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Abstract—We present the basic properties of the a new pattern analysis method in parallel
coordinates; results of the method do not depend on the ordering of data in the original sample
of objects being analyzed. We prove that clusters obtained with this method do not overlap.
We also show the possibility of representing objects of one cluster in the form of monotonically
increasing/decreasing functions.

Keywords : pattern analysis, ordinal-invariant pattern clustering, cluster analysis

DOI: 10.1134/S0005117919010107

1. INTRODUCTION

With the development of information technology and accumulation of large amounts of data, it
becomes increasingly important to develop methods that automate the process of recognizing and
isolating various groups with similar properties. The first such works include [1], which suggests to
split a set of three types of irises according to four features using a linear discriminant algorithm.
The database of 150 irises described in [1] is still one of the most popular in machine learning,
and the methodology proposed by R. Fisher is discussed in detail in a number of textbooks (see,
e.g., [2, 3]). This direction was further developed in cluster analysis algorithms based on applying
different measures of proximity between objects [4, 5]. However, the need to study increasingly
complex processes (economic, financial, social, and other) has led to the need to take into account
not only the proximity of values but also the proximity of the data structures themselves, which,
in turn, has led to the development of methods for their visual presentation and analysis (the field
this work, broadly speaking, belongs to).

Of the more recent studies that take into account these trends, we highlight, in particular, applied
research in the banking sector [6, 7] (analysis of CAMEL indicators [8–10]), management [11], and
macroeconomics [12]. This direction of study is based on the concept of a “pattern,” which is
defined differently in different areas of knowledge. Basic definitions have been given in [13]:

1) “as the essence of a phenomenon that has repeating features”;
2) “as a property of repeating components united by a common structure”;
3) “as a process that fixes the model of interaction of the objects in question, including repeti-

tions.”

In [2], a pattern is understood as “any relation, dependency or structure inherent in some
dataset,” and analysis of patterns is defined as “the process of finding common relationships in a
dataset.” Based on these definitions, by a pattern in this work we will mean a combination of certain
qualitatively similar features. It has been noted in [2] that in order to recognize a pattern analysis
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method as effective, its implementation must satisfy the following conditions: ability to process large
amounts of data (which implies relatively low computational complexity), robustness, and statistical
stability. In this work, we take into account one more criterion mentioned in [14]: the independence
of the final results on the choice of the initial sequence of parameters. In this regard, we consider
pattern analysis methods proposed in [15]: ordinal-fixed and ordinal-invariant pattern clustering.
In this work we generalize the algorithms that implement them, propose methods for pattern
recognition and combining similar objects into groups, and explore a number of properties of these
groups, including convenient methods for visualizing them and defining “average/central” objects
in a cluster. Thus, the goal of the work is to summarize and introduce structure to the algorithms
developed for pattern analysis whose final result is independent of the input data ordering, and
also to study the basic properties of both the algorithms and the groups of objects obtained from
them. For convenience and integrity of the presentation, proofs of all propositions formulated in
this work are relegated to the Appendix.

2. PATTERN ANALYSIS: BASIC CONCEPTS

We investigate a set consisting of m objects characterized by n parameters. We denote elements
of the set by xi; a set of parameters of a specific object, by xi = (xi1, . . . , xij , . . . , xin), where xij
denotes the jth indicator of the ith object. The main problem is to find and unite qualitatively
similar objects. For visualization, we use parallel coordinates system [14, 16, 17], which usually
consists of vertical lines (axes) reflecting values of the parameters. On these lines we mark their
actual values, and then the values are connected by segments. As a result, we get polylines that
characterize the analyzed objects.

Let us explain the idea of the method of combining objects into separate groups (clusters) by
the form of polylines with a hypothetical example.

Example. We consider five objects characterized by four parameters (A, B, C, and D), whose
values are listed in Table 1.

Objects 1–5 are visualized on Fig. 1.

The figure clearly shows that objects 1 and 2 have similar structures. This is also true for
objects 4 and 5. We consider object 3 separately. Despite the fact that absolute values of the

Fig. 1. Sample hypothetical objects.
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Table 1. Example with hypothetical objects

Objects A B C D

1 40 20 70 20
2 36 24 65 18
3 8 4 14 4
4 63 80 35 60
5 60 75 30 55

parameters of this object are very different from objects 1 and 2, their structures are similar:
parameters of object 1 are parameters of object 3 multiplied by 5. Thus, all three objects are
described by polylines of the same structure (the same pattern), which gives a justification to
uniting them by this criterion.

This approach has proved useful for a wide range of applications. In particular, the work [6] pre-
sented a dynamic analysis of the patterns of parameters of 1018 Russian banks for 1999–2003. The
original data is based on the fundamental characteristics of banks, CAMEL parameters (C—capital
sufficiency, A—asset quality, M—management, E—profit, L—liquidity), with some additions.

On the basis of quarterly data for the specified period, 19 342 polylines were constructed; they
allowed to identify 151 typical patterns, with the first 50 covering 90.14% of all data, and the first
13 covering 52.19%. In [7], a similar approach was applied to a study of 55 Turkish banks. The
raw data was also based on CAMEL, and as a result 27 patterns were formulated.

The pattern analysis method in parallel coordinates system has proven its effectiveness for dif-
ferent applications [13, 16]; however, the method itself is sensitive to the sequence of parameters.
Below we present algorithms for its implementation based on pairwise comparisons of the pa-
rameters of the ordinal-fixed and ordinal-invariant pattern clustering, which makes it possible to
eliminate this drawback.

3. ORDINAL-FIXED AND ORDINAL-INVARIANT PATTERN CLUSTERING

Let us give a brief description of the ordinal-fixed and ordinal-invariant pattern clustering algo-
rithms that unite objects into groups/clusters by the form of their in parallel coordinates (a full
description of the methods is given in [15, 18]).

As noted above, the input data is represented by a set X consisting of m objects, each of which
is characterized by n parameters. We construct the coding ci of each object xi ∈ X by pairwise
comparison of its parameters according to the formula

ci =
n∑

s=1

10s−1zn−s
i , (1)

where zsi is defined as

zsi =

⎧
⎪⎪⎨

⎪⎪⎩

1, if xis < xis+1

0, if xis = xis+1

2, if xis > xis+1.

(2)

If ci = ck, objects xi and xk are combined into a single cluster, if not, are separated. Note that
the value of zsi is defined in expression 2 by comparing adjacent values of xis and xis+1 in a given
sequence. Therefore, in what follows we call this method ordinal-fixed pattern clustering, and the
clusters found with this method will be called ordinal-fixed pattern clusters.
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The computational complexity Nfix of this method can be computed as

Nfix =
m2(m− 1)(n − 1)

2
.

Since Nfix is relatively low, this method is convenient to use for preliminary data analysis.

The second approach, ordinal-invariant pattern clustering, was developed in order to make the
results independent of the original sequence of parameters. This method is needed, as noted above,
for the reasons remarked upon in some works on parallel coordinates (including [14]); these remarks
indicate the need for “extremely careful selection of the sequence of analyzed parameters,” because
it affects the appearance of new patterns and, in the general case, a different sequence can lead to
a different character of polylines and, as a result, to different results.

The ordinal-invariant pattern clustering algorithm is similar to ordinal-fixed and is based on
a comparison of object encodings. The objects themselves in this case are presented as complete
directed weighted graphs, whose vertices correspond to the parameters in questions, and values of
the edges connecting them are the results of pairwise comparisons (we assume comparisons of the
form “greater than,” “equal,” and “less than”). Using the values of the edges, we construct an
additional object encoding:

cdopi =
n−2∑

s=1

n∑

j=s+2

10j−(s+2)esji , (3)

where esji is the value of the edge of the graph connecting vertices s and j, which, similar to (2), is
defined by the formula

esji =

⎧
⎪⎪⎨

⎪⎪⎩

1, if xis < xis+1

0, if xis = xis+1

2, if xis > xis+1.

(4)

The principle of grouping is similar to ordinal-fixed pattern clustering: if cdopi = cdopk then objects
xi and xk are combined into a single cluster, otherwise they are divided into different clusters.

In what follows, we call a cluster constructed through ordinal-invariant pattern clustering an
ordinal-invariant pattern cluster.

The computational complexity Ninv of this algorithm is defined as

Ninv =
m2n(m− 1)(n − 1)

4
;

however, using Statement 2 below, it can be reduced to the complexity of the sorting algorithm.

Next, we find the maximum number of ordinal-fixed and ordinal-invariant pattern clusters.

In the considered methods, the criterion for placing objects into a single cluster is the fact that
codes formed in the pairwise comparisons of the corresponding object parameters coincide. Using a
well-known expression from coding theory (with a coding alphabet consisting of β different charac-
ters and the length of the code sequence γ, the maximum number V of different code combinations
is βγ) , we get

V = RN ,

where R is the number of possible values characterizing the results of pairwise comparisons of the
corresponding object parameters (defined by formulas (2) and (4)).
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Since for ordinal-fixed pattern clustering the code is formed by the n−1 pairwise comparisons,
the number of possible ordinal-fixed pattern clusters Vfix can be found as

Vfix = R(n−1) = 3(n−1),

and the number of clusters formed as a result of ordinal-invariant pattern clustering Vinv is

Vinv = R
n(n−1)

2 = 3
n(n−1)

2 .

Taking the ratio of these values, we obtain an estimate of the ratio between the maximum possible
numbers of ordinal-invariant and ordinal-fixed pattern clusters:

Vinv

Vfix
=

R
n(n−1)

2

R(n−1)
= 3

n(n−1)
2 .

Remark 1. The resulting expression determines the maximum possible number of subclusters
that can be distinguished within a ordinal-fixed pattern cluster. Their actual number may be
significantly smaller. In particular, if a ordinal-fixed pattern cluster satisfies the conditions of
Statement 2 (see Section 4), then it is an ordinal-invariant pattern cluster itself, and by virtue of
Statement 1 (see below) it does not contain any other subclusters.

4. ORDINAL-INVARIANT PATTERN CLUSTERING: BASIC PROPERTIES

We present three statements that demonstrate important properties of the method described
above.

Statement 1. Clusters obtained with ordinal-invariant pattern clustering do not overlap.

The proof is given in the Appendix.

The following remark can be made.

Remark 2. Statement 1 is very important because it affirms the fact that results of order-
invariant pattern clustering are unambiguous. This means that an arbitrary arrangement of objects
in the original set, as well as an arbitrary order of their parameters, and the use of ordinal-invariant
pattern clustering for an arbitrary number of times on the same data does not affect the result of
clustering.

Note that if the order of the parameters is strictly fixed and does not change, then Statement 1
also holds for ordinal-fixed pattern clusters.

Statement 2. If there exists a sequence of parameters for which their values form a strictly
monotonically increasing/decreasing sequence for every object of the original set X, then this set is
an ordinal-invariant pattern cluster.

The proof is given in the Appendix.

Remark 3 is in order here.

Remark 3. It is convenient to use the property of ordinal-invariant pattern clusters determined
by Statement 2 for preliminary comparison of different groups of objects and visual perception of
their distinctive features. As an example, we consider a set of three objects whose parameters and
the corresponding polylines are shown in Fig. 2. Using the methods described above allows us to
distinguish two ordinal-invariant pattern clusters: {Object 1; Object 3} and {Object 2}.

We arrange the parameters in such a way that their values form a monotonically increasing
sequence for the first and third objects that comprise an ordinal-invariant pattern cluster (see
Fig. 3). In this case, it is easier to see in what way they differ from object 2.
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Fig. 2. A hypothetical example of two ordinal-invariant pattern clusters.

Fig. 3. A hypothetical example of two ordinal-invariant pattern clusters.

Statement 3. For objects of an ordinal-invariant pattern cluster, there exists an order of param-
eters for which their values form a monotonous non-decreasing/non-increasing sequence for every
object in the cluster.

The proof is given in the Appendix.

We conclude this section with Remark 4.

Remark 4. An important consequence of Statements 2 and 3 is the possibility of using them to
reduce the computational complexity of ordinal-invariant pattern clustering to the complexity of
the sorting algorithm.
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5. USING ORDINAL-INVARIANT PATTERN CLUSTERING IN THE STUDY
OF ECONOMIC, INNOVATIVE, AND EDUCATIONAL PARAMETERS

IN THE RUSSIAN FEDERATION

To illustrate the proposed methods, as well as some basic properties, we consider an example of
real data from [19], which studies the parameters of scientific, educational, and innovation activity
of regions of the Russian Federation for 2007–2010. On the basis of the Russian regional innovation
index [20], 6 blocks of parameters were constructed: socio-economic conditions (A), educational
potential (B), potential for research and development activity (X), the impact of research and
development (C), potential for innovation (D), and performance of innovation activities (E). As a
result of correlation analysis, the scientific-technical potential block was excluded, and regions of
the Russian Federation were subdivided on the basis of blocks A–E.

To begin with, we use ordinal-invariant pattern clustering for partitioning regions into clusters.
The result is 22 clusters containing more than 5 objects, 12 clusters with 3 to 5 objects, and 1 cluster
with a “unique object.” Sample clusters are shown in Fig. 4.

Next, we take one of the clusters obtained in [20] and check whether it can be attributed to
ordinal-invariant pattern clusters (the data are given in Table 2, with values rounded to the second
decimal place).

Table 2. Example with hypothetical objects

Region/year A B C D E

Moscow 2009 0.36 0.47 0.91 0.3 0.07
Moscow 2010 0.35 0.42 0.89 0.21 0.11

St. Petersburg 2007 0.34 0.49 0.68 0.3 0.07
St. Petersburg 2009 0.45 0.51 0.7 0.21 0.19
Primorskii Krai 2008 0.27 0.35 0.6 0.24 0.21
Primorskii Krai 2009 0.35 0.36 0.67 0.25 0.21

Each region in Table 2 corresponds to a unified encoding obtained with formulas (1) and (3):
“1122” and “222221” (additional encoding). Therefore, the pattern obtained in [19] is an order-
invariant pattern cluster. For these regions, we construct polylines, as shown on Fig. 5.

Fig. 4. Sample clusters obtained using ordinal-invariant pattern clustering.
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Fig. 5. Polylines of objects corresponding to the order of parameters A, B, C, D, E.

Fig. 6. Polylines of objects corresponding to the order of parameters A, B, C, D, E.

Next we illustrate the validity of Statement 3. We choose the first row of Table 2: (0.36; 0.47;
0.91; 0.3; 0.07). This row describes selected parameters of Moscow in the year 2009. We arrange the
values of the parameters in ascending order (E, D, A, B, C). This order of parameters corresponds
to a pattern that has the form of non-decreasing polyline. With this arrangement of parameters,
according to Statement 3 polylines of other objects will also have the form of a non-decreasing
function, as shown in Fig. 6. It is easy to check that in this example Statement 2 also holds: for
any of the three regions under consideration (for two years each), there is a sequence of parameter
positions (E, D, A, B, C) for which they form a strictly increasing sequence, and, therefore, the
regions under consideration form a single ordinal-invariant pattern cluster.
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6. OPERATIONS ON OBJECTS IN CLUSTERS AND THEIR PROPERTIES

Let us consider some mathematical operations on the objects of ordinal-invariant pattern clus-
ters.

1. Summation. By the sum of two objects x1 = (x11,. . . , x1j , . . . , x1n) and x2 = (x21, . . . , x2j ,
. . . , x2n) we will understand a new object xs = x1 + x2, whose parameter values are defined as
the sum of the corresponding parameters of objects x1 and x2: xs = (x11 + x21, . . . , x1j + x2j, . . . ,
x1n + x2n).

2. Multiplication of an object by a number. The product of an object x1 = (x11, . . . , x1j , . . . , x1n)
of an ordinal-invariant pattern cluster and a real number α is a new object xα = αx1, whose
parameter values are defined as products of the parameters of the original object x1 and the
number α: xα = (αx11, . . . , αx1j , . . . , αx1n).

Statement 4. If two objects are x1 = (x11, . . . , x1j , . . . , x1n) and x2 = (x21, . . . , x2j , . . . , x2n) be-
long to the same ordinal-invariant pattern cluster, then their sum xs = x1 + x2 = (x11 + x21, . . . ,
x1j + x2j , . . . , x1n + x2n) also belongs to this cluster.

The proof is given in the Appendix.

Statement 5. If object x1 = (x11, . . . , x1j , . . . , x1n) belongs to some ordinal-invariant pattern
cluster vinva , then for any positive value α (α > 0) the object xα = αx1 also belongs to this cluster.

The proof of this Statement is similar to the proof of Statement 4.

Next we formulate important corollaries of Statements 4 and 5.

Corollary 1. If objects x1, . . . , xi, . . . , xn belong to the same ordinal-invariant pattern cluster,
then the “average” (“central”) object xst of the form

xst =
1

n

n∑

i=1

xi

also belongs to this cluster.

Corollary 2. If objects x1, . . . , xi, . . . , xn belong to the same ordinal-invariant pattern cluster,
then their linear combination xlc of the form

xlc =
n∑

i=1

λixi,

where λi > 0 | i = 1, . . . , n, also belongs to this cluster.

7. CONCLUSION

In this work, we have described two variations of a promising method for data analysis, namely
pattern analysis, and described some of their properties. We have found the computational com-
plexity of the corresponding methods. We have formulated and proved five statements and two
corollaries, including the disjointness of ordinal-invariant pattern clusters, representation of objects
in these clusters as monotonically increasing/decreasing functions, as well as finding the “average”
(“central”) object in a cluster.
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APPENDIX

Proof of Statement 1. Suppose that there are two different (non-identical) clusters vinva �= vinvb ,
obtained as a result of ordinal-invariant pattern clustering of some set of objects X. According to
Statement 1, vinva ∩ vinvb = ∅.

We prove this statement by contradiction. Suppose that this statement fails, and vinva ∩ vinvb �= ∅.
This means that there exists at least one object x∗i ∈ X : x∗i ∈ vinva ∩ vinvb .

Since vinva �= vinvb , there also exists a certain sequence of initial parameters for which the polylines
of these clusters have a different form. We denote this sequence by Y .

According to the definition (construction algorithm) of ordinal-invariant pattern clusters, the
form of polylines of all cluster objects vinva must match for any sequence of initial parameters
(including the sequence Y ). Since x∗i ∈ vinva , the form of polylines of all objects in a cluster vinva

is similar to the form of polylines of object x∗i . Repeating this reasoning for the cluster vinvb , we
conclude that the form of polylines of all objects in cluster vinvb is also similar to the form of the
polylines of object x∗i . Thus, we come to the conclusion that the form of polylines of all objects in
clusters vinva and vinvb is the same (similar to the form of the polyline of object x∗i ). However, in this
case, according to the definition (construction algorithm) of ordinal-invariant pattern clustering,
clusters vinva and vinvb should be combined into a single ordinal-invariant pattern cluster, which
contradicts the assumption that vinva and vinvb are different, non-identical clusters. Therefore,
vinva ∩ vinvb = ∅, which proves Statement 1.

Proof of Statement 2. Consider the case of a monotonically increasing sequence of parameters
(a similar proof can be given for a monotonically decreasing sequence). Let us prove Statement 2
by induction, i.e., we first verify its validity for a set of two and three objects and then, assuming
it holds for k > 3 objects, we prove it for k + 1 objects.

1. Suppose that the set X contains only two objects: x1 = (x11, . . . , x1j , . . . , x1n) and x2 =
(x21, . . . , x2j , . . . , x2n), and x11 < . . . < x1j < . . . < x1n and x21 < . . . < x2j < . . . < x2n. Based on
the ordinal-invariant pattern clustering method described above, for pairwise comparison of all
parameters of a single object we need n(n− 1)/2 comparisons, and their result is uniquely deter-
mined by expression (2). Since parameter values of the first object are sorted in ascending order
(x11 < . . . < x1j < . . . < x1n), we get that x1p < x1q ∀ p < q and x1r > x1s ∀ r > s. For object x2
we arrive at the same conclusion: x2p < x2q ∀ p < q and x2r > x2s ∀ r > s. Since, as we have
noted, inequalities for the first and second object are the same, the comparison results determined
by expression (4) are also the same, and, as a result, the code sequences defined by expression (3)
are identical as well.

Since we have obtained the same encodings for objects x1 and x2, we can conclude that these
objects can be combined into a single ordinal-invariant pattern cluster.

2. We supplement the analysis with object x3 = (x31, . . . , x3j , . . . , x3n), and x31 < . . . < x3j <
. . . l < x3n.

Since condition x31 < . . . < x3j < . . . < x3n is satisfied for the parameters of object x3, item 1
of the proof implies that

(a) x1 and x3 belong to the same ordinal-invariant pattern cluster;

(b) x2 and x3 belong to the same ordinal-invariant pattern cluster.

According to Statement 1, clusters obtained using ordinal-invariant pattern clustering do not
intersect. Thus, all three objects form a single ordinal-invariant pattern cluster.

3. Assuming that Statement 2 holds for the case of k objects, we verify its validity for the case
of k + 1 objects. For this purpose, we add to this set a new object x(k+1) = (x(k+1)1, . . . , x(k+1)j ,
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. . . , x(k+1)n), where x(k+1)1 < . . . < x(k+1)j < . . . < x(k+1)n. Similar to item 1, this object forms a
single ordinal-invariant pattern cluster with any of the k previous objects. Now Statement 1 implies
that all k + 1 objects belong to the same ordinal-invariant pattern cluster.

This completes the proof of Statement 2.

Proof of Statement 3. Consider the cluster vinva obtained as a result of ordinal-invariant pattern
clustering. We choose an arbitrary object x∗i in this cluster and arrange its parameters in non-
decreasing order: x∗i1 ≤ . . . ≤ x∗ij ≤ . . . ≤ x∗in. Graphically, this means that the object is represented
in parallel coordinates system as a non-decreasing polyline. We denote this sequence of the positions
of parameters (x∗i1, . . . , x∗ij , . . . , x∗in) by P

′
.

Due to the order invariance of the pattern cluster vinva , polylines of all the objects that occur
in it have the same form for any sequence of indices, including the sequence P

′
. Therefore, for a

sequence of parameters P
′
all objects are represented parallel coordinates system as non-decreasing

polylines.

This completes the proof of Statement 3.

Proof of Statement 4. We use the theorem proved in [15]: “Two objects x1 and x2 defined
by vectors x1 = (x11, . . . , x1j , . . . , x1n) and x2 = (x21, . . . , x2j , . . . , x2n) respectively belong to the
same ordinal-invariant pattern cluster if and only if they can be represented by complete weighted
digraphs G1 and G2 with identical weights on the edges. . . that connect their respective vertices”.
The values of the edges are determined by formula (4), i.e., by the values of pairwise comparisons
of the corresponding vertices.

For source objects x1 and x2, we construct the corresponding digraphs G1 and G2, as well as the
digraph Gs of the resulting object xs = x1 + x2. Since, according to the condition, these objects
belong to the same ordinal-invariant pattern cluster, the values of the corresponding edges (pairwise
comparisons) of digraphs G1 and G2 are the same. We need to show that the values of the edges
of the digraph Gs also coincide with them. This follows from the following already established
properties:

{
xij > xik

xzj > xzk
⇒ (xij + xzj) > (xik + xzk),

{
xij = xik

xzj = xzk
⇒ (xij + xzj) = (xik + xzk),

{
xij < xik

xzj < xzk
⇒ (xij + xzj) < (xik + xzk),

where j, k = 1, . . . , n.

This implies that, first, encoding of the new object xs will match the encodings of objects x1
and x2 and, second, values of the edges of digraph Gs will match the edge values of G1 and G2.

This completes the proof of Statement 4.
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