray line); (c) and (d) accuracy indicators of CMNF and UKF on the background of the process variance
D[xt] (upper boundary of the gray area): E[xt − x̂t] (solid lines), D[xt − x̂t] (dashed lines), K̂t (dotted lines).

estimation error for CMNF is also large, but estimation by the conditional minimax method makes
sense, since the error variance is definitely less than the noise variance in the observations.

4.5. Model of Switching Observation Channels

This model is based on the idea of additional external influence on the characteristics of the
observer, which had first attracted attention about 50 years ago (see, for example, [28]) and was
later generalized in models of randomly structured systems and hidden Markov models. Here we
consider one of its simplest variations.

Suppose that there is a white noise δt that does not depend on the state xt, which is defined
by a collection of discrete random variables taking values δi, i = 1, . . . , n, with a known distribu-
tion P{δt = δi} = pi. For convenience, we assume that δi are n-dimensional unit vectors, i.e., δi =
(0, . . . , 1, . . . 0)T, where 1 is at position i. Let d, σ ∈ R

n. The expression dTδt gives the ith coordi-
nate of the vector d = (d1, . . . , dn)T. We assume that the state xt at time t can be observed by one
of the n linear observation channels yt = dixt + σivt, and the choice is determined by the value δt.
With the help of the notation above, such observations can be written as yt = dTδtxt + σTδtvt. The
state xt is defined by a simple linear regression, thus obtaining the following observation system:

xt = axt−1 + b+ cwt, t = 1, . . . , T, T = 50, x0 = η,

yt = dTδtxt + σTδtvt,
(18)

where η, wt, vt are standard Gaussian.
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For the calculations, we let n = 3, p1 = p3 = 0.25, p2 = 0.5, dT= (4; 1; 0.5), σT = (1; 1; 3),
a = 0.8, b = 0.2, c = 6.0. It is easy to see that the limit distribution of xt is Gaussian with unit
mean and variance 100.

In this example, neither relations (11), (12) for UKF nor relations (1)–(4) for CMNF cannot be
used due to the formal discrepancy between models (18) and (1). This inconsistency can be fixed in
the following way. In addition to the noise wt, we introduce one more independent Gaussian white
noise {wδ

t } and non-intersecting intervals Δi: P{wδ
t ∈ Δi} = pi, i = 1, 2, 3. Next, we supplement

the state xt with the second coordinate

xδt =
(
I
(
wδ
t ∈ Δ1

)
, I

(
wδ
t ∈ Δ2

)
, I

(
wδ
t ∈ Δ3

))
(1, 2, 3)

T
,

i.e., the currently available observation channel number δt. In the equation of observations, instead

of dTδt we use the function ψ
(1)
t

(
xt, x

δ
t

)
= dixt, if x

δ
t = i, i = 1, 2, 3, and similarly instead of σTδt

we use the function ψ
(2)
t (xt, x

δ
t ) = σixt if x

δ
t = i. This notation formally reduces the model (18) to

the form (1), and while the state becomes two-dimensional, the observations remain scalar. Thus,
in the implementation of the UKF five sigma-points will be used according to (9). Note that the
model in question does not yield any additional considerations in the construction of the structure
of the UKF. The situation is different for CMNF. The specific structure of the observation system
has to be reflected in the filter structure, in its correction term ζt (x, y). Indeed, having constructed
the standard prediction x̃t “by virtue of the system” and determined its accuracy K̃t according
to (3) and (6), the correction step can be viewed as an auxiliary estimation task for xt by single
observation yt = dTδtxt + σTδtvt. Under the additional assumption that the distribution of xt is
Gaussian with parameters x̃t and K̃t, its solution is easy to write in the form of a weighted sum
of linear estimates xt for every possible observation yt = dixt + σivt, where the weights are the
likelihood ratios. This approach yields the following basic correction:

ζt (x, y) =

3∑
i=1

piN
(
y; dix̃t, d

i2K̃t + σi
2
)(

diK̃t

(
di

2
K̃t + σi

2
)−1 (

y − dix
))

3∑
i=1

piN
(
y; dix̃t, di

2K̃t + σi2
) ,

where N
(
y;m,σ2

)
denotes a Gaussian density with parameters m,σ2, calculated at point y.

Commenting on this, we can say that the expressions

piN
(
yt; d

ix̃t, d
i2K̃t + σi

2
)

3∑
i=1

piN
(
yt; dix̃t, di

2K̃t + σi2
)

represent an estimate of the posterior probability of the event {δt = δi}, the values

diK̃t

(
di

2
K̃t + σi

2
)−1 (

y − dix̃t
)
, in fact, are the corrective components of the linear Kalman fil-

ter, provided that at the time t the ith observation channel was available.

In this model, an additional attempt was made to optimize the values of the unscented transform
parameters separately in the prediction and correction steps, i.e., additional recalculation of the
points yit in (12) according to (9). The best found values are: α = 2.46, β = 3.82, γ = 2.59 for
the prediction step and α = 0.52, β = 4.15, γ = 1.24 for the correction step. In this case, it is
impossible to achieve a serious improvement in the accuracy of UKF: for the basic values of the
parameters α∗, β∗, γ∗ the estimation accuracy is D[xT − x̂T ] = 71.81.
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Fig. 7. Sample trajectories and quality indicators of estimates in the model (18): (a) sample trajectories for
xt (solid line) and yt (dotted line); (b) filtering error trajectories x̂t − xt for CMNF (black line) and the UKF
(gray line); (c) and (d) accuracy indicators of CMNF and UKF on the background of the process variance
D[xt] (the upper boundary of the gray area): E[xt − x̂t] (solid lines), D[xt − x̂t] (dashed lines), K̂t (dotted
lines).

The calculation results are illustrated on Fig. 7. Sample moments of the limit distributions
of estimation errors are E[xT − x̂T ] = 0.18, D[xT − x̂T ] = 14.30 for CMNF and E[xT − x̂T ] = 0.29,
D[xT − x̂T ] = 70.18 for UKF. Additionally, Fig. 7c shows the value K̂t from (6), K̂T = 14.41; Fig. 7d
shows the average value K̂t from (12), K̂T = 45.27.

The results demonstrate the expected significant loss of UKF with respect to CMNF. It is clear
that the high quality of CMNF estimates is ensured by choosing the correction ζt (x, y) that reflects
the specifics of the model. An illustration of the flexibility of the CMNF method with respect to
the filter structure is one of the objectives of this example and differentiates it from all previous
ones. The UKF, on the contrary, is deliberately put into undesirable setting here by formally
reducing the model (18) to the form (1). In this example, it is easy to see and implement a much
better UKF, choosing sigma-points that take into account the discrete nature of the distribution δt,
namely for each of the three sigma-points selected separately for the first coordinate xt, define three
two-dimensional sigma vectors

(
xit, δ

j
)
, j = 1, 2, 3, thus forming the final set of nine sigma-points

for state (xt, δt). This option was not implemented for the following reasons. First, it violates
an essential part of the UKF concept, the assumption that there is a small number of sigma-
points compared to the dimension of the problem (in the two-dimensional case, five sigma-points
are standardly recommended). Second, such an approach for UKF will not be universal. It is
applicable in this particular situation with three switching channels, since 9 sigma-points are not
a very large number, but as the number of channels grows, it will become unacceptable. Finally,
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the optimization procedure for UKF parameters α, β, γ from relations (9), (10) becomes too
computationally intensive.

5. MODIFIED CMNF

The results of the experiments performed with UKF and their comparison with CMNF gener-
ally confirms the effectiveness of both concepts. However, the application of UKF in any practical
problem is always a challenge with an unpredictable result, and getting good results always re-
quires specific parameters (sigma-points) tuning. The conditional minimax filter always works, the
structure is chosen naturally and easily, but the estimate may turn out to be too conservative,
which is typical for minimax problems. A combination of the two concepts seems promising. One
possible idea in this direction is to modify the CMNF by using estimates of conditional moment
characteristics, covariances calculated with the state estimates at each filtering step in the filter
structure, similar to how this is done in UKF. But in contrast we propose to use not the sigma-point
transformation, but the Monte Carlo method, i.e., simulation modeling.

To describe the modified CMNF (MCMNF) algorithm, let us return to relations (5), (6), where
CMNF coefficients are expressed in terms of expectations and covariances of the state xt, basic pre-
diction ξt, prediction error xt − x̃t, and basic correction ζt. In CMNF implementations, operations
E {·} and cov (·, ·) were replaced with the corresponding statistical estimates calculated a priori by
the simulated set of sample trajectories. We denote the corresponding averaging operators by E {·}
and cov (·, ·). For example, in (5) instead of E {xt} one uses E {xt} = 1

N

∑N
i=1 x

i
t, in (6) instead

of cov (ζt, xt − x̃t) we substitute cov (ζt, xt − x̃t) = 1
N

∑N
i=1 ζ

i
t

(
xit − x̃it

)T
, where N is the number

of simulated trajectories, and xit, x̃
i
t, ζ

i
t , i = 1, . . . , N are realizations. In the modified filter, we

propose to exclude prior modeling and estimate filter parameters during the calculation process for
each trajectory. Accordingly, the MCMNF algorithm is as follows.

Suppose that at time moment t we have x̂t−1—the MCMNF estimate of the state xt−1 according
to observations yτ , τ = 1, . . . , t− 1, K̂t−1—an estimate of the conditional covariance of the error.

On step t, we simulate the following samples: {xit−1}
N

i=1
—from the Gaussian distribution with

mean x̂t−1 and covariance K̂t−1, {wi
t, v

i
t}

N

i=1—discrete white noise according to model (1), and sets

{xit, yit}
N

i=1 are calculated using formulas (1). The MCMNF prediction x̃t is sought in the form
x̃t = E {xt} .

Note that the basic prediction function ξt is not needed here, coefficient Ft = 0, since the estimate
samples x̂t−1 are not simulated and the calculation is performed in the same way as in the first step

of CMNF. Prediction accuracy is defined as K̃t = cov (xt − x̃t, xt − x̃t). Next, the set {ζ it}Ni=1 is
constructed and the coefficients Ht = cov (xt − x̃t, ζt) cov

+ (ζt, ζt), ht = −HtE {ζt}, ζ it = ζt
(
x̃t, y

i
t

)

and the estimate accuracy K̂t = K̃t −Htcov (ζt, xt − x̃t) are computed. The estimate x̂t of the
state xt, as in CMNF, is sought in the form x̂t = x̃t +Htζt + ht, ζt = ζt (x̃t, yt).

Thus, the idea of MCMNF consists in approximating the conditional distribution of xt−1 with
respect to yτ , τ = 1, . . . , t− 1, with Gaussian distribution with moments given by the filtering
results, and in calculating filter parameters through estimates of expectations and covariances
obtained by simulation. We note that the assumption of Gaussian approximation of the conditional
distribution can be considered in the same minimax context as in CMNF. It is also important to note
that the size of the simulated samples in CMNF and MCMNF should be fundamentally different,
since the calculation of the CMNF coefficients is performed a priori and thus is not limited by
anything, while the calculation of MCMNF coefficients is performed during the filtering process,
i.e., it assumes real-time feasibility. For this reason, in experiments for CMNF we used samples of
size 105 and in some examples 106 simulated trajectories, while in the calculation of MCMNF N is
assumed to be 103.
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Fig. 8. Model (19): (a) histogram for xT , E[xt] = 5.56, D[xT ] = 15.93; (b) error variance in the UKF estimate
(gray line), CMNF (black solid line), and MCMNF (black dotted line) against the background of the process
variance D[xt] (upper boundary of the gray area).

To test MCMNF and demonstrate the efficiency of combining the concepts of CMNF and UKF,
consider a regression model with thresholds. This is the simplest model out of all our experiments
that demonstrates identical behavior of CMNF and UKF, on the one hand, and the advantage of
MCMNF, on the other. The model is based on the following idea. Suppose that for a scalar xt
n we define intervals (xi−1, xi], i = 1, . . . , n: −∞ = x0 < x1 < . . . < xn−1< xn = +∞. By e(xt) we
denote the n-dimensional unit vector: e(xt) = (0, . . . , 1, . . . 0)T, where the unit is at position i if
xt ∈ (xi−1, xi]. Let a, b, c ∈ R

n. The expression aTe(xt) defines the ith coordinate of the vector a,
and its position is determined by xt falling into the ith segment. Using this simple technique, it is
easy to write, for example, n linear regressions: the ith regressions will have the form aix+ bi + ciwt.
The final model is xt = aTe (xt−1) xt−1+b

Te(xt−1) + cTe (xt−1)wt, i.e., it is a combination of n first
order autoregressions. Supplementing the above ratios with simple linear observations, we obtain
the following observation system:

xt = aTe (xt−1)xt−1 + bTe(xt−1) + cTe(xt−1)wt, t = 1, 2, . . . , x0 = η,

yt = xt + 10vt,
(19)

where η, wt, vt are standard Gaussian.

For the calculations, we choose n = 3, intervals −∞ < 3 < 7 < +∞, aT = (0.3; 0.4; 0.7), bT =
(1.4; 3.0; 3.0), cT = (0.9; 1.5; 2.5). As in all models above, here the process xt is ergodic, its limit
distribution is illustrated on Fig. 8a, and the sample moments are E[xT ] = 5.56, D[xT ] = 15.93.

With this distribution, it is easy to see three “peaks” corresponding to three stable autoregres-
sions xt = aixt−1 + bi + ciwt. The limit distribution of each of their regressions, considered sepa-
rately from the others, will be Gaussian with mean mi = bi/(1 − ai) and variance σ2i = c2i /(1− a2i ).
Forming together with given thresholds the process xt according to (19), the selected parame-
ters provide the limit density shown on Fig. 8a, which corresponds to the following probabilities:
p1 = P (xt ≤ 3.0) ≈ 0.33, p2 = P (3.0 < xt ≤ 7.0) ≈ 0.37, p3 = P (xt > 7.0) ≈ 0.3.

In addition to the multimodal limit distribution, model (19) also makes it possible to demonstrate
the possibility of the flexible construction of CMNF structure. And here, unlike the model with
switching observation channels (18), the structure of the filter is determined by the prediction. As
in most of the examples shown above, the correction in the form of a residual is natural for linear
observations. We define the predicting structural function ξt (x) by analogy with the correction for
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model (18) based on likelihood ratios, using the notation N
(
x;m,σ2

)
for Gaussian density:

ξt (x) =

3∑
i=1

piN
(
x;mi, σ

2
i

)
(aix+ bi)

3∑
i=1

piN
(
x;mi, σ2i

) .

Commenting on such a basic forecast, we can say that the expression

3∑
i=1

piN(x;mi, σ
2
i )

should be considered as an elementary estimate of the limit density shown on Fig. 8a, and the ratio

piN(x;mi, σ
2
i )
/ 3∑

i=1

piN(x;mi, σ
2
i )

is an estimate of the conditional probability xt−1 falling into the ith interval.

Computational results are illustrated on Fig. 8b. All three filters considered above demon-
strate good estimation quality, MCMNF with the limit sample variance of the estimation error
D[xT − x̂T ] = 9.82 has a slight advantage about 2–3%, UKF with D[xT − x̂T ] = 10.11 slightly los-
ing to CMNF with D[xT − x̂T ] = 10.06. At the same time, recall that for the UKF we used prelim-
inary parameter optimization, CMNF also requires a large amount of prior computations, whereas
for the MCMNF there is no need for prior computations, which means that there are no restrictions
on the estimation horizon. The best found values of unscented transform parameters in this model
are: α = 0.71, β = 1.45, γ = 2.56 for the prediction step and α = 0.41, β = 1.80, γ = 1.84 for the
correction step; they allow to improve the accuracy of estimation of the UKF D[xT − x̂T ] = 11.77
for the basic values of α∗, β∗, γ∗.

In conclusion, we note that choosing a simple model to illustrate MCMNF results proved to be
rather difficult. The demonstrated result is apparently ensured by a characteristic limit distribution
(Fig. 8a). Greater effect can be achieved if we abandon scalar equations.

6. CONCLUSION

In general, the experiments we have conducted with all the considered filters allows us to charac-
terize the computational complexity and resource demands of the algorithms at a qualitative level.
The need for prior calculations and storage of CMNF coefficients makes this filter the most resource-
intensive. At the same time, the volume of stored parameters is determined by the specified filtering
horizon, and the considerable costs of prior modeling are compensated by the extreme simplicity
of calculating posterior estimates: it is characterized by the same computational complexity that
the classical Kalman filter has for the linear problem. The “optimized” UKF in the scalar case
assumes the same small amount of computation, but this volume increases with the dimension of
the problem, i.e., as the number 2p + 1 of sigma-points xit ∈ R

p grows, it becomes more complex
since we need to compute the matrix square root at each estimation step. In addition, we should
note that the absence of prior calculations for the UKF does not even guarantee the “successful”
choice of its parameters, and optimization performed in the considered experiments requires the
same resources as modeling CMNF parameters in scalar examples. The computational complexity
of such optimization grows exponentially with dimension, so the possibility of optimal selection of
parameters α, β, γ for the UKF in practically significant tasks seems doubtful. The absence of
prior calculations and the cost of storing parameters is a characteristic feature and an advantage
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of MCMNF. It is achieved by transferring the modeling steps to posterior calculations. At the
same time, the volume of modeling is less than the prior calculations of the CMNF coefficients
(in examples, we used 103 versus 105 and 106), but still significant, and it seems reasonable only
if there are appropriate computational capabilities, which can be provided by modern computer
systems.
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