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Abstract—We propose a mathematical model for the assignment of locomotives to transport
freight trains. We consider various objective functions. One of the optimization objectives in
our model is to minimize the number of locomotives involved in transportation by choosing the
routes of trains and locomotives given that the daily transportation plan is fulfilled. The model
is capable to account for different types of locomotives as well as different types of their technical
maintenance. We propose a new heuristic algorithm for finding an approximate solution for
this problem. The main tool of the proposed algorithm is a heuristic utility function that takes
into account the topology of the railway network, restrictions imposed on the movement of
locomotives, and also the need for technical inspection and repair of locomotives. Results of
numerical simulation are presented with the example of real data regarding the movement of
freight trains on a section of the Moscow Railway. We pay special attention to performing a
qualitative analysis of the resulting solution, in particular, in order to reveal the dependencies
between the values of the main qualitative characteristics of the motion and coefficients in front
of the variables in the utility function. We assume that it is possible to control the total number
of locomotives involved by changing the percentage of admissible idle and auxiliary runs.
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1. INTRODUCTION

Recently, the strategy of scientific and technological development of the Russian Railways has
been aimed especially at carrying out interdisciplinary works on the improvement and automation
of cargo management systems. Recent works [1–8] consider many different methods and algorithms
for the optimization of railroad cargo transportation. The work [5] proposes a way to improve
the organization of freight transportation based on considering a single model of the logistics
chain of supply of goods, including production, construction, reconstruction, and maintenance of
infrastructure, that would ensure that all trains are received without delay even taking into account
their uneven movement. In [6], two combinatorial tasks are considered: the scheduling problem
for an aperiodic schedule and the problem of assigning platforms to trains. The deterministic
combinatorial task of composing trains and constructing a railroad schedule has been formulated
in [7, 8]. The work [8] presents various models that arise in scheduling for railway transportation, in
particular an operational control model for the movement of a train and the model for the formation
of freight flows through sorting stations.

In this works, we consider the mathematical model of assigning locomotives for the transporta-
tion of freight trains [1]. Unlike [1], in this work we take into account additional constraints on
the passage of technical inspection of locomotives and types of locomotive traction. The improved
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model is closer to the real situation on the railroad, and the modified problem setting allows to
optimize several auxiliary criteria by using a heuristic utility function while maintaining the basic
idea of the model, i.e., minimizing the size of working locomotive park. We give a description of
the developed algorithm for constructing an approximate solution of the problem.

2. OPTIMIZATION MODEL

We begin with a description of the basic concepts used in this paper. Most definitions given
below have been introduced in [1], but some of them are presented with significant changes.

We associate a section of the railway network with a weighted directed graph G = (V,A),
where V is the set of vertices and A is the set of arcs. The vertices of graph G are significant
stations, that is, stations where cargo trains are constructed (sorting stations) and stations where
locomotive traction can change. Some significant stations are depots, and the corresponding subset
of vertices V will be denoted by D. Arcs correspond to the runways connecting significant stations.

For each of the arcs a ∈ A we define the electrification parameter Ea of the corresponding railroad
train; it takes the following values: 0 if the run is not electrified, 1 if direct current is used, and 2
if alternating current is used.

Each locomotive has a characteristic Tl, the type of thrust that limits its movement depending
on the type of runway electrification. Locomotives are classified according to the type of traction as
follows: 0—locomotive (allowed to run through all tracks), 1—DC electric locomotive (only tracks
with electrification parameter 1), 2—AC electric locomotive (only 2), 3—multi-system electric
locomotive (tracks with electrification parameter 1 or 2). The relation Tl =̇ Ea determines the arcs
with electrification parameter suitable for locomotive l. Locomotives can move only along certain
routes (so-called legs), and hence we need to introduce the following definition.

Definition 1. A leg P is a sequence of arcs a1, . . . , aIP of the graph G satisfying the following
conditions:

1) all arcs, ai = (vi−1, vi), are different: ai �= aj , i, i ∈ {1, . . . , IP };
2) the first vertex of the first arc in the sequence coincides with the last vertex of the last arc

of the sequence, represents a depot station, and is different from all intermediate vertices in the
sequence: v1 = vIP ∈ D, vi �= v1 for i = 2, IP − 1.

We will also consider sublegs and simple sublegs, defined as follows.

Definition 2. Any subsequence of adjacent arcs ai, ai+1, . . . , aj (1 � i < j � IP ), that form a leg
is called a subleg of this leg. Any arc ai = (vi−1, vi) that occurs in some leg P is called a simple
subleg of P.

Let L be the set of all locomotives assigned to the depot stations in question. For each locomotive
l ∈ L, we are given a set of admissible legs P l through which it can move. We associate to each
set P l, l ∈ L, the set Pl composed of all simple sublegs that occur in the legs from the set P l,
and for each simple subleg p ∈ Pl the relation Tl =̇Ep is satisfied. We will assume that for each
locomotive l ∈ L we know a weight norm function wl(·) : Pl → R that relates simple sublegs P l with
the maximum admissible weight for the carriage.

Let S be the set of freight trains. Each train s ∈ S is characterized by its mass ws, the origin
station vs0, the destination station vsf , formation time ts0, and the time τ sf before which the train
has to arrive to its destination station, i.e., each train corresponds to a five-tuple (ws, vs0, t

s
0, v

s
f , τ

s
f ).

In essence, these characteristics determine the transportation plan.

Movement of locomotives and trains along a given route can be carried out only at certain
intervals. The combination of a route and time is called a thread.
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Definition 3. A thread N is an ordered set of quadruples (v1, t1, v2, τ2), (v2, t2, v3, τ3), . . . ,
(vIN−1, tIN−1, vIN , τIN ) that satisfies the following conditions:

1) vi ∈ V , i = 1, IN , ti ∈ R, i = 1, IN − 1, τi ∈ R, i = 2, IN ;

2) (vi, vi+1) ∈ A, i = 1, IN − 1;

3) ti < τi+1, i = 1, IN − 1;

4) τi � ti, i = 2, IN .

In the definition above, the value ti corresponds to the departure time from a station vi, and
τi+1 is the arrival time to a station vi+1. These conditions express the natural properties of train
traffic, that is, the fact that the movement can be carried out only over tracks (conditions 1, 2),
the departure time from a station cannot be later than the time of arrival at the next station
(condition 3), and the time of arrival to a station cannot be later than the departure time from the
same station (condition 4).

By analogy with legs and simple legs, we introduce subthreads and simple subthreads.

Definition 4. Each subsequence of adjacent quadruples that forms a thread N is called a sub-
thread. Each quadruple (vi, ti, vi+1, τi+1), i = 1, IN − 1, that comprises a string N , is called a
simple subthread.

Consider a set N of threads. We assign to each element N in this set a set F(N), which is an
unordered set of simple subthreads that comprise the thread N . The set of all simple subthreads
obtained from the set of threads N is denoted by N , i.e.,

N =
⋃

N∈N
F(N). (1)

It is important to note that each simple subthread passes through only one of the arcs of the
graph.

On the set 2L ×N , which is the Cartesian product of all possible combinations of locomotives
and the set of simple subthreads, we define a function W (πn) that specifies the maximum mass
of a train that the corresponding combination of locomotives πn ⊂ L can transport along a given
simple subthread n ∈ N . Obviously, if πn = l ∈ L, where n = (v, t, v′, τ), and (v, v′) ∈ Pl, then
W (πn) = wl((v, v

′)). The combination of locomotives πn is called a composite locomotive and is
used to transport the train through their joint operation.

Since the movement of locomotives is carried out only along threads and legs, we introduce
the definition of an admissible route of a locomotive’s rotation relative to the set of legs. In
this definition, we also take into account that the locomotive must pass IMR = 5 types of main-
tenance and repair (MR) in time intervals TMR = (2, 30, 90, 365, 1095) days and with duration
tMR = (8, 8, 12, 600, 1080) hours respectively, at specially equipped stations V MR, where V MR ⊂ V .
Depending on the locomotive type, values in the vectors TMR, tMR may be different. We will assume
that each locomotive l ∈ L at the initial moment of time is characterized by elements of the vec-
tor τMR

l , |τMR
l | = IMR, which are equal to the times elapsed since the corresponding maintenance.

If the locomotive is undergoing maintenance at the initial moment of time, then the corresponding
element of the set τMR

l takes a negative value with absolute value equal to the time before the end
of the work.

Definition 5. An admissible turnaround route Ml of locomotive l with respect to the set of
legs P l is a sequence of simple subthreads (v1, t1, v2, τ2), (v2, t2, v3, τ3), . . . , (vIl−1, tIl−1, vIl , τIl)
that satisfies the following conditions:

1) τi � ti, i = 2, Il − 1;

2) (vi, vi+1) ∈ Pl, i = 1, Il − 1;
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3) there exist m = 1, IMR increasing sequences im1 , . . . , imfl of numbers chosen from the set
{2, 3, . . . , Il};

4) (τMR
l )m + τim1 � (TMR)m;

5) timj − τimj � (tMR
l )m, j = 1, fl − 1;

6) τimj − timj−1
� (TMR)m, j = 2, fl;

7) τIl − timfl
� (TMR)m, if fl �= Il;

8) vimj ∈ V MR, j = 1, fl.

Condition 1 requires that the arrival time to the station should not be earlier than the departure
time from the same station. Condition 2 limits possible movements of a locomotive by moving
only along legs. Condition 3 requires the locomotive to pass maintenance at specified intervals.
Sequences of time moments tim1 , . . . , timfl

correspond to the moments when the corresponding series

of maintenance begins. Condition 4 requires that the departure time for the first maintenance in
the series m does not exceed (TMR)m from the previous maintenance. According to condition 5,
transit time of the corresponding maintenance cannot be less than (tMR

l )m. Condition 6 implies
that the time between the beginning of the movement after maintenance and departure to the
next maintenance cannot be greater than (TMR)m. According to condition 7, the time when
movement begins after the last maintenance must be no later than the time (TMR)m before the
end of the considered period of traffic planning. Condition 8 guarantees that maintenance is done
at specially equipped stations V MR.

Note that a turnover route is a spatio-temporal concept. We denote the set of admissible
turnover routes for a locomotive l by Ml. The initial and final stations of a turnover route Ml will
be denoted by v0(Ml) and vf (Ml) respectively, the start time of the first thread of this traffic route
will be denoted by t0(Ml), the time of arrival at the destination station, by τf (Ml).

We introduce the definition of an admissible train run, which is also a spatio-temporal charac-
teristic, just like a locomotive’s turnover route.

Definition 6. A valid run Rs of a train s ∈ S is a sequence of simple subthreads (v1, t1, v2, τ2),
(v2, t2, v3, τ3), . . . , (vIs−1, tIs−1, vIs , τIs) that satisfies the following conditions:

1) v1 = vs0;

2) vIs = vsf ;

3) τi � ti, i = 2, Is − 1;

4) ts0 � t1;

5) τ sf � τIs .

Conditions 1 and 2 determine the initial and final stations of the route, condition 3 specifies
natural constraints on departure and arrival times, conditions 4 and 5 require that transportation
is fulfilled according to the plan.

The set of admissible routes for a train s will be denoted by Rs.

Similar to the threads, we define the set F(Ml) of all simple subthreads that comprise a turnover
route Ml of a locomotive l, l ∈ L, and the set F(Rs), s ∈ S, of all simple subthreads that comprise
a run Rs of a train s.

For each simple subthread n ∈ N and each set of turnover routes for the locomotives
M = {Ml}l∈L, we define the set πn(M) composed of all locomotives moving along a simple sub-
thread n in the set of locomotive turnover routes M :

l ∈ πn(M) ⇔ n ∈ F(Ml). (2)

AUTOMATION AND REMOTE CONTROL Vol. 79 No. 9 2018



OPTIMIZING THE OPERATION OF ROLLING STOCK 1665

3. PROBLEM SETTING

Consider a section of the railway network with graph G = (V,A) defined above. Suppose that
the set of locomotives L, the set of trains S, the set of threads N and the corresponding simple
subthreads N , and the weight function W (·) for composite locomotives are known. For each
locomotive l ∈ L the corresponding set of legs P l and simple legs Pl are defined.

At the initial time moment, a locomotive can be in one of the following states: in motion, at a
station, or in a depot. For each locomotive l ∈ L, we are given a station vl0 that, depending on the
state of the locomotive, is either a locomotive station if the locomotive is at a station or located in
the depot, or its destination station if the locomotive is in motion, and time tl0 when the locomotive
will complete the current work, i.e., will arrive at the destination station.

Suppose that for each locomotive l ∈ L we know the set of times τMR
l that have elapsed since the

last maintenance, as well as the sets TMR, tMR, V MR that define the conditions for passing mainte-
nance for all locomotives. Taking into account the times τMR

l for each locomotive l ∈ L, we obtain
a set of valid turnover routes Ml according to definition 5. Similarly, for each train s ∈ S we know
a set of valid runs Rs. Let ||L|| be the number of locomotives in the set L that have a non-empty
turnover route.

Suppose that for each train s ∈ S we specify a set of threads Ns ⊂ N along which it can be
transported. We denote by Ns the set of corresponding simple subthreads. These constraints are
due to the fact that some of the threads can be used to transport trains only of a certain kind.

Let M = {Ml}l∈L be a selectable set of turnover routes for all locomotives, R = {Rs}s∈S , a
selectable set of runs for all trains, M = {Ml}l∈L, the set of valid routes for the turnover of all
locomotives, R = {Rs}s∈S , the set of admissible runs of all trains.

The problem is to find such a set M of turnover locomotive routes and such a set R of runs
for the trains for which the total number of locomotives used for transportation of trains will be
minimal, with all runs of trains covered by locomotive routes.

In [1], the following statement of the problem was proposed:

||L|| → min
M∈M,R∈R

(3)

under constraints

Ml ∈ Ml, l ∈ L, (4)

Rs ∈ Rs, s ∈ S, (5)
⋃

s∈S
F(Rs) ⊂

⋃

l∈L
F(Ml), (6)

F(Rs) ∩ F(Rs′) = ∅, s �= s′, s, s′ ∈ S, (7)

W (πn) � ws, n ∈ F(Rs), s ∈ S, (8)

F(Ml) ⊂ N , l ∈ L, (9)

F(Rs) ⊂ Ns, s ∈ S, (10)

v0(Ml) = vl0, (11)

t0(Ml) � tl0. (12)

Conditions (4), (5) mean that only admissible locomotive routes and runs of trains are consid-
ered, in particular those for which valid legs exist. We also note that the admissibility of train runs
requires the transportation plan to be completed within a specified period.
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Condition (9) requires that locomotive turnover routes are composed only of simple subthreads
since the set

⋃
l∈L

F(Ml) ⊂ N consists of simple subthreads that are part of any locomotive turnover

route. Condition (10) specifies a similar requirement for train runs, and in addition it restricts
the choice of admissible threads for transporting the train. Condition (6) means that all simple
subthreads that comprise a route of some train are used for the motion of some locomotive, i.e.,
all trains are transported by locomotives. It also follows from this condition that locomotives can
move along simple subthreads over which the trains do not move. Thus, each thread used in the
solution corresponds to either a train with a locomotive (possibly with several locomotives) or a
locomotive moving empty.

Condition (7) means that runs of the trains cannot intersect, i.e., one simple subthread cannot
be used for the movement of two trains. Since locomotives can travel in a raft or with a train
(so-called auxiliary runs), there is no similar condition for locomotives.

Condition (8) requires that the weight norms of composite locomotives are fulfilled by the trains,
i.e., the composite locomotive πn, used on a simple subthread n ∈ F(Rs) by which train s is
transported, should be able to carry a train of weight W (πn), no less than the mass ws of the
train s.

Conditions (11), (12) specify the initial state of locomotives.

Note also that the set of trains S and the set of threads N is determined by the daily trans-
portation plan and the number of days for which planning is carried out.

The formulated mathematical model has a general character and assumes optimization both
along locomotive turnover routes and along the runs of the trains. In what follows we consider a
special case of problem (3)–(12), where we do not optimize train runs and solve only the task of
assigning locomotives. We will assume that the set of admissible runs Rs of train s ∈ S consists of
a single run. Thus, the task is reduced to assigning locomotives to transport trains with specified
runs, i.e., to the search for a set of routes M .

Problem (3)–(12) is a complex discrete optimization task whose dimension, given the size of the
railway network, does not allow to obtain an exact solution by a complete enumeration of all possible
options. In addition, the problem statement shown above assumes optimization by a single criterion,
the number of locomotives used, but in practice this may not be enough. The management of
locomotive park operation, in addition to fulfilling the transportation plan, also implies considering
various characteristics of locomotive use when they are assigned for the transportation of trains,
including the number and duration of runs, proportion of auxiliary and idle runs, and so on.

The purpose of this work is to construct a heuristic algorithm for finding an admissible solution
to problem (3)–(12) that produces the value of the criterion no worse than the solution currently
used by the Russian Railways. We will call the solution we find suboptimal. At the same time,
the algorithm should have a number of tuning parameters, and by changing these parameters one
should be able to control different characteristics of the use of the locomotive park mentioned
above. The main idea of the algorithm is to assign locomotives sequentially to simple subthreads
of all trains sorted by the time of departure on the basis of solving an auxiliary problem with an
objective function in the form of a special utility function for assigning a locomotive to a simple
subthread.

Let us define this utility function and the auxiliary problem. We define the set F∗(Ml, R) =
F(Ml) ∩ F(R) consisting of simple subthreads of all train runs to which locomotive l is as-
signed according to route Ml, ordered by the time of departure of simple subthreads, where
F(R) is the set of simple subthreads of runs R of all trains S. We also define the unordered
set F(Ml, Rs) = F(Ml) ∩ F(Rs) that consists of simple subthreads of run Rs of train s to which lo-
comotive l is assigned according to route Ml. Next we introduce the objective function, on the basis
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of which each locomotive l ∈ L will be assigned to a specific route Ml from the set of admissible
turnover routes Ml:

U(Ml) = u(l, tl0, v
l
0, n1) +

|F∗(Ml,R)|∑

i=2

u(l, τ(ni−1), vf (ni−1), ni), ni ∈ F(Ml, R), (13)

where

u(l, τ, vf , n) = ω1K1 + ω2K2 + ω3K3, (14)

Ml ∈ Ml, l ∈ L, (15)

n ∈ Rs, s ∈ S, (16)

K1 =
|F(Ml, Rs)|
|F(Rs)| , (17)

K2 =
tn − τ

tmax
, τ � tn, (18)

K3 = − d(vf , v
n
0 )

d(vn0 , v
N
f )

. (19)

Function (14) is the utility function of assigning a locomotive l to a simple subthread n, taking
into account the time τ and station vf where the locomotive stops at the previous simple subthread.

Relation (17) allows us to estimate the “utility” of a locomotive l for transporting train s, i.e.,
determines what part of the train run is contained in the route of this locomotive, taking into
account constraints on the legs and maintenance. Relation (18) is used to account for the time
the locomotive has been idle before it is assigned to a simple subthread n, where τ is the stop
at the previous simple subthread in the itinerary of the locomotive, tn is the departure time for
simple subthread n, tmax is the normalization factor that depends on the chosen frame of reference.
Relation (19) determines the penalty for running the locomotive, where vf is the locomotive stop
station for the previous simple subthread in the route, vn0 is the departure station for simple
subthread n, and vNf is the destination station for the threadN that includes the simple subthread n.
Function d(vi, vj) is used to calculate the number of arcs between stations vi and vj respectively.
Coefficients ω1, ω2, and ω3 are weight coefficients that take values in the range [0, 1] and satisfy
condition ω1 + ω2 + ω3 = 1. Varying the weighting factors involves changing such parameters of
locomotive motion as the number and duration of runs and the idle time. Note that K1,K2 ∈ [0, 1],
but K3 ∈ [0, |A|], therefore, u(l, τ, vf , n) ∈ [−|A|, 1].

Thus, we can formulate an auxiliary optimization problem of choosing the optimal route for a
locomotive in the sense of objective function (13):

U(Ml) → max
Ml∈Ml

(20)

under constraints (4)–(12).

Solving the formulated problem by specifying optimal turnover routes for the sequence of loco-
motives that come from a depot allows us to find a suboptimal solution of the optimal assignment
problem (3)–(12) for the locomotives formulated in [1]. The algorithm for obtaining this suboptimal
solution is given in the next section.

4. ALGORITHM FOR LOCOMOTIVE ASSIGNMENT

In this section, we present an algorithm for finding a suboptimal solution to problem (3)–(12)
based on the use of the heuristic utility function (14). We assume that the runs of all trains are
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defined, i.e., for each train the thread along which it moves is determined. The algorithm looks for
an admissible solution to the problem of assigning locomotives to trains, which is a special case of
the general mathematical formulation (3)–(12) without optimization by R ∈ R. In addition, the
problem is to assess the total volume of the locomotive park necessary for efficient transportation
of the cargo according to the specified cargo traffic determined by the daily schedule. Therefore,
there are no restrictions on the number of locomotives available in each depot. Optimization
by criterion (3) will allow to estimate, with the help of the constructed suboptimal solution, the
necessary number of locomotives for each depot. After this, the algorithm can be used again, taking
into account the constraints on the number of locomotives found for each depot. In this case, the
algorithm can begin with any initial distribution of locomotives over the considered section of the
Russian railway network (a part of the rolling stock is in the depot, a part is in transit or at
the stations of the network). For simplicity of exposition of algorithms, in their constructions we
do not take into account restrictions on the mass of transported trains. When the masses of the
trains are constrained, it is necessary to search not only for simple locomotives l ∈ L but also for
composite locomotives, i.e., combinations of several locomotives, but the algorithm requires only
an insignificant modification.

4.1. The Assignment Algorithm

Consider a non-empty set of trains S = {si | i = 1, |S|} with nonempty runs. Let vlf , τ
l be the

final station of the turnover route Ml (or the initial station in case of an empty route) and the
time of arrival at this station for locomotive l ∈ L. Note also that ||L|| = 0, and the value |S|
corresponds to the number of trains in the transportation plan.

Algorithm 1.

0. Set i := 1, j := 1, k := 1.

1. Fix a train si ∈ S and a simple subthread from the run nj := (v0(nj), t(nj), vf (nj), τ(nj)),
nj ∈ F(Rsi). Fix a locomotive lk ∈ L.

2. If j > |F(Rs)|, then go to the next train i := i+ 1, j := 1. If i > |S| then go to the next
locomotive k := k + 1, i := 1. If k > ||L||, then take a new locomotive L := L

⋃{lk} from the
nearest depot v0(nj) under the condition (v0(nj), vf (nj)) ∈ Plk , denote for the locomotive lk the
set of selectable simple subthreads as N(lk), and let N(lk) := ∅.

3. If τ lk � t(nj), (v0(nj), vf (nj)) ∈ Plk , go to step 4. Otherwise, go to step 5.

4. If vlkf �= v0(nj), search for the thread N∗ to move the locomotive lk to the beginning of the

simple subthread nj according to Section 4.2. If vlkf = v0(nj), we assume N∗ := ∅. If a thread N∗ is
found, then check the maintenance constraints according to Section 4.3. If maintenance constraints
are satisfied, fix the simple subthread nj in the set of subthreads N(lk) := N(lk)∪ {nj} admissible
for this locomotive.

5. If i = |S| and j = |F(Rs)|, then go to step 6, otherwise set j := j + 1 and go to step 2.

6. Find a simple subthread n from the set of admissible subthreads N(lk) that has the maximum
value of the utility function (14) compared to the others; if values of the utility function for
different simple subthreads coincide, preference is given to the subthread with earlier time of
movement. Enter the found simple subthread n and, if necessary, the corresponding thread for
movement N∗ in the locomotive’s route Mlk := Mlk ∪N∗ ∪ {n}. Remove simple subthread n from
the run Rs := Rs \ {n}, where s is the train that is moving along this thread. If F(Rs) = ∅

then remove the train from the set of trains S := S \ {si}. If S = ∅, go to step 7, otherwise let
N(lk) := ∅, i := 1, j := 1 and go to step 2.

7. End of the algorithm; a suboptimal solution for problem (3) has been obtained.
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4.2. Finding a Composite Thread

To move a locomotive, we have to find a threadN∗ that connects station vlf , where the locomotive
l is located, and station v0(n), from which the simple subthread n departs. Let t(n) be the start
time of the simple subthread n, τ(n)—end time of simple subthread n, and τ l—the stopping time
for the locomotive at station vlf . We will denote by Na the set of simple subthreads corresponding
to the arc a ∈ A. We associate with each arc of the graph G a weight characteristic equal to the
average time of moving along it:

wa =
1

|Na|
∑

n∈Na

(τ(n)− t(n)). (21)

Set N∗ equal to the thread that runs along the shortest path in column G weighted according
to (21), which connects stations vlf and v0(n) with start time not earlier than τ l and end time no
later than t(n). To find the shortest paths between vertices of a weighted directed graph one can
use, for example, the Floyd–Warshell algorithm [9].

4.3. Checking Maintenance Constraints

To ensure timely maintenance of locomotives according to constraints specified in Section 2, we
have to carry out the corresponding checks. All constraints are checked when the locomotive is
assigned to a simple subthread.

To simplify the description of the algorithm, we describe the version that checks constraints
associated with one type of maintenance. In this case, TMR, τMR are scalar values corresponding
to the type of maintenance being considered.

Consider a locomotive l with a specified turnover route Ml, the time τMR
l is when the last

maintenance was conducted; the time TMR determines the frequency of maintenance; V MR is the
set of stations where maintenance can be executed; and n(v0, t, vf , τ) is the simple subthread to
which this locomotive should be assigned. Let vlf , τ

l be the final station of the turnover route Ml

(or the initial station in case of an empty route) and the time of arrival at this station of the
locomotive l. We describe the algorithm for checking maintenance constraints.

Algorithm 2.

1. If τ � τMR
l + TMR or τ l + TMR � t, go to step 2, otherwise go to step 4.

2. If vf /∈ V MR, search for thread N∗ to move the locomotive to the nearest maintenance station
according to Section 4.2. If such a thread is found, then check constraints related to the maintenance
for the locomotive l assigned to each simple subthread of the thread N∗, similar to step 1 of the
algorithm. If there is at least one simple subthread of the thread N∗ for which the constraints are
not satisfied, go to step 4. Go to step 3.

3. Simple subthread n satisfies maintenance constraints and can be included in the locomotive’s
turnover route; the algorithm halts.

4. Restrictions are not satisfied; the algorithm halts.

5. RESULTS OF NUMERICAL EXPERIMENTS

We have carried out a numerical experiment using sample data from a segment of the Moscow
Railway (MZD) over a certain period of time. Characteristics of the input data are given in Table 1.

Calculations were carried out taking into account constraints maintenance. We assumed that the
locomotives must pass maintenance of the same type, with a duration of at least 8 hours, at intervals
not exceeding 48 hours. For all locomotives, admissible stations for passing the maintenance are
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Table 1. Input data characteristics

Number of stations 40
Number of depot stations 16
Number of sorting stations 16
Number of trains in daily assignment 598
Number of threads per day 1254
Planning period (days) 10

Table 2. Varying the weights of the utility function

ω 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Number
of locomotives

442 439 445 439 439 441 443 450 444 443 449

Average
idle time (%)

50 50 52 53 53 54 53 52 53 53 55

Average time
for maintenance (%)

17 17 17 17 17 17 17 18 17 17 18

Average time spent
on useful mileage (%)

21 21 20 21 21 20 20 20 20 20 19

Average time spent
on idle run (%)

12 11 11 9 9 9 10 10 10 10 8

Table 3. Using the locomotives

Number
of trains

Day
Number of locomotives used in day i

and entered operation in day j
Locomotives
in day i

1 2 3 4 5 6 7 8 9 10 11

299 1 321 0 0 0 0 0 0 0 0 0 0 312
598 2 319 82 0 0 0 0 0 0 0 0 0 401
598 3 320 74 14 0 0 0 0 0 0 0 0 408
598 4 320 75 6 9 0 0 0 0 0 0 0 407
598 5 321 77 8 7 14 0 0 0 0 0 0 420
598 6 320 77 11 9 10 1 0 0 0 0 0 416
598 7 320 78 12 9 14 0 3 0 0 0 0 420
598 8 321 71 10 9 11 0 1 0 0 0 0 408
598 9 320 75 7 7 14 0 1 0 2 0 0 417
598 10 321 70 8 6 13 0 0 0 0 0 0 401
299 11 294 52 4 4 9 0 0 0 0 0 0 350

depot stations. In order to adequately simulate the process of locomotive maintenances at the time
when a locomotive enters operation, the time elapsed since the last maintenance order is randomly
generated according to the uniform distribution over [0, 48] h. The daily schedule of trains is
assumed to be known and remains the same for the entire planning period. These conditions for
carrying out a numerical experiment differ from the ones in [1] since now we have constraints on
the stations where maintenance can be done. The decision time depends on the input data; for
example, increasing the planning period greatly increases the running time of the algorithm, and a
change in the number of trains in the daily task practically does not affect the running time of the
algorithm. For the considered numerical experiment, we found a solution in under 10 min.

We show Table 2, “Varying the weights of the utility function,” which presents average values of
the basic characteristics of locomotive motion and the value of the main criterion for the values of
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Table 4. Comparison of results

Characteristics Solution
from [1]

Solution
with UF

Solution with UF
without add. constraints

Number of locomotives 369 439 370
Average idle time 35% 53% 34%
Average maintenance time 16% 17% 17%
Average time spent on useful mileage 29% 21% 32%
Average time spent on idle runs 20% 9% 17%

weights in the utility function (14). For the sake of simplicity of calculations, we make the following
substitutions: ω1 = (1− ω)2, ω2 = (1− ω)ω, ω3 = ω. Thus, we will only change ω.

Let us analyze the results presented in Table 2. It is not difficult to see that the largest relative
spread of values occurs in average idle time and average time spent on the idle run. Note that
relations (18) and (19) used in the utility function (14) assume that we control precisely these
characteristics; therefore, the hypothesis that we can control basic characteristics of the movement
of locomotives by changing the corresponding weights is confirmed with our numerical experiment,
which, in turn, also justifies the use of our proposed utility function. We will consider the solution
obtained with ω = 0.3 as the best one presented and use it for further analysis.

Next we show Table 3, “Using locomotives,” for the resulting solution. It has eleven lines since
the first and eleventh days are incomplete (we consider a period of 12 hours).

It is easy to see that the trace of the locomotive usage matrix is the total number of locomotives
used. Note that at the end of the control horizon (in this case, the 11th day), new locomotives are
not put into operation, which indicates that the control process has “stabilized”; this gives us a
reason to believe that the criterion value obtained is close to the total size of the locomotive park
used.

The resulting solution can be compared with real data on the use of locomotives on the MZD
section in question. The total locomotive fleet on the Moscow Railways is about 900 locomotives,
and about 700 locomotives are used daily. Thus, we can conclude that our resulting solution is
approximately 1.5 times better with respect to the minimum number of locomotives. However, it
should be noted that the model does not take into account all limitations that occur in real work
of a railway.

Table 4 compares three results of solving problem (3): two results obtained using utility func-
tion (14) (UF), one of which does not take into account additional constraints imposed on the model
as compared to [1], and the result obtained in [1]. Table 4 presents average values of locomotive
motion characteristics and the mean value of the main criterion obtained from 100 realizations of
each algorithm. The solutions obtained under the same conditions (columns 1 and 3) practically
do not differ in the value of the main criterion, the number of locomotives, which confirms that the
new problem statement, with the utility function, is adequate. Note that for a certain set of weights
in the utility function (14) it is easy to get a solution that completely matches the solution obtained
in [1]. Next, we compare columns 1 and 2 of Table 4. Note that the total number of locomotives
used has increased by approximately 20%, and as a result, the average idle time of locomotives has
also increased, but the percentage of auxiliary (idle) runs has significantly decreased. Considering
the ratio of useful runs to auxiliary runs, it is easy to see that in comparison with the solution
obtained in [1] it takes a value better by a factor of more than 1.5. Thus, we can conclude that the
locomotives work more efficiently, since with a significant reduction in the number and duration
of runs we obtain only a slight decrease in useful mileage for each locomotive. When planning
for a much longer period than 10 days, the advantage of the new solution obtained using utility
function (14) becomes even more obvious.
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6. CONCLUSION

We have proposed a mathematical model of assigning locomotives for the transportation of
freight trains that takes into account a heuristic utility function. We have developed an algorithm
for solving this problem. Results of numerical experiments have shown that variation of weight
coefficients in the utility function allows to control the characteristics of locomotive motion and
leads only to an insignificant increase in their total number. Comparing with the results obtained
in [1], we have confirmed the efficiency of the resulting solutions. The algorithm has exhibited good
stability under randomly distributed initial time of passing maintenance, which let us suggest that
this approach will also be possible to use with a number of other random factors. However, one
should take into account that in practice obtaining such an effect is difficult, since the considered
examples have not taken into account a number of restrictions; in particular, we have discarded
restrictions on the mass of transported trains and considered only maintenance carried out at certain
intervals, disregarding all other types of maintenance. But our results indicate that even under the
influence of all these factors the resulting solution will ensure efficient use of the locomotive park.
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