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1. INTRODUCTION

Prior to describing the stochastic volatility models, consider this notion in more detail. Different
financial phenomena can be understood under the term wvolatility. Depending on context and view-
point, volatility means the variability of prices in form of the standard deviation of return, financial
risk parameter or price model, or a random process of certain type. The notion of volatility was
modified with the appearance of the Black—Scholes—Merton option pricing model [1] in 1973. Black
and Scholes applied the continuous-time geometric Brownian motion to construct a mathematical
model of pricing. The success of their paper promoted a wide use of stochastic models in econo-
metrics. In our paper, the term volatility will be associated with a random process that describes
the variability of prices.

As indicated by the return analysis of American investment funds, the main distinctive feature of
successful funds is the capability to control portfolio volatility for reducing the share of most volatile
assets during the periods of high variability of asset prices [2]. Also note that the active investment
strategies based on dynamic volatility measurements guarantee considerable yield [3, 4]. All these
conclusions testify that the knowledge of volatility is crucial for efficient portfolio management,
investment strategy design and company risk management, along with other issues.

Some publications on nonparametric volatility estimation have appeared recently. For example,
consider volatility prediction using local exponential estimation for the Yao-Tong model [5] sug-
gested by Ziegelmann [6], or parameter estimation for the stochastic Duffie-Pan—Singleton model [7]
and also for the Jacquier—Polson—Rossi model [8] using infinitesimal moments in the paper [9] by
Bandi and Reno. In contrast to these publications, our paper relies on Wald’s theory of deci-
sion making, more specifically, on risk function minimization as the most widespread criterion in
statistics. We study the volatility model in the form of an unobservable stochastic process with
unknown distribution and unknown state equation. Under certain conditions, this process can be
estimated using the empirical Bayesian approach developed within the theory of nonparametric
filtering, interpolation, and prediction of partially observable Markov processes [10]. In this theory,
the stochastic state models of useful signals are assumed unknown while the observation models
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1688 DOBROVIDOV, TEVOSIAN

that describe investigator’s instruments are assumed completely known. If a useful signal is un-
observable in pure form, then generally its distribution cannot be restored. Hence, the optimal
Bayesian procedure is not directly applicable to useful signal restoration based on observations. In
comparison with the above-mentioned parametric estimation methods, the main advantage of this
approach consists in the feasibility of considering volatility processes of arbitrary frequency without
any hypotheses about the model of the unobservable component.

2. DESCRIPTIVE MODELS FOR STOCHASTIC VOLATILITY

In a financial market, the asset price S; at a time t is positive by definition and often considered
in the representation S; = Spe®*, where

t
Ri=) r, t=0,1,2....
1=1

The value r; defined by

St

=1
Tt og St_l

is called the logarithmic rate of return at the time t.

The simplest assumption about the probabilistic nature of r; is that its model is described by the
stochastic equation r, = oe;, where ¢ = (&;) denotes a sequence of independent random variables
with the same distribution A/ (0,1) and o is a parameter termed volatility in financial literature.

Further research demonstrated that volatility is “volatile” itself and its behavior well fits the
framework of random time-varying functions. Volatility as a characteristic of variability is not
observed but can be treated as a random process (0,) in the observable rate-of-return model

Ty = [t + OtEe, (1)

where 1; and o3 specify given random processes. In this paper, we will consider two parametric con-
ditional Gaussian models of volatility in discrete time within the efficient market concept, namely,
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) suggested by Bollerslev [11]
and Stochastic Volatility (SV) developed by Taylor [12]. The former model is widely used in prac-
tice because it describes current volatility and also predicts its value for one step forward. However,
in this model the volatility oy is a given function of the observable rate of return r;, which slightly
restricts its possible modifications. The latter model has a feature that the volatility oy is writ-
ten as a separate stochastic process independent of the rate r; [13]. This assumption extends the
behavioral variety of volatility, and hence a rich arsenal of methods from the theories of random
processes and martingales [14] become applicable here. The two models will be considered in detail
in Sections 2.1 and 2.2 below.

2.1. GARCH Model

Suppose the sequence € = (g¢);>1 in model (1) is a unique source of randomness in the market
while the conditional mean and variance have the form

p
2 2 2
ue = E(rylri—1,...,m1) =0, o7y =F (rt |71, ,rl) =0+ Zairt_i, (2)
i=1
where ag >0, o; >0, i =1,...,p, and r1_p,...,79 are given initial constants. The conditional

mean p; is zero because the daily average rate of return and the average intraday rates of return
for stocks and currencies are zero [15].
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NONPARAMETRIC ESTIMATION OF VOLATILITY 1689

This model was introduced by Engle in 1982 and called the AutoRegressive Conditional Het-
eroskedastic Model, ARCH(p). It well explains several nontrivial properties of financial time series
such as the clustering effect of the values r;.

Definition 1. ARCH(p) is a sequence r = (r4) of the form r; = oe4, where € = (£;) represents a
sequence of independent random variables with the standard Gaussian distribution, &; ~ N (0, 1),
while o7 satisfies the recursive Eq. (2).

The obvious success of ARCH(p) soon resulted in the appearance of its different extensions and
modifications. One such extension is the Generalized AutoRegressive Conditional Heteroskedastic
(GARCH) model suggested by Bollerslev in 1986. GARCH (p, ¢) has the following advantage over
ARCH(p): for adjustment to real data, the latter needs large values p whereas the former works
well with small values p and gq.

As before, assume p; = 0 but, unlike formula (2), let oy satisfy the equation

p q
2 2 2 2
o =FE (rt ITe—1, ... ,rl) =ap+ Zairt_i + Z,Bjat_j, (3)
i=1 j=1
with o > 0, a4, 5; > 0, and initial conditions (r1—p,...,79) and (U%_q, ...,08), which can be con-

stants or generated in advance.

Definition 2. GARCH(p, q) is a sequence r = (r;) of the form r; = o4e4, where € = (&4) represents
a sequence of independent random variables with the same distribution A/(0,1) while oy obeys (3).

2.2. Taylor Model

The ARCH-type models contain a single source of noise defined by a sequence of independent
Gaussian random variables € = (¢¢)¢>1. By assumption, the variance of the rate-of-return process
depends in some way on its past realizations. An alternative approach is to describe price dynamics
by a simple model (e.g., a differential equation, like in the Black—Scholes-Merton option pricing
model) with volatility considered as a separate stochastic process. This leads to two independent
sources of randomness. Stochastic volatility models include another source of noise § = (0¢)>1,
which also consists of the independent random variables with the same distribution A/(0,1) in the
simplest case.

As in the previous models, assume the first condition in (2) holds. Then
Tt = OtEt, (4)

where £; are random variables with the distribution N (0, 1).
Let

oy = e2, (5)

which implies that o; is a positive random variable. The models of dependent random variables
are most widespread here, in which the sequence (A,);>1 satisfies the autoregression model

At =ag + alAt_l +...+ CLpAt_p + cét, (6)
where ¢ denotes the variance of noise component. It follows from (4)—(6) that the conditional
distribution of r; with fixed previous values 7;_1, ..., is Gaussian with the parameters 0 and o2,
ie.,

frdriza,...,,rm) =N (0,0‘?) )

Definition 3. The stochastic volatility model is a sequence r = () of the form r; = o464, where
e = (g¢) represents a sequence of independent random variables with the same distribution N (0, 1)
while o is given by the autoregression equation of A; induced by the white noise N(0,1).
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1690 DOBROVIDOV, TEVOSIAN
3. KALMAN FILTER

The Kalman filter is one of the most popular volatility estimation methods in modern economet-
rics [16, 17]. Consider this filter subject to stochastic volatility estimation. It is applicable to the
linear Gaussian models only and hence Eq. (4) must be linearized. Using formula (5), we obtain
the expression

Ty = O1&p = eéAtEt.
Taking the logarithm of its square yields
log (rf) = log (eAtEf) = log (eAt) + log (Etz) = A+ log (Ef) .
Introduce the notations b; = log (r7) and & = log (¢7). Then Eq. (4) is transformed into
by = Ay + &. (7)

For the sake of simplicity, Eq. (6) will be written as the first-order autoregression with the zero
mean:

Ap = a1 A1 + ¢y ()

A prerequisite for using the Kalman filter is the Gaussian distribution of the noisy compo-
nents. However, the random variable & = log(e7) in the state model has another distribution; so
it is replaced by the Gaussian counterpart &/ with the mean E& = E&/ = —1.27 and the vari-
ance D& = D) = 4.93 = 72/2 [18] (see the Appendix for details). Then system (7), (8) takes
the form

by =N+ &
At = alAt_l + C(St.

As a result, the Kalman filter for the stochastic volatility model is described by the system of
equations

202 + 2a%%_1

Ay = a1 A
tT s 1+7T2+202+2a%’yt_1

(bn +1.27 — alﬁt_l) R

72 (c + advi-1)

T 2 L9y 2a2v-1
with the initial conditions
" 2¢2
A = b1,
(1 - a?) + 2c? !
w22
M=

72(1 —a?) + 2c¢2°

In this system, the estimate A, is recursive, which facilitates calculations. At the same time,
the substitution for the Gaussian noise may cause additional errors.

AUTOMATION AND REMOTE CONTROL Vol. 79 No. 9 2018



NONPARAMETRIC ESTIMATION OF VOLATILITY 1691

Finally, the solution of system (9) is used in formula (5) for obtaining the volatility estimate

2¢2 4 2031

b, +1.27 —a1Ar 1) | .
7T2+202+2a%’7t_1 ( TL+ a]_ t 1))

@2 = exp (alAt—l +

4. OPTIMAL FILTERING EQUATION WITH UNKNOWN DISTRIBUTION
OF USEFUL SIGNAL

A lot of research efforts were made in the 1960-1970s to develop rigorous learning and self-
learning methods for automatic systems. A line of investigations was focused on self-learning
problems under statistical processing of signals with unknown state models. This line yielded the
theory of nonparametric estimation of signals, which stems from a pioneering paper [19] published
in 1983. In this theory, the stochastic state models of useful signals are assumed unknown while the
observation models that describe investigator’s devices are assumed completely known. If a useful
signal is unobservable in pure form, then generally its distribution cannot be restored. Hence,
the optimal Bayesian procedure is not directly applicable to useful signal restoration based on
observations. Parametric models involve different mathematical models of unobservable signals.
For example, GARCH and Stochastic Volatility include the state Eqgs. (3) and (6), respectively.
Nonparametric estimation allows obtaining an estimate of an unobservable signal even with a com-
pletely unknown distribution, which forms its major advantage. In other words, an unobservable
signal is filtered without introducing any descriptive models of the process and assumptions about
its character.

Let (X¢,St)i>1 be a partially observable two-component process, where (X; € R);>1 and
(St € R)>1 denote the observable and unobservable components that are statistically connected
with each other by a conditional density function f(z¢|s;) = f(z¢|S; = s¢). Conditional density
is defined by specifying two objects, namely, 1) the distribution of noises 7; and 2) an obser-
vation model, i.e., an equation relating an observation X; to the useful signal S; and noise 7,
X = ¢(Sy,my). Different classes of filtering problems correspond to different forms of the obser-
vation model and distribution of noises. Consider a class of problems in which the statistical
connection equation and distribution of noises are chosen so that the conditional density function
f(x¢|s¢) belongs to the exponential family, i.e.,

fdlse) = Cls)g(ae) exp {T (2)Q(s0)} (10)

for a fixed useful signal Sy = s;. Here T, @, and g are given Borel functions while C’(st) denotes
a normalization factor. First of all, the parametric family (10) contains the Gaussian density
function, a single density with known optimal mean-square estimates in explicit form. Also it
includes the x2-distribution, the beta-distribution, some of the Pearson distributions, etc. If the
random variable S; has probabilistic sense, then this parametrization is termed natural. The family
of distributions (10) allows a more simpler parametrization called canonical in which the role of
parameter is played by the term 6; = Q(S;) that enters linearly in exponent index. In this case,

f(x4]0r) = C(01)g(xt) exp{T (z1)0:}, (11)

and the normalization factor takes the form

CL6;) = / () exp{T (x:)6; v, (12)
R
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1692 DOBROVIDOV, TEVOSIAN

The set of all values 6, for which there exists the exponential density function f(x;|0;) is restricted
by the set of those 6; for which integral (12) is finite.

Here the main idea of the estimation algorithm consists in the following. Instead of the
process (S;), at first estimate the process (6; = Q (S;)),~, that induces the simpler canonical

parametrization in the family of distributions (11). Secondly obtain the estimate S in the
form Q~1(6;) using the inverse function Q~!, which is assumed to exist. The resulting estimate S

Y
is also optimal but with the loss function (Q (6y) — Q (Ht)) .

The process 6; will be estimated under the hypothesis that the unobservable sequence (S)i>1
is a Markov sequence. Hence the two-component process (Z;)i>1 = (St, X¢)i>1 is also a Markov
process.

Under completely known statistical information, the process 6; is estimated using the optimal
Bayesian estimate in form of the conditional mean

ét = /Htwt (9t|x§) d@t, (13)
O

where ©, denotes the value set of the process 6; while w, is the posterior probability satisfying the
recursive equation

f(x4]604)

5 (m ‘mt—l) wy (9t|xtl_1) , t>2, (14)
tlv1

wy(6y]x]) =

where

wy (9t|$§_1) = / D (0¢]0r—1) wi—y (et—l\mﬁ_l) dfi_q
O_1

gives the predicted posterior density function and p(6;|0;—1) is the transition density function of
the Markov sequence (6;)¢>1.

Using the Bayes’ formula, calculate the initial condition for Eq. (14):

w1(191|:1:1) = (15)

Under incomplete statistical information, for optimal posterior estimation the integrals in
Eqgs. (14) and (15) are replaced by sums. This yields the Kushner—Stratonovich filter [20, 21].

Now, integrate both sides of Eq. (14) over 6, and rearrange the term that depends on observations
only to the left side:

 (wdal™) = [ flailooyw (dulat ) do. (16)
Oy

Differentiate this expression with respect to xy:

i, (welat™) = [ £, Garlon) we (611a17) do. (17)
O
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NONPARAMETRIC ESTIMATION OF VOLATILITY 1693

As mentioned earlier, the conditional density function f(x:|0;) is assumed to belong to the
exponential family. Then

(f(a;(l;ﬁ)ﬂ) = o / C(0,)exp(T (x0);ywy (014 by
_ / T2, (20)0,C (0, exp (T (w0) 0y ywy (01]5L) by,

where prime denotes differentiation with respect to z;.
Multiply the left and right sides of Eq. (18) by g(x¢)/f ($t|azﬁ_1):

0 1nf(mt|xtl_1) _ T

Oxy g(z¢) - (a: \m /9t (0¢)g(we)exp(T'(z¢)0r)wy (9t|x1 )d@t

Using the definition of Bayesian estimation, write the optimal filtering equation for the esti-

mate 60;:
/ ) 0 f (ajtu{_l)
T, (24)0; = oz, (ln o) . (19)

This equation does not explicitly depend on the prior and transition densities of the unobservable
sequence S. So it can be used for obtaining the optimal estimate 6; based on the values of the
observable component X; without explicit specification of the transition density function.

For the class of models (11), the only unknown characteristic in the optimal filtering equation
is the conditional density function f(z¢|x! ™) of the observation z,, under fixed previous observa-
tions :Etl_l = (r1,22,...,m4—1). Since the process (X;) is observable, its realization can be used
for restoring this characteristic by nonparametric kernel methods. Note that the functional form
of the conditional density f (a:t|a:tl_1) is not required. For kernel estimation, we have to specify
just two parameters—the smoothing factor (bandwidth) and the parameter of regularization. In
this paper, for these purposes we will employ smoothed cross-validation [22] and the Tikhonov
regularization [23], respectively. With the estimation methods for the smoothing factors and the
parameters of regularization together with nonparametric filtering algorithms at our disposal, we
get an efficient tool for extracting unknown useful signals against the background of noises, which
depends on the observable sample only. Therefore, the nonparametric signal extraction methods
can be called automatic or self-learned.

Under the unknown state equation, the conditional density function f (a:t|xtl_1) of observations
cannot be calculated precisely. However, we may construct its approximation using nonparametric
kernel estimation based on dependent observations x} with given accuracy. In accordance with
this procedure, the unknown density function f (azt\mﬁ_l) is replaced by the “truncated” density

function f (a;t|xt T), where 7 means the degree of dependence of the observable process (X;). As
a matter of fact, 7 represents the order of connectivity for the Markov process that approximates
the non-Markov process (X;), see [10]. By definition, f (a:t|:1:t 7) Fi)/f (act T) Then

in (f (selet L)) = T =), (20)
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The denominator of this formula is a (7 + 1)-dimensional density function.
For such a function, the nonparametric kernel estimate takes the form

. 1 t—r—174+1 Bom il — Tomimitl
_ —J —Jj—i
f(atr) = (t—7—1h+l = EK ( h ) ' )

1=

For the numerator of (20), the nonparametric estimate is written as

X 1 t—r—1 g NTHL
/ ¢\ i (T z) K( t—j4l — Tt—j z+1> 99
Ia: (xt_T) (t — 7 —1)h7,"> ; ( hi ]1;[2 he B

where f” », and K’ denotes the partial derivative with respect to the variable ;.

Consequently, the nonparametric estimate for the logarithmic derivative of the density function
has the formula

In (f (xt\xizi));n = J;/ ((;f—T))
t—r

This is the so-called plug-in estimate. For calculating ratio (20), it suffices to choose the smooth-
ing factors h; (for the density function (21)) and hy; (for its partial derivative (22)), see [24].

5. NONPARAMETRIC ESTIMATION OF VOLATILITY

For the linear case of the Taylor model (7), (8), under fixed A; the conditional density function b,
takes the following form (see the details in the Appendix):

~exp(be/2) _exp(by)
P(belB) = \/27rexp(At/2)eXp ( 2€XP(At)> ' (23)

Formula (23) plays crucial role for the nonparametric estimation of volatility because one of the
prerequisites is that the conditional distribution belongs to the exponential family.

As easily verified, the density function (23) is a member of the exponential family (11), where

o000 = "0 =T = ot
1
C(Ay) = exp(A/2)°
T(b,) = _exp2(bt); T) (by) = _exp2(bt);
1
0(A) = exp(Ay)°

Then the optimal filtering Eq. (19) can be written as

e ()

Substituting the above expressions into Eq. (24) yields
exp(br) _ 1 f'(bj,)

2exp(Ay) 2 f(0l_,)
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As a result, the nonparametric estimate takes the form

—1oe [ ex _2f'(b_;)
Ay =1 g< p(bt)/<1 FOL) ))

and the volatility estimate is given by

o1 = exp (A;) = Jexp(bﬁ/(l - 2}c£l()l;i_73) ) (25)

Now, demonstrate that the denominator in the rooted expression in the (25) has positive values
only, i.e.,

L)
04

To this end, multiply both sides of this inequality by f(bf__):
f(bi—ﬂ') - 2f/(b§—7') > 0.
Next, divide the resulting expression by f(b!"1):

fOi) 21 (i) i1 -1
_T - _ Vo= f(bt|b —T) - 2f (bt|b —T) > 0.
FO=) ) t t
Using formulas (16) and (17), the last inequality can be reduced to
/p(bt|At)’UJt (Aﬂbﬁ_l) dAt —2 /p'(bt|At)wt (At|bi_1) dAt
At At

> 0.

— / (p(brlAr) — 20/ (0e] ) wn (A1) dA; > 0,
Ag

where p’(b;|A¢) denotes the derivative with respect to b;. Since wy(+) > 0, it suffices to prove that
p(bt|At) — 2p/(bt|At) > 0.

Taking advantage of formula (23), we obtain

exp(by/2) )x < exp(bt)) exp(b:/2) )ex ( exp(bt)>

V2mexp(As /2 _QGXP(At) B V2mexp(As/2 _QGXP(At)
exp(3b:/2) exp(by) \  exp(3b/2) exo [ exp(by)
V2mexp(3A/2) P <_ QGXP(At)> © V2mexp(3A,/2) P ( 2€XP(At)> >0

All the functions entering this expression are positive; hence the inequality holds for any values
bt and At.

For the nonparametric case of the exact Eq. (25), the functions f(bf__) and f/(b!__) should be
replaced by their nonparametric estimates f(b!__) and f'(b!__), see formulas (21) and (22). As
the result of this replacement, the denominator in the rooted expression (25) may become nonpos-
itive. For avoiding this, apply the following additional condition of separability from nonpositive
values: (v)* = ((vfor v>0) Vv (ef for v <0)), where ] is a small positive value. Then the

nonparametric estimate of volatility takes the form

o TG
o = Jexp(bﬁ/(l o) ) . (26)
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6. NUMERICAL IMPLEMENTATION

For a numerical implementation of the developed estimation algorithm, first we generated
t = 1500 values of true volatility using the Taylor model (8) and then obtained the rate-of-return
data (4) based on these values. The first 1000 values were employed for model learning while
the other 500 for testing. For each method, the quality of the volatility estimate &; was assessed
during 100 replicated trials by calculating the root-mean-square deviation (RMSD) from the true

1696

volatility o;:

1500 R
(07 — 6:)?

RMSD(s) = 4| =% .

This assessment criterion is used below for comparing different estimation methods, see the

table.

6.1. Nonparametric Estimate

The nonparametric volatility estimate (26) (light plot) against the true volatility (dark plot) is

shown in Fig. 1.

35

Volatility

300 350 400 450 500

0 50 100 150 200 250
Observation time
——  Generated values of volatility

——— Nonparametric volatility estimate

Fig.1. Nonparametric volatility estimate.

Note that the nonparametric estimate well captured all clustering (inertial) segments of volatility,
which are typical for economic crises and indicate of strong long-term fluctuations of rates of return
during these periods. For 100 different trials, the average RMSD value was 2.8471. The algorithm

was numerically implemented with e = 0.005.

6.2. Kushner—Stratonovich Filter

The volatility estimate using the Kushner-Stratonovich filter (13), (14) (light plot) against the
true volatility (dark plot) is presented in Fig. 2. In this case, RMSD = 2.4674, which is better
than for the nonparametric estimate. This result was obvious from the very beginning, since the
Kushner—Stratonovich filter yields the optimal estimate under complete statistical information.
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Volatility
o8

—
o

W

0 50 100 150 200 250 300 350 400 450 500
Observation time

—— Volatility estimate using Stratonovich filter Generated values of volatility

Fig. 2. Volatility estimate using Kushner—Stratonovich filter.

6.3. Kalman Filter

The volatility estimate yielded by the Kalman filter is demonstrated in Fig. 3 (light plot). Like

in the two previous cases, all clustering segments were successfully captured but RMSD = 3.1614,
which is almost two and a half times higher than for the nonparametric analog. Probably this
result has two causes as follows.

—VFor application of the Kalman filter, we replaced the true distribution with the Gaussian

distribution with the same first and second moments.

—We estimated not volatility but its logarithmic values.

Volatility
— [ [ Uy
W (=] W o

—
o

W

o

0 50 100 150 200 250 300 350 400 450 500

Observation time

—— Kalman filter-based volatility estimate —— Generated values of volatility

Fig. 3. Volatility estimate using Kalman filter.
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6.4. GARCH

Finally, consider volatility estimate using the GARCH model from subsection 2.1. Numerical
implementation was performed using the standard Matlab functions garchset and garchfit; the
former setts the model in accordance with the input values p and ¢ while the latter estimates
volatility for this model and the input vector of rate-of-return values. The volatility estimate yielded
by the GARCH model (light plot) against the true volatility (dark plot) is shown in Fig. 4. Here
the RMSD value reached 4.0727, so GARCH (like the Kalman filter) is worse than nonparametric
estimation. Note that the numerical algorithm selected the values of p and ¢ with the minimal
RMSD.

Volatility
v

10

Wn

MV\\ [l’t\._ |

,;.M } \

b A L) T R
g Ao W,W.W/ (WL WY
0 50 100 150 200 250 300 350 400 450 500
Observation time
—— Generated values of volatility ——— GARCH model-based estimate

Fig.4. Volatility estimate using GARCH model.
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o (=, (=3 o (=3 o o o (=2 (o} [ @ O [ () [ [=} o D (= D (=3 =) o (=
-2 O (=3 (= (=2 (=3 (=2 (=3 (=2 (=3 (2 (= (=2 o (=3 = = (=] o s (= =3 {2 =) (=] 1=
a a a a a & a a a a a&jalala al'a qja/a@jala q g a «
= [sa] a) 8 (%)} = — o a) 8 [ =t =t o Va} 8 [ b =t o Va) 8 [N} — =4
de——a —0 6= o O 0 O O —— 0 G o QMM —9—a—0 o= O
65555555555555555555555555
-8
-10
Observation time
Rate of return for S&P500 —— Nonparametric volatility estimate

Fig. 5. Nonparametric estimate of volatility for S&P 500 index.
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6.5. Nonparametric Estimation on Real Data

We also tested the nonparametric estimation methods on real data to be sure of their efficiency.
Consider the daily values of S&P 500 for the period from January 1, 2005 to December 31, 2010. Re-
call that strong fluctuations occurred in the stock market during the 2008 World Economic Crisis.
Between days 900 and 1100, the period corresponding to the global recession of 2009, the non-
parametric estimate has a clustering segment, see Fig. 5. Therefore, the developed nonparametric
estimation methods yield adequate results for real data too.

7. CONCLUSIONS

The table below compares three different methods with the Kushner—Stratonovich filter (denoted
by K-S) in terms of RMSD, i.e.,
RMSD; — RMSDk_g
Res; = ,
RMSDxk_g
where i = 1,2,3 corresponds to the nonparametric estimate, Kalman filter, and GARCH model,
respectively. As easily seen, the best estimate of volatility was obtained using the nonparametric
method. This result seems natural because nonparametric estimation can be applied even under
unknown distribution of volatility (there is no need to construct rather inaccurate models of volatil-
ity). For estimation the parametric models involve state equations of the useful signal. In the case
of the Kalman filter, also the non-Gaussian noises have to be replaced by the Gaussian ones with
corresponding parameters. At the same time, the nonparametric method demonstrates good results
under unknown distribution of the signal. Moreover, nonparametric estimation can be nonlinear,
which also explains this result.

Comparison of different estimation methods of volatility
with Kushner—Stratonovich filter

Method Nomparametric jcqlman filter GARCH model
estimate

Res; 0.15 0.28 0.65

Despite the satisfactory result obtained in this paper, our analysis has covered the diffusion
component of the rate of return only; the discontinuous component as well as the memory effects of
past periods have been neglected. These aspects will be studied in future research using the theory
of nonparametric estimation of useful signals developed in this paper.

APPENDIX

A.1. DISTRIBUTION ¢&; = log(e?)

In Eq. (7), the random variable is & = log(¢?), where ; ~ N(0,1). Introduce the random
variable (; = 2, which has the y2-distribution with one degree of freedom. For calculating the
distribution of & = log((;), use the density transformation

p(&)dés = o(Ct)dCy,

where ¢((;) is the density function of the x2-distribution. This density function has the form

$(Gi(&)) = j%eXp (_5;) o (_expz(ft)> |
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Since the differential is

d¢; _ d(exp(&:r))

ag g O
then
_exp(&/2) (_ eXp(&))
p(&) = Jom exp ) .
From Eq. (7) it follows that by — A; = &;. In this case,

S
=1

db; ’

and hence under fixed A; the conditional density of all observations b; can be written as

exp((bt — At)/2) exp(bt — At)
e ()

_ exp(b/2) ox (_ exp(br) >
V2mexp(A¢/2) 2exp(Ay) /)

p(be|Ar) =

A.2. PARAMETERS OF RESULTING DISTRIBUTION

The mean and variance of & are easily calculated through the generating moment function
Me(t) = Elexp(t€)), i.c.

d* Me(t)

E[ff] = dtk

lt=0-
The generating function for & = log(¢;) has the form
Me(t) = Elexp(tlog(¢))] = E[¢'].
In turn, the generating function for x? with m degrees of freedom is given by
M(t) = (1 —26)7"2,

while the tth moment by

Then
. g (2t70/2+)
E(&) = dﬂ{ft(t) lt=0 = dEd(tC )|t:0 = ( 2;1/2) ) lt=0
= <2t1 2F§1(/12/—2i_)t) + 2tr(1/2;21/p2()1/2+t)) lt=0 = log2 + ¢ (1/2) =~ —1.2704,

where ¢(1/2) denotes the digamma function.
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For calculating the variance, first find E(£2):

d* M(t o o I(1/2 T(1/2 1/2
E(&) = dtg( limo = <log2 (2 log? é(/l/;r)t) Lot P/ 1:2%)/ +t)>
s s T £ ) )

— log2(log2 + 16(1/2)) + ¥(1/2)(log2 + ¥(1/2)) +/(1/2) = (log? +/(1/2))* + ¥/(1/2).
In final analysis,

D(&) = E(&) — (B(&))* = ¢/(1/2) = 7% /2 ~ 4.9348.
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