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1. INTRODUCTION

We are developing an extension for stochastic control systems of the Lagrange–Pontryagin
method proposed by V.F. Krotov and V.I. Gurman for deterministic systems [1, 2]. This second-
order method is based on the extension principle [3] and the procedure for constructing a Krotov
function in the linear-quadratic form. These approaches were also significantly developed in the
works of V.A. Baturin [4, 5], where, among other things, effective numerical algorithms for strong
and weak improvement were constructed.

In this work, using the Lagrange–Pontryagin method we formulate sufficient conditions for a
strong and weak relative minimum in the optimization problem for quasilinear stochastic systems
with continuous time, whose coefficients have, in the general case, nonlinear dependencies on the
program control. A special case of this problem is the optimization problem for control strategies
with incomplete feedback for linear systems with multiplicative noise [6, Section 6]. This work as
a whole continues the studies initiated in [6], where necessary optimality conditions for the class of
problems in question were obtained.

2. PROBLEM SETTING

The control process is described by the Ito equation

dx(t) = [A(t, u(t))x(t) +B(t, u(t))] dt+
ν∑

l=1

[
G(l)(t, u(t))x(t) + C(l)(t, u(t))

]
dwl(t),

x(t0) = x0,

(1)

where t ∈ T = [t0; t1] is time; x(t) ∈ Rn, u(t) ∈ U ⊂ Rm are the state and control vectors of the
system at time t; w(·) is the ν-dimensional standard Wiener process; t→ u(t) : T → Rm is a
bounded Borel function on T , the set U is open. Here (t, u) → A(t, u) : T ×Rm → Rn×n, (t, u) →
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B(t, u) : T × Rm → Rn, (t, u) → G(l)(t, u) : T ×Rm→ Rn×n, (t, u) → C(l)(t, u) : T ×Rm → Rn,
l = 1, ν, are functions on T ×Rm that are continuous with respect to t and twice continuously
differentiable in u. The random vector x0 has a given distribution, its expectation m0 ∈ Rn and
the covariance matrix K0 ∈ Rn×n are known.

We denote by Dx the set of admissible control processes z = (x(·), u(·)) satisfying the following
condition: for a given control u the random process x is a solution of Eq. (1).

For the process z ∈ Dx we define the control performance functional

z → Jx(z) = E

t1∫

t0

(
xT(t)D(t, u(t))x(t) + ST(t, u(t))x(t) + E(t, u(t))

)
dt

+ E

[
xT(t1)Qx(t1)

]
: Dx → R1,

(2)

where Q ∈ Rn×n, and (t, u) → D(t, u) : T ×Rm → Rn×n, (t, u) → S(t, u) : T ×Rm → Rn, (t, u) →
E(t, u) : T ×Rm → R1 are continuous in t and twice continuously differentiable in u functions
on T ×Rm, and for each (t, u) ∈ T ×Rm conditions D(t, u) � 0, Q � 0 are hold. Hereinafter,
matrices of quadratic forms are assumed to be symmetric. The control goal is to minimize func-
tional (2) on the set Dx.

3. DETERMINISTIC OPTIMAL CONTROL PROBLEM

There are various approaches to the study of the formulated linear-quadratic optimization prob-
lem for a stochastic system. One of them is the transition from the stochastic optimal control
problem for a random process x(t) to the deterministic optimal control problem for its moments.
This approach is as follows.

We write the equations for the functions t→ m(t) : T → Rn, t→ K(t) : T → Rn×n that have
the meaning of the expectation and covariance matrix of the random process x(t) [6, 7],

dm(t)

dt
= A(t, u(t))m(t) +B(t, u(t)), (3)

dK(t)

dt
= A(t, u(t))K(t) +K(t)AT(t, u(t))

+
ν∑

l=1

(
G(l)(t, u(t))K(t)G(l)T (t, u(t))

+
[
C(l)(t, u(t)) +G(l)(t, u(t))m(t)

] [
C(l)(t, u(t)) +G(l)(t, u(t))m(t)

]T)
,

(4)

integrable with initial conditions

m(t0) = m0, K(t0) = K0. (5)

Using the functions m, K, we rewrite linear-quadratic performance functional (2) as

J =

t1∫

t0

[
tr(D(t, u(t))K(t)) +mT(t)D(t, u(t))m(t) + ST(t, u(t))m(t) +E(t, u(t))

]
dt

+ tr(QK(t1)) +mT(t1)Qm(t1).

(6)
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To simplify further calculations, we introduce the notation N = K +mmT for the matrix of
second raw moments and will instead of (4) use the equation

dN(t)

dt
= A(t, u(t))N(t) +N(t)AT(t, u(t)) +B(t, u(t))mT(t) +m(t)BT(t, u(t))

+
ν∑

l=1

(
G(l)(t, u(t))N(t)G(l)T (t, u(t)) + C(l)(t, u(t))mT(t)G(l)T(t, u(t))

+ G(l)(t, u(t))m(t)C(l)T (t, u(t)) + C(l)(t, u(t))C(l)T(t, u(t))
)

with condition

N(t0) = K0 +m0m
T
0 .

In this case, formula (6) can be rewritten as

J =

t1∫

t0

[
tr(D(t, u(t))N(t)) + ST(t, u(t))m(t) + E(t, u(t))

]
dt+ tr(QN(t1)).

Thus, we arrive at the following deterministic optimal control problem:

dm(t)

dt
= A(t, u(t))m(t) +B(t, u(t)), (7)

dN(t)

dt
= A(t, u(t))N(t) +N(t)AT(t, u(t)) +B(t, u(t))mT(t) +m(t)BT(t, u(t))

+
ν∑

l=1

(
G(l)(t, u(t))N(t)G(l)T (t, u(t)) + C(l)(t, u(t))mT(t)G(l)T(t, u(t)) (8)

+ G(l)(t, u(t))m(t)C(l)T (t, u(t)) +C(l)(t, u(t))C(l)T(t, u(t))
)
,

m(t0) = m0, N(t0) = K0 +m0m
T
0 , (9)

J =

t1∫

t0

[
tr(D(t, u(t))N(t)) + ST(t, u(t))m(t) + E(t, u(t))

]
dt+ tr(QN(t1)). (10)

Note that, in this form, the optimization problem is linear in state and nonlinear in control,
both in the part of differential constraints and in the part of the performance functional.

We introduce the state vector y ∈ Rn(n+1) such that

y = vec(m,N) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1

. . .
mn

N11

. . .
Nn1

. . .
N1n

. . .
Nnn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Hereinafter, vec denotes an operator that maps a set of its vector or matrix arguments into one
vector composed of their columns.

Then problem (7)–(10) takes completely explicit form, linear with respect to state:

dy(t)

dt
= Ã(t, u(t))y(t) + B̃(t, u(t)), y(t0) = y0 = vec(m0, K0 +m0m

T
0 ), (11)

Jy(v) =

t1∫

t0

[
D̃T(t, u(t))y(t) + E(t, u(t))

]
dt+ Q̃Ty(t1), (12)

where

Ã =

⎛

⎝ A 0

Ã1 Ã2

⎞

⎠ ,

Ã1 = B ⊕B +
ν∑

l=1

(
G(l) ⊗ C(l) + C(l) ⊗G(l)

)
, Ã2 = A⊕A+

ν∑

l=1

(
G(l) ⊗G(l)

)
,

B̃ = vec

(
B,

ν∑

l=1

C(l)C(l)T
)
, D̃ = vec(S,D), Q̃ = vec (0, Q) .

Here, the symbols ⊗ and ⊕ denote Kronecker product and Kronecker sum respectively (A ⊕ B =
A⊗ In+ In⊗B), In here and below denotes Kronecker identity matrix of size n× n. The symbol v
in (12) denotes the pair (y(·), u(·)) from the set Dy of “state-control” pairs such that for a given u(·)
function y(t) is the solution of Eq. (11). Since in the latter case, the values of the functionals Jx
and Jy on the corresponding pairs z and v coincide, we can reformulate the control goal as follows:
we need to minimize functional (12) on the set Dy.

Remark 1. If we have found a solution v∗ = (y∗(·), u∗(·)) of the resulting minimization problem
for Jy on Dy, then the control u∗(·) will be optimal for the initial minimization problem Jx on Dx.
However, the corresponding solution z∗ = (x∗(·), u∗(·)) will not be determined completely, which
means that these two tasks, strictly speaking, are not equivalent. Therefore, to work with the
solution z∗ of the original stochastic problem, for example if it is necessary to simulate the control
process, we need to consider Ito equation (1) again, with u(t) = u∗(t).

Remark 2. Since the matrix of second raw moments and square matrices in crite-
rion (6) are symmetric, the state vector y will contain matching components (for example,
y2×n = Nn1 = N1n = yn×n+1). To avoid considering the same components of the vector y in ad-
vance, second raw moments the symmetric vectorization operator and the symmetric Kronecker
product [8] should be used to write linear deterministic problem (11), (12). However, in this case it
is difficult to write Eq. (11) in matrix form because an ordinary operation of matrix vectorization
from [8] is complicated by adding vectors to the list of its arguments.

Let v = (y(·), u(·)) be some pair from Dy. We denote by Dy(ε) a subset of Dy consisting of
pairs v = (y(·), u(·)) that satisfy an additional condition

max
t∈T

|y(t)− y(t)| < ε, ε > 0,

and by D∗
y(ε) we denote a subset of Dy(ε) whose elements satisfy the condition

sup
t∈T

|u(t)− u(t)| < ε, ε > 0.
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Definition 1. We will say that functional (12) reaches at v ∈ Dy a strong relative minimum if
there exists ε > 0 such that

Jy(v) = inf
v∈Dy(ε)

Jy(v),

and a weak relative minimum if there exists ε > 0 such that

Jy(v) = inf
v∈D∗

y(ε)
Jy(v).

4. OPTIMALITY CONDITIONS

According to the Lagrange–Pontryagin method [2], let us consider a function t → ψ(t) : T →
Rn(n+1) and write the Hamiltonian

H(t, y, ψ, u) = ψT
[
Ã(t, u)y + B̃(t, u)

]
− D̃T(t, u)y(t)− E(t, u). (13)

Now Eq. (11) can be rewritten as

dy(t)

dt
=
∂H

∂ψ
(t, y(t), ψ(t), u(t)).

In turn, the adjoint equation

dψ(t)

dt
= −∂H

∂y
(t, y(t), ψ(t), u(t))

with the final condition looks as follows:

dψ(t)

dt
= −ÃT(t, u(t))ψ(t) + D̃(t, u(t)), ψ(t1) = −Q̃. (14)

Here, the condition at time t1 is determined by terminal part (12).

Note that formulas (14) coincide with the system of equations obtained in [6] when developing
the necessary optimality conditions by the method of Lyapunov–Lagrange–Krotov functions, if we
assume ψ = −vec(λ,M), λ(t) ∈ Rn,M(t) ∈ Rn×n. In addition, by augmenting Eqs. (11), (14) with
the relation

∂H

∂u
(t, y(t), ψ(t), u(t)) = 0,

we can also obtain necessary optimality conditions [6] themselves. We strengthen these necessary
conditions with the following definition.

Definition 2. A process v ∈ Dy is called extremal if it, together with a function ψ(t), satisfies
relations (11), (14) and the condition

H(t, y(t), ψ(t), u(t)) = max
u∈U

H(t, y(t), ψ(t),M(t), u). (15)

Following further the Lagrange–Pontryagin method [2], we consider a function (t, y) → ϕ(t, y) :
T ×Rn(n+1) → R1 of the form

ϕ(t, y) = ψT(t)y +
1

2
ΔyTΣ(t)Δy,
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where t→ Σ(t) : T → Rn(n+1)×n(n+1) is some symmetric matrix function consisting of ele-
ments σij(t), i, j = 1, n(n + 1), Δy = y − y.

Using the function ϕ we form structures

R(t, y, u) =

(
∂ϕ(t, y)

∂y

)T [
Ã(t, u)y + B̃(t, u)

]
− D̃T(t, u)y(t) − E(t, u) +

∂ϕ(t, y)

∂t
, (16)

F (y) = ϕ(t1, y) + Q̃Ty. (17)

It has been shown in [1, 2] that the functions ϕ, R and F constructed in this way reduce the
task of finding the minimum of functional (12) to the problem of maximizing R(t, y, u) with respect
to variables (y, u) for t ∈ T and minimizing F (y) at the same time.

The first differentials of functions (y, u) → R(t, y, u) and y → F (y) at the extreme point
(y(t), u(t)), t ∈ T , can be written as

dR = (R
′
y)

Tdy + (R
′
u)

Tdu, dF = (F
′
y)

Tdy,

where f denotes the value of f on the extremal, and (·)′y denotes the gradient with respect to the
variables y. From the definition of functions R, F and extremality conditions, we have

R
′
y = H

′
y +

dψ

dt
+Σ

(
Ãy + B̃ − y′

)
= 0, R

′
u = H

′
u = 0, F

′
y = ψ(t1) + Q̃ = 0,

therefore, the first differentials dR and dF are zero.

The second differential d2R at the extreme point is most conveniently represented as

d2R = −vecT(dy, du)Ωvec(dy, du),

where Ω denotes the matrix of second mixed derivatives with the inverse sign in block form

Ω =

⎛

⎝ −R′′
yy −R′′

yu

(−R′′
yu)

T −R′′
uu

⎞

⎠ , (18)

R
′′
yy(t) = Σ′(t) + Σ(t)Ã(t, u(t)) + ÃT(t, u(t))Σ(t), R

′′
yu = ||R′′

yiuj
||,

R
′′
yiuj

(t) =
n∑

s=1

[
ψs(t)

∂Ãsi(t, u(t))

∂uj
+ σis(t)

(
n∑

l=1

∂Ãsl(t, u(t))

∂uj
yl(t) +

∂B̃s(t, u(t))

∂uj

)]
− ∂D̃i(t, u(t))

∂uj
,

R
′′
uu = H

′′
uu = ||H ′′

ujuk
||,

H
′′
ujuk

(t) = ψT(t)

[
∂2Ã(t, u(t))

∂uj∂uk
y(t) +

∂2B̃(t, u(t))

∂uj∂uk

]
−
(
∂2D̃(t, u(t))

∂uj∂uk

)T

y(t)− ∂2E(t, u(t))

∂uj∂uk
.

In turn, the second differential d2F looks like

d2F = (dy)TΣ(t1)dy.

Based on the relations obtained for the second differentials of the optimized functions R and F
at the extreme point, we can formulate the following result.

Theorem 1. Suppose that we have found the extremal v = (y(·), u(·)) and the corresponding func-
tion ψ(t). If on T there exists a continuously differentiable symmetric matrix function Σ(t) such
that the matrices Ω(t) and Σ(t1) are positive definite, then functional (12) reaches on v at least a
weak relative minimum.
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Remark 3. If the set U , which defines the geometric constraints on the control, is limited, and
the function u → H(t, y(t), ψ(t), u) has a strict maximum on the closure U of the set U , then the
theorem becomes a sufficient condition for a strong relative minimum.

Remark 4. Detailed proofs of Theorem 1 and Remark 3 are given in [2] in the context of the
optimization problem for nonlinear deterministic control systems.

Remark 5. The criterion of positive definiteness for the matrix Ω, formulated in Theorem 1,
is the positivity of its n(n+ 1) +m corner minors, which makes it necessary to determine the
function Σ(t) from n(n+ 1) +m differential inequalities. If we rewrite the matrix Ω(t) in the form

Ω
∗
(t) =

⎛

⎝ −R′′
uu −R′′

yu

(−R′′
yu)

T −R′′
yy

⎞

⎠

and supplement the conditions of the theorem with the requirement of positive definiteness of
the block −R′′

uu = −H ′′
uu, then their number can be reduced to n(n + 1). At the same time, the

positivity of −H ′′
uu can be checked even at the stage of finding the extremal. Moreover, for a

number of problems the block −H ′′
uu is obviously a positive definite matrix. For example, in linear

in both state and control stochastic systems with a quadratic performance functional, the latter
is ensured by the positiveness of the quadratic form uTEu in the integrand of the functional by
the problem setting (see, e.g., [6, Section 6]). We note that, in the general case, this approach
also allows one to avoid in advance considering those extremals for which the proposed method is
not applicable. However, further verification of the conditions of the theorem, although it becomes
easier, still remains a non-trivial task.

To substantially simplify the conditions of Theorem 1, we transform the positivity requirements
for the block −R′

yy and matrix Σ(t1). We will ensure their fulfillment by satisfying the following
equalities:

Ω(t) = Ωγ(t) =

⎛

⎝ γIn(n+1) −R′′
yu

(−R′′
yu)

T −H ′′
uu

⎞

⎠ , Σ(t1) = γ1In(n+1), γ, γ1 > 0.

Thus, the unknown function Σ(t) can be defined by the condition in the form of a Cauchy
problem

dΣ(t)

dt
= −Σ(t)Ã(t, u(t)) − ÃT(t, u(t))Σ(t) − γIn(n+1),

Σ(t1) = γ1In(n+1).
(19)

Then further verification of the positive definiteness of the matrix Ω(t) = Ωγ(t) is reduced to
finding the numbers γ and γ1 satisfying for all t ∈ T the system of m remaining inequalities for the
corner minors. In view of Remark 5, Theorem 1 takes the following form.

Theorem 2. Suppose that we have found the extremal v = (y(·), u(·)) and the corresponding func-
tion ψ(t), and the matrix −H ′′

uu(t) is positive definite on T . In order for the point v to be at least
a point of a weak relative minimum of functional (12), it is sufficient to find such positive numbers
γ, γ1 that the solution Σ(t) of Cauchy problem (19) ensures positiveness of the last m corner
minors of matrix Ωγ(t), t ∈ T .

Remark 6. For problems with scalar control u(t) (the case m = 1), the conditions of Theorem 2,
in contrast to Theorem 1, require checking only one inequality corresponding to the positiveness of
the determinant Ωγ(t).
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Remark 7. Remark 3 remains valid in relation to Theorem 2.

Remark 8. To formulate the conditions of Theorem 2, instead of diagonal matrices
γIn(n+1), γ1In(n+1), γ, γ1 > 0, one can use in Eqs. (19) the positive definite matrices Θ, Θ1 of
an arbitrary form [3, p. 83].

We make another transformation of the conditions of Theorem 1. Following [2, p. 99], we consider
the function

P (t, y) = R(t, y, u∗(t, y)), u∗(t, y) ∈ Argmax
u∈U

R(t, y, u), (20)

then the problem of maximizing the function R(t, y, u) with respect to (y, u) is reduced to the
problem of maximizing the function P (t, y) with respect to y, where

dP (t) = dP (t, y) =

(
∂R(t, y(t), u(t))

∂y
+
∂u∗(t, y(t))

∂y

∂R(t, y(t), u(t))

∂u

)T

dy

=
(
R

′
y + (u∗)

′
yR

′
u

)T
dy = 0;

here u(t) = u∗(t, y(t)).
Therefore, for the second differential

d2P (t) = −(dy)T(−P ′′
yy)dy

we need to establish the positive definiteness of the matrix −P ′′
yy of the form

P
′′
yy = R

′′
yy + (u∗)

′
y

(
R

′′
yu

)T
+R

′′
yu

(
(u∗)

′
y

)T
+ (u∗)

′
yR

′′
uu

(
(u∗)

′
y

)T
+
[
R

′
u(u

∗)
′′
yy

]
,

where the last (tensor) product in square brackets is zero since R
′
u = 0. The right-hand side of

the resulting relation depends on an unknown matrix Σ(t), which, by analogy with the above, we
determine from the Cauchy problem

dΣ(t)

dt
= −Σ(t)Ã(t, u(t))− ÃT(t, u(t))Σ(t)

− (u∗)′y(t,Σ(t))
(
R

′′
yu

)T
(t,Σ(t))−R

′′
yu(t,Σ(t))

(
(u∗)

′
y

)T
(t,Σ(t))

− (u∗)′y(t,Σ(t))H
′′
uu(t)

(
(u∗)′y

)T
(t,Σ(t))− γIn(n+1), Σ(t1) = γ1In(n+1).

(21)

Here matrices R
′′
yu, H

′′
uu, as before, are determined by relations (18).

Theorem 3. Suppose that we have found the extremal v = (y(·), u(·)) and the corresponding func-
tion ψ(t), and the matrix −H ′′

uu(t) is positive definite on T . For the point v to be a point of strong
relative minimum of functional (12), it is sufficient to find positive numbers γ, γ1 such that there
exists a solution Σ(t) of Cauchy problem (21).

Remark 9. Cauchy problem (21) is generally not linear in the variable Σ, which means it may
have no solutions in the general case.

5. MODEL EXAMPLES

Example 1. Consider the following problem [6]. Suppose that on the time interval T = [0; 1] the
control process is defined by a scalar equation

dx(t) = [−x(t) + 1]dt+ 5u2(t)dw(t)
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with the initial condition x(0) = x0, where x0 is a random variable with expectation m0 = 0 and
variance K0 = 1, u(t) ∈ U = R1.

The problem is to find the control u(t) that minimizes the performance functional

J = E

1∫

0

u3(t)dt+ E

[
1

2
x(1)2

]
.

In vector form of (11) and (12), the example can be written using matrices

Ã(t, u) =

(
−1 0
2 −2

)
, B̃(t, u) =

(
1

25u4

)
,

D̃(t, u) =

(
0
0

)
, Q̃ =

(
0
1/2

)
, E(t, u) = u3,

so the corresponding deterministic optimization problem takes the form

dy1(t)

dt
= −y1(t) + 1, y1(0) = 0,

dy2(t)

dt
= 2y1(t)− 2y2(t) + 25u4(t), y2(0) = 1,

J =

1∫

0

u3(t)dt+
1

2
y2(1).

Then the adjoint system of Eqs. (14) and the Hamiltonian (13) can be written as

dψ1(t)

dt
= ψ1(t)− 2ψ2(t), ψ1(1) = 0,

dψ2(t)

dt
= 2ψ2(t), ψ2(1) = −1/2,

H(t, y, ψ, u) = ψ1

[
−y1 + 1

]
+ ψ2

[
2y1 − 2y2 + 25u4

]
− u3.

A necessary condition for maximizing the Hamiltonian with respect to u is the ratio

∂H(t, y(t), ψ(t), u)

∂u
= 100ψ2(t)u

3 − 3u2 = 0,

from which we have

u1(t) = 0, u2(t) =
3

100ψ2(t)
.

Considering the fact that the second derivative of the Hamiltonian with respect to u for u = u1 is
zero, only the solution u2(t) requires a check for extremality. Substituting it into the direct and ad-
joint systems of equations and carrying out their integration, we can obtain the pair v = (y(·), u(·))
and the function ψ. In particular, the second component ψ2(t) that we are interested in will have
the form

ψ2(t) = −1

2
e2(t−1),
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which implies that

u(t) = − 3

50
e2(1−t).

Moreover,

∂2H(t, y(t), ψ(t), u(t))

∂u2
= [300ψ2(t)u(t)− 6] u(t) = − 9

50
e2(t−1) < 0, t ∈ T,

which means that v satisfies the extremality conditions. At this stage, we once again note that
the result obtained is fully consistent with the results on the necessary optimality conditions of the
work [6] for this example.

Now we apply sufficient optimality conditions from Theorem 2. Compose adjoint Eqs. (19) for
the components of the symmetric 2× 2 matrix Σ(t)

dσ11(t)

dt
= 2σ11(t)− 4σ12(t)− γ, σ11(1) = γ1,

dσ12(t)

dt
= 3σ12(t)− 2σ22(t), σ12(1) = 0,

dσ22(t)

dt
= 4σ22(t)− γ, σ22(1) = γ1.

Integrating the system from the end, we get

σ11(t, γ, γ1) =
5

6
γ −

(
5

2
γ − 5γ1

)
e2(t−1) +

(
8

3
γ − 8γ1

)
e3(t−1) − (γ − 4γ1) e

4(t−1),

σ12(t, γ, γ1) =
1

6
γ −

(
2

3
γ − 2γ1

)
e3(t−1) +

(
1

2
γ − 2γ1

)
e4(t−1),

σ22(t, γ, γ1) =
1

4
γ −

(
1

4
γ − γ1

)
e4(t−1).

We use the found components of the solution Σ(t) to compose the matrix

Ωγ(t) =

⎛

⎝ γI2 −R′′
yu

(−R′′
yu)

T −H ′′
uu

⎞

⎠ ,

where the blocks −R′′
yu, −H ′′

uu are calculated using formulas (18) and have the form

−R′′
yu(t) = −100u3(t)

(
σ12(t, γ, γ1)
σ22(t, γ, γ1)

)
, −H ′′

uu = −300ψ2(t)u
2(t) + 6u(t).

We get

Ωγ(t)=

⎛

⎜⎜⎝

γ 0 −100u3(t)σ12(t, γ, γ1)

0 γ −100u3(t)σ22(t, γ, γ1)

−100u3(t)σ12(t, γ, γ1) −100u3(t)σ22(t, γ, γ1) −300ψ2(t)u
2(t)+ 6u(t)

⎞

⎟⎟⎠ .

Thus, taking into account Remark 6, to verify the positive definiteness of Ωγ(t) and thereby
fulfill the conditions of Theorem 2, it suffices to establish for some values of γ, γ1 > 0 the validity
of a single inequality

f(t) > 0, t ∈ T,
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Fig. 1. Plot of function f(t) for γ = γ1 = 0.1.

Fig. 2. Plot of function f(t) for γ = γ1 = 1.

where

f(t) =
∣∣∣Ωγ(t)

∣∣∣ =
[
6u(t)− 300ψ2(t)u

2(t)
]
γ2 − 10 000γu6(t)

[
σ212(t, γ, γ1) + σ222(t, γ, γ1)

]
.

Such numbers γ, γ1 exist. For example, with γ = γ1 = 0.1 the plot of the function f(t) has the
form shown in Fig. 1.

Therefore, the resulting control u(t) is optimal. Note that already when choosing the numbers
γ, γ1 greater or equal to 1, the inequality ceases to hold at some points of the interval T (see
Fig. 2).

Next, consider the approach of Theorem 3. We compose R(t, y, u) of the form (16) using

ϕ(t, y) = ψ1(t)y1 + ψ2(t)y2 +
1

2

(
σ11(t)Δy

2
1 + 2σ12(t)Δy1Δy2 + σ22(t)Δy

2
2

)
,

will get

R(t, y, u) = (ψ1(t) + σ11(t)Δy1 + σ12(t)Δy2)(−y1 + 1)

+ (ψ2(t) + σ12(t)Δy1 + σ22(t)Δy2)(2y1 − 2y2 + 25u4)− u3 + ϕ′
t(t, y).

From condition (20), we define the function

u∗(t, y) = arg max
u∈R1

R(t, y, u)

= arg max
u∈R1

{
25(ψ2(t) + σ12(t)Δy1 + σ22(t)Δy2)u

4 − u3
}

=
3

100(ψ2(t) + σ12(t)[y1 − y1(t)] + σ22(t)[y2 − y2(t)])
,
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Fig. 3. Plots of components of the matrix Σ(t).

and u∗ found at the point (t, y(t)), as already noted, coincides with u(t) and, therefore, satisfies
the sufficient maximum condition

[300ψ2(t)u(t)− 6] u(t) = − 9

50
e2(t−1) < 0, t ∈ T.

Then the first derivative (u∗)′y at point (t, y(t)) will have the form

(u∗)′y(t,Σ(t)) = − 3

100ψ2
2(t)

(
σ12(t)
σ22(t)

)
.

Let us compose Eqs. (21)

dσ11(t)

dt
= 2σ11(t)− 4σ12(t) + η(t)σ212(t)− γ, σ11(1) = γ1,

dσ12(t)

dt
= 3σ12(t)− 2σ22(t) + η(t)σ12(t)σ22(t), σ12(1) = 0,

dσ22(t)

dt
= 4σ22(t) + η(t)σ222(t)− γ, σ22(1) = γ1,

where we have denoted

η(t) = 3
400u2(t) + 450ψ2(t)u(t)− 9

200ψ2
2(t)

u(t).

By numerically integrating the system from the end for the same values γ = γ1 = 0.1, one can
obtain a solution of the following form (see Fig. 3).

However, already with γ = γ1 = 1 the solution does not exist. For example, numerical integration
of the Cauchy problem for the function σ22(t) from t1 = 1 to t0 = 0 goes to “computational infinity”
to the left of the time moment t∗ = 0.15.

Example 2. On the same time interval T = [0; 1], consider a linear two-dimensional problem

dx1(t) = [−x1(t)− x2(t)]dt+ 5dw(t),

dx2(t) = [−x2(t) + u(t, x(t))]dt + 5dw(t)

with initial condition x(0) = x0, where x0 is a random vector with expectation m0 = 0 and co-
variance matrix K0 = I2. The equations include a control strategy u(t, x), which is not subject to
geometric constraints (U = R1), but an additional information constraint is imposed [6]: control u
should be independent of the second component x2 of the state vector x.
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The problem is to find the control strategy u(t, x) in the form of a linear controller −PT(t)x
that minimizes the quadratic performance functional

J = E

1∫

0

[
x21(t) + x22(t) + u2(t, x(t))

]
dt.

Based on the given information constraint, we can conclude that the desired optimal controller
should be u(t, x) = −P1(t)x1, where P1 is the first component of the vector P . Thus, we need to
determine the optimal value of the coefficient P 1(t). Denoting u(t) = P1(t), we can rewrite the
problem as (1), (2) using matrices

A(t, u) =

(
−1 −1
−u −1

)
, B(t, u) =

(
0
0

)
, C(t, u) =

(
5
5

)
, G(t, u) = 0,

D(t, u) =

(
1 + u2 0

0 1

)
, S(t, u) =

(
0
0

)
, E(t, u) = 0, Q = 0

or in vector form (11), (12) using matrices

Ã(t, u) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 0 0 0 0
−u −1 0 0 0 0
0 0 −2 −1 −1 0
0 0 −u −2 0 −1
0 0 −u 0 −2 −1
0 0 0 −u −u −2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, B̃(t, u) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
0
25
25
25
25

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

D̃(t, u) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
0

1 + u2

0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, E(t, u) = 0, Q̃ = 0

with the initial condition y0 = (0, 0, 1, 0, 0, 1)T .

Note that in this example, for any values of u(t) a solution of the direct system of Eqs. (11)
for the first two components y1(t), y2(t) of the vector function y(t) will be y1(t) = y2(t) ≡ 0 and,
similarly, the solution of the adjoint system (14) for the first two components ψ1(t), ψ2(t) of the
vector function ψ(t) will be ψ1(t) = ψ2(t) ≡ 0. Moreover, due to the symmetry of the initial matrix
of moments, we have y4(t) = y5(t) and ψ4(t) = ψ5(t), t ∈ T .

Then the necessary condition for the maximum of the Hamiltonian (13) takes the form

ψ4(t)y3(t) + ψ6(t)y4(t) + u(t)y3(t) = 0.

From here, we can find the unique extreme solution

u(t) = −ψ4(t)y3(t) + ψ6(t)y4(t)

y3(t)
,

for which the sufficient condition y3(t) > 0, t ∈ T is also satisfied, since component y3 corresponds
to element N11 of the matrix of raw moments N .
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Fig. 4. Plot of the function u(t).

Substituting u(t) into the direct and adjoint systems of equations, we obtain the boundary
problem made of six different equations and six conditions

dy3(t)

dt
= −2 (y3(t) + y4(t)) + 25,

dy4(t)

dt
= [ψ4(t)y3(t) + ψ6(t)y4(t)]− 2y4(t)− y6(t) + 25,

dy6(t)

dt
= 2

(
ψ4(t)y3(t) + ψ6(t)y4(t)

y3(t)
y4(t)− y6(t)

)
+ 25,

dψ3(t)

dt
= 2

(
ψ3(t)− ψ4(t)y3(t) + ψ6(t)y4(t)

y3(t)
ψ4(t)

)
+

[ψ4(t)y3(t) + ψ6(t)y4(t)]
2

y23(t)
+ 1,

dψ4(t)

dt
= ψ3(t) + 2ψ4(t)− ψ4(t)y3(t) + ψ6(t)y4(t)

y3(t)
ψ6(t),

dψ6(t)

dt
= 2 (ψ4(t) + ψ6(t)) + 1,

y3(0) = 1, y4(0) = 0, y6(0) = 1, ψ3(1) = 0, ψ4(1) = 0, ψ6(1) = 0.

The solution of the boundary value problem can be found numerically, and as a result we find
the extremal (y(·), u(·)) and the function ψ(t). In particular, the plot of the function u(t) will have
the form shown on Fig. 4.

Next we apply sufficient conditions of Theorem 2. To do this, we need to compose a symmetric
matrix Σ(t) of size 6× 6 and solve Cauchy problem (19) for it. It is easy to verify that the
symmetry of the matrix of raw moments in the original problem will also affect the number of
different equations for the elements Σ(t). Namely, the matrix Σ will have the following form:

Σ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ11 σ12 σ13 σ14 σ14 σ16
σ12 σ22 σ23 σ24 σ24 σ26
σ13 σ23 σ33 σ34 σ34 σ36
σ14 σ24 σ34 σ44 σ45 σ46
σ14 σ24 σ34 σ45 σ44 σ46
σ16 σ26 σ36 σ46 σ46 σ66

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the problem is reduced to the integration of 16 varied differential Eqs. (19) with initial
conditions. This problem can also be solved numerically for given values of γ, γ1. Then, to verify
sufficient conditions for some γ, γ1 and the found solution Σ(t, γ, γ1), it remains to compose the
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Fig. 5. Plot of function f(t) for γ = γ1 = 0.01.

Fig. 6. Plot of function f(t) for γ = γ1 = 1.

Fig. 7. Plot of function f(t) for γ = 1, γ1 = 0.01.

matrix Ωγ(t) and establish the sign of its determinant. Using (18), we get

Ωγ(t) =

⎛

⎝ γI6 −R′′
yu

(−R′′
yu)

T −H ′′
uu

⎞

⎠ ,

R′′
yu =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2σ14(t, γ, γ1)y3(t)− 2σ16(t, γ, γ1)y4(t)

−2σ24(t, γ, γ1)y3(t)− 2σ26(t, γ, γ1)y4(t)

−2ψ4(t)− 2σ34(t, γ, γ1)y3(t)− 2σ36(t, γ, γ1)y4(t)− 2u(t)

−ψ6(t)− σ44(t, γ, γ1)y3(t)− σ45(t, γ, γ1)y3(t)− 2σ46(t, γ, γ1)y4(t)

−ψ6(t)− σ44(t, γ, γ1)y3(t)− σ45(t, γ, γ1)y3(t)− 2σ46(t, γ, γ1)y4(t)

−2σ46(t, γ, γ1)y3(t)− 2σ66(t, γ, γ1)y4(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H
′′
uu = −2y3(t).
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Figures 5–7 show the plots of the function t→ f(t, γ, γ1) = |Ωγ(t)| for some values γ, γ1 > 0.

As can be seen from Fig. 7, the positive numbers γ, γ1 that ensure the fulfillment of sufficient
optimality conditions from Theorem 2, exist, however, as is the case with the first example, their
values need to be chosen accurately enough.

Using the conditions of Theorem 3 leads to similar results. The derivative (u∗)′y at the point
(t, y(t)) will be

(u∗)′y(t,Σ(t)) = − 1

2y3(t)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2σ14(t)y3(t) + 2σ16(t)y4(t)

2σ24(t)y3(t) + 2σ26(t)y4(t)

2ψ4(t) + 2σ34(t)y3(t) + 2σ36(t)y4(t) + 2u(t)

ψ6(t) + σ44(t)y3(t) + σ45(t)y3(t) + 2σ46(t)y4(t)

ψ6(t) + σ44(t)y3(t) + σ45(t)y3(t) + 2σ46(t)y4(t)

2σ46(t)y3(t) + 2σ66(t)y4(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and substituting it into the Cauchy problem (21) we can obtain a numerical solution Σ(t) with
γ = 1, γ1 = 0.01. With values of γ = γ1 = 0.01 or γ = γ1 = 1, as in the case of Example 1, a
solution cannot be found.

6. CONCLUSION

We have obtained sufficient conditions for a strong and weak relative minimum in the opti-
mization problem for quasilinear stochastic systems with continuous time whose coefficients in the
general case depend nonlinearly on the program control.

The results of solving the examples that we give in this paper show certain difficulties in applying
the obtained sufficient optimality conditions even in model problems. First of all, they are related
to finding the numbers γ, γ1, which in each specific case nothing is known in advance about except
for their positivity. The analysis of permissible ranges of values of these parameters is a subject of
further research.

In addition, the examples clearly demonstrate a significant increase in the computational com-
plexity of problems as the problem dimensions grow when using the proposed approaches. For
instance, a two-dimensional problem with scalar control and incomplete information already re-
quires a numerical solution of a boundary problem of order 10 and a Cauchy problem of order 16.
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