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1. INTRODUCTION

Nowadays, several research groups are working on autonomous navigation tools using the phys-
ical fields of the Earth—magnetic, gravitational, topographic, optical, thermal, and others [1–4].
Navigation in such systems is based on comparing the information acquired by an airborne mea-
surement system of field parameters with the information stored in an airborne computer (a field
map or a reference). Generally, comparison procedures calculate a certain functional (a correlation
function) and find its extremum. The navigation systems that employ geophysical fields are accord-
ingly called correlation-extremal navigation systems (CENS) [5, 6]. In Russia, the farther of this
research direction are Academician A.A. Krassovskii [7] and Professor V.P. Tarasenko [8], who sug-
gested correlation-extremal navigation methods using geophysical fields and radar imaging of the
Earth surface in the early 1960s. Later on, correlation-extremal navigation algorithms were created
with an active application of linear and nonlinear filtering methods [6, 9–12]. The state-of-the-art
theory involves multi-alternative filtering [13] and sequential Monte Carlo simulation [9, 14].

A continuous development of navigation methods allows to introduce new approaches that im-
prove the accuracy and performance of the existing systems as well as to design new airborne
complexes.

In the sense of navigation, it is particularly interesting to consider measuring systems for the
gradient of a certain geophysical field. Such measurements have enhanced sensitivity and noise
immunity; in contrast to the surface radiation fields (optical, infrared, gamma radiation), the
former fields are independent of insolation, meteorological conditions or seasons, which gives a
certain advantage in navigation.

At the modern stage of development, among airborne gradiometric systems one should consider
vector and tensor magnetic gradiometers as well as tensor gravity gradiometers. Note that only the
magnetic gradiometers yield airborne measurements comparable with terrestrial measurements in
terms of accuracy and spatial resolution [15]. For this reason, we will analyze magnetic gradiometers
as most promising [16]. Other gradiometric systems can be studied using the same approaches.
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2. DEVICES AND METHODS FOR AIRBORNE MAGNETIC
FIELD MEASUREMENTS

Quantitative characteristics of the magnetic field are the magnetic induction vector B, which
is measured in teslas (T), and the magnetic field vector H, which is measured in amperes per
meter (A/m). Here and in the sequel, we will write the three-dimensional vectors as column matrices
composed of three elements. In the SI system, these characteristics have the relationship B = μμ0H,
see [17], where μ denotes the relative permeability of a medium and μ0 = 4π × 10−7 H/m is the
magnetic constant. Generally speaking, for anisotropic mediums the parameter μ represents a
tensor. But, in this paper, we consider aeromagnetic measurements and this parameter can be
treated as a constant scalar equal to the relative permeability of air, μ = 1.00000037.

Therefore, the magnetic induction and magnetic field vectors in the systems under study differ
merely in the scale factor and units of measure. Whenever no confusion occurs, we will use the
term “magnetic vector.”

As a rule, the components of the magnetic vector are measured on board using fluxgate mag-
netometers [18]. The existing devices of this type have an approximate sensitivity of 0.1 nT and a
measurement error of 10 nT.

The absolute value of the magnetic induction vector, |B| =
√
BTB, is often measured using

quantum sensors of different modifications [18]. The modern airborne quantum sensors have an
approximate sensitivity of 0.001 nT and a measurement error up to 0.1 nT.

A vector magnetic gradiometer is a structure that includes several quantum magnetometers
working in the differential mode under a fixed known spacing of the sensors, which lies within a
range of 1–10 m. Its measurement sensitivity depends on the rigidity of the basic line of the sensors
and its length; for the existing magnetic gradiometry systems, this sensitivity is about 1 pT/m in the
1-Hz bandwidth [19]. The measurement error of the gradient components depends on calibration
conditions. Due to their design, such systems are difficult to calibrate in a lab because even
after a separate calibration of each sensor the effect of the whole gradiometer’s structure remains
neglected. The field of all constructive elements of this gradiometric system is estimated during
a special calibration flight at a large altitude. As a rule, the external field gradient in such an
experiment reaches 10 pT/m, which is comparable with the error of a quantum magnetometer
related to the length of the basic line.

For obtaining the tensor components of the magnetic field gradient ∇BT , one has to differentiate
all components of the field vector. Obviously, a tensor gradiometer based on fluxgate magnetome-
ters has a several orders greater error than its vector counterpart based on quantum sensors. How-
ever, since the recent time some researchers are endeavoring to design a tensor gradiometer using
component quantum magnetometers—superconducting quantum interference devices (SQUIDs),
see [20].

Note that the components of the magnetic induction vector (like the components of the magnetic
field vector and the tensor components of the magnetic field gradient) are measured in the axes
associated with a measuring device. To recalculate their values into another coordinate system,
one needs to consider the orientation of this device during flight.

3. VARIABILITY ANALYSIS FOR GEOMAGNETIC FIELD
PARAMETER BY REAL DATA

In order to estimate the stability of geomagnetic field parameters with the course of time, we
used the results of aerogeophysical surveys of the same surface segment conducted in 1999 and 2011,
see [21]. The approximate dimensions of this segment are 7× 5 km. The maps for the absolute
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AEROMAGNETIC GRADIOMETRY 899

Fig. 1. Absolute values of magnetic field induction vector B, nT, in (a) 2011 and (b) 1999.

values of the magnetic field induction vector that correspond to these surveys are presented in Fig. 1
(flight altitude 70–80 m). Here the horizontal axis (not shown in the figure) is associated with the
measurement points in the Gauss–Krüger coordinate system, the measured values are indicated by
color in a given scale; for the available measurement data at separate points, the continuous maps
were obtained using bilinear interpolation. The magnetic field induction in this segment varies
within the range 54.5–55 μT.

The difference between these measurements is illustrated in Fig. 2. Taking into account the
accuracy of modern quantum magnetic field sensors, we observe a considerable variation of the
magnetic field over the whole segment. This restricts the applicability of the absolute values of
the magnetic field induction vector to high-precision correlation-extremal navigation, because their
temporal variability is much higher than the measurement errors of the quantum sensors.

At the same time, the use of the magnetic field gradient has a series of advantages. First of
all, the anomalies of the gradient are mostly caused by local singularities of a medium, being less
subjected to global changes of the geomagnetic field. Next, gradient measurements on a sufficiently
small base (∼ 1 m) allow to neglect the variational component of the magnetic field, which cannot
be done for the measurements of the field itself. Finally, the anomalous field of the gradient has a
smaller correlation radius: a major impact is exerted by near-surface objects, which produce more
contrasting anomalies.

The horizontal gradient of the absolute values of the magnetic field induction vector is defined
by

∇H |B| =
√(

∂ |B|
∂y1

)2

+

(
∂ |B|
∂y2

)2

,

where the axes Oy1 and Oy2 are horizontal. The maps for the horizontal gradient of the absolute
values of the magnetic field induction vector that were calculated by the data in Fig. 1 are shown
Fig. 3. Clearly, there exist recurring fragments in Figs. 2 and 3 (the anomaly contours in the
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Fig. 2. Difference between absolute values of magnetic field induction vector measured in 2011 and 1999,
|B|2011 − |B|1999, nT.

Fig. 3. Horizontal gradient of absolute values of magnetic field induction vector, ∇H |B|, nT/m, in (a) 2011
and (b) 1999.
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Fig. 4. Difference between gradients of absolute values of magnetic field induction vector measured in 2011
and 1999, ∇H |B|2011 −∇H |B|1999 , nT/m.

central part of Fig. 2 match those in the central part of Figs. 3a and 3b), which are associated
with the geological singularities of the given surface segment. This means that temporal variations
affect both the normal and anomalous magnetic fields (the idea is to use the anomalous field for
navigation). Therefore, in the absence of actual magnetic data, CENSs should consider only the
anomalies of large size and amplitude with small temporal variations. Consequently, the CENSs
based on magnetic field measurements can be designed using modern fluxgate sensors.

The difference between the gradient measurements of 2011 and 1999 is demonstrated in Fig. 4.
The maximal deviation reaches 0.01 nT/m if we eliminate the differences induced by technogeneous
anomalies and measuring equipment failures. This result well agrees with the error of the gradiome-
ters based quantum optical pumping sensors. Thus, on the one hand, quantum vector magnetic
gradiometric systems can be used for navigation even at the current stage of technological devel-
opment; on the other, the gradient field has a sufficient stability for relying on the magnetic field
gradient maps for decades.

4. COMPENSATION OF AIRCRAFT’S SELF-MAGNETIC FIELD
IN MAGNETIC GRADIOMETRY

Except for the geomagnetic field, an airborne measuring system is affected by the self-magnetic
field of a carrier aircraft, due to its magnetization and Foucault currents in its body. Obviously
this field induces noises and reduces the accuracy of airborne measurements. So, it is required to
compensate the impact of the aircraft’s self-magnetic field on an airborne measuring device of the
magnetic field (the so-called deviation compensation problem).

The compensation procedure for the impact of the aircraft’s self-magnetic field needs a calibra-
tion flight to find the model parameters of these noises. During a calibration flight, an aircraft
ascends to a maximal altitude h ∼ 1000 m in order to minimize the influence of the anomalous
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magnetic field of the Earth. At this altitude in the straight flight mode, a series of evolutions with
angles 5◦ in different channels (yaw, roll, pitch) are performed with four essentially different courses
for reorienting the magnetic field vector with respect to the carrier.

To acquire measurements in the deviation compensation problem, it is necessary to use a vector
magnetometer, i.e., a fluxgate magnetometer, to find the direction of the magnetic field vector BF

(here F denotes the field according to the vector sensor data). In the case of a tensor magnetic
gradiometer, the source of information is any sensor of the gradiometer.

For a successful compensation, in addition to the measurement results of the gradient and
magnetic field vector, one needs information about the coordinates and velocity of the carrier at
the calibration stage. This information comes from a receiver of a satellite navigation system.
Assume the self-magnetic field of the carrier is described by a linear model with several constant
parameters. Then the compensation problem can be solved through parameter calculation of this
model.

Let us reduce the compensation problem to a standard stochastic estimation problem. So it
is required to pose a closed estimation problem, i.e., to obtain equations for the anomalous field,
equations for the deviation parameters and equations for the measurements.

The deviation ΔBm induced by magnetic masses has the form

ΔBm = K + LB0,

which was originally established by Poisson in 1824; also, see [22–24]. Here B0 denotes the ge-
omagnetic field vector; K is the vector of a constant or “rigid” deviation component induced by
the hard-magnetic materials of the aircraft; L gives a matrix of dimensions 3× 3 that is associated
with the inductive or “soft” component induced by the field of the soft-magnetic materials of the
aircraft.

The deviation ΔBi created by the induction currents under variations in the magnetic field,
nonuniform movements of the aircraft or its motion in the field with large horizontal or vertical
gradients [25] is calculated as

ΔBi = M
dB0

dt
,

where M indicates the current influence matrix of dimensions 3× 3.

The measurement model in the estimation problem is constructed using the model of the com-
plete deviation ΔBsum = ΔBm +ΔBi jointly for the magnetic gradiometer and fluxgate sensor.

In the closed estimation model, the measurement model is supplemented by the difference equa-
tions that describe the components of the anomalous magnetic field and deviation parameters.
Our setup proceeds from constant deviation parameters. The field has a stochastic model with
parameters chosen by real data analysis.

After a parameter normalization subject to the typical values of the deviation parameters, we
may write the expression

B = B0 +ΔBm +ΔBi

for the measurable magnetic field vector in the following way [26], taking into account the magnetic
noises and an infinitesimal order of corresponding terms:

b = b0 + ε3K + ε3LT b0 + ε4b0M
T de0
dτ

. (1)

Here b denotes a dimensionless measurement vector that is related to the vector B by B = B∗b,
B∗ = 50000 nT; b0 means the dimensionless vector of the geomagnetic field; all elements of the
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matrices K, L andM are values of infinitesimal order 1; ε = 0.1; e0 = b0/|b0| is the directional cosine
vector; finally, τ indicates dimensionless time [27]. The accuracy of formula (1) varies from O(ε6)
to O(ε8), depending on the altitude of aerial survey [26]. In the tensor notation, formula (1) can
be represented as

bi = b0i + ε3Ki + ε3Lijb
j + ε4bsMij

dej0
dτ

. (2)

Here and in the sequel, all indices vary from 1 to 3, summation runs over recurrent indices and

bs =
√
b0ib

i
0.

Now, using formula (2) and the notation Γij = ∇ibj (Γ0ij = ∇ib0j) for the gradient tensor, the
deviation model of the tensor magnetic gradiometer indications can be expressed as

Γij = ε3Γ0ij +Kij + Lijkb
k
0 + εbsMijk

dek0
dτ

, (3)

where the values Kij , Likj, and Mikj have order 1. For high-precision SQUIDs, it is necessary to
introduce the gradient model at the initial calibration stage.

The properties of the tensor of the magnetic field gradient lead to the following properties of
the magnetization tensors:

Kij = Kji, Lijk = Ljik, Mijk = Mjik, Ki
i = 0, Li

ik = 0, M i
ik = 0.

Hence, there are 35 parameters to be found.

Within the stochastic approach, the magnetic field gradient at measurement points is considered
as a discrete Gauss–Markov process of the second order (also see the book [28]). This process obeys
the difference equation

xj+1 = xj + vjujΔt, (4)

uj+1 = uj + qjΔt,

x0, u0 = 0, qj ∈ N(0, σ2), E[qiqj ] = σ2δij ,

where xj is the jth measurement for any component of the tensor (or vector) of the magnetic field
gradient; uj denotes the derivative of the gradient component along the flight direction at the time
instant j; qj gives the noise vector at the time instant j; vj is the aircraft velocity at the time
instant j; Δt indicates the time interval between successive measurements; N(·) stands for the
normal distribution; finally, E[·] means the expectation operator. The parameter σ2 is adjusted
using a statistical analysis of real magnetic field data.

Note that model (4) includes the derivative of a component of the gradient along the flight
direction. Therefore, prior to using this model in the optimal estimation setup, we have to reproject
the magnetic field values from the ground coordinate system (in which one of the axes coincides
with the flight direction) into the coordinate system associated with the measuring device. Let the
axis Oy1 be coinciding with the flight direction; denote by O the transition matrix from the ground
coordinate system to the one associated with the measuring device.

For the optimal estimation problem of the magnetic noise parameters to be well-posed without
cumbersome calculations, we will introduce several auxiliary notations. For arbitrary matrices X,
Xk ∈ R3×3, where Rk×m is the set of real matrices of dimensions k ×m, write

X{ij} = (X11,X12,X13,X22,X23) ,

X{ij}k = (X11k,X12k,X13k,X22k,X23k)
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and

x̂0 = (∇1B1, ∇1∇1B1, ∇1B2, ∇1∇1B2, ∇1B3, ∇1∇1B3, ∇2B2, ∇1∇2B2, ∇2B3, ∇1∇2B3) .

Consider the matrices

Aj =

(
1 VjΔt

0 1

)
, Qj =

(
0 0

0 V 2
j Δt2σ2

)
,

Âj = {Aj , Aj , Aj, Aj , Aj , I35} ,

and

Q̂j = {Qj, Qj, Qj, Qj , Qj , Θ35×35} ,

which are block-diagonal matrices, where index j corresponds to the number of a current measure-
ment, Vj gives the aircraft velocity at the measurement time instant, while In and Θn×k mean the
identity and zero matrices of compatible dimensions. For the jth measurement, denote

Ĥ = H1, Θ5×1, H2, Θ5×1, H3, Θ5×1, H4, Θ5×1, H5, Θ5×1,

I5, I5e1, I5e2, I5e3, I5e
′
1, I5e

′
2, I5e

′
3,

where index j is omitted for the sake of compactness and e′ defines the finite difference

e′j =
(ej − ej−1)

Δt
, j > 1,

e′1 =
(e2 − e1)

Δt
, j = 1,

where ej is the directional cosine vector ej = bj/|bj | at the time instant j, the matrices Hi ∈ R5

have the form

(H1, H2, H3, H4, H5)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

O2
11 −O2

13 O2
21 −O2

23 O11O21 −O13O23 O11O31 −O13O33 O21O31 −O23O33

O2
12 −O2

13 O2
22 −O2

23 O12O22 −O13O23 O12O32 −O13O33 O22O32 −O23O33

2O11O12 2O21O22 O12O21 +O11O22 O12O31 +O11O32 O22O31 +O21O32

2O11O13 2O21O23 O13O21 +O11O23 O13O31 +O11O33 O23O31 +O21O33

2O12O13 2O22O23 O13O22 +O12O23 O13O32 +O12O33 O23O32 +O22O33

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(by analogy, Rk is the set of real vectors of dimension k).

Construct the state vector x ∈ R45,

x =
(
x̂0,K{ij}, L{ij}1, L{ij}2, L{ij}3,M{ij}1,M{ij}2,M{ij}3

)T
,

and the measurement vector z ∈ R5 zT = Γ{ij}, which satisfy the relationships

xj+1 = Âjxj + qj, qj ∈ N(0, Q̂), E
[
qiq

T
j

]
= Q̂jδij , Pj = E

[
xjx

T
j

]
,

zj = Ĥjx+ rj , rj ∈ N(0, R̂), E
[
rir

T
j

]
= R̂δij ,
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on the strength of (3) and (4); here rj ∈ R5 is the noise vector of the tensor measuring device with
the diagonal covariance matrix R̂. As is well-known, the optimal estimate of the state vector in this
problem can be obtained using a discrete-time Kalman filter, with the initial values x0 = Θ45×1

and P0 adjusted through experimental data analysis (also see the book [27]). For a convergence
analysis of these estimates, we may employ the so-called stochastic measures of estimability [29].

In the case of measuring the gradient of the absolute values of the magnetic induction vector, the
compensation problem has another statement. More specifically, each component of the gradient
represents the difference between the measurements of scalar magnetometers. For each of them,
the deviation model [27] takes the form

b = b0 + ε3eTFK + 0.5ε3eTFLSbF + ε4bTFM
deF
dτ

+ o(ε6).

Here LS = L+ LT is a symmetric matrix and eF = bF /|bF | denotes the directional cosine vector
by the vector magnetometer data. Clearly, the measurements of the scalar sensors are not enough
for solving the compensation problem. This model contains 16 observable parameters, namely,

K1,K2,K3,ΔL11,ΔL22, L12, L13, L23,ΔM11,M12,M13,M21,ΔM22,M23,M31,M32;

ΔLii = Lii − L33, ΔMii = Mii −M33.

By analogy with tensor measurements of the magnetic field gradient, it is possible to calculate
the deviation of the gradient components gi = ∇ib, i.e.,

gi = ε3g0i +Kije
j
F + Lijke

j
F b

k
F + εMijk

dejF
dτ

bkF + o
(
ε3
)
, (5)

where the magnetization tensors (Kij , Lijk,Mijk) generally differ from their counterparts figuring in
expression (3). Hence, these values do not possess the same symmetry as for the tensor gradiometer.
Problem (5) is decomposed into three estimation subproblems, each yielding 16 parameters of the
tensors K, L, and M (the total number of parameters is 48).

Besides, note that the sensitivity of the scalar quantum magnetometers suffices for performing
reliable gradient measurements at the calibration flight altitude. So, the complete model of the
estimation problem also needs the model of the field gradient.

For posing the estimation problem of the magnetic deviation parameters, we again introduce
some auxiliary notations. Let

Ãj = {Aj , Aj, Aj , I48} ,
Q̃j = {Qj, Qj, Qj, Θ48×48}

and, for the jth measurement,

H̃ =
(
O1, Θ3×1, O2, Θ3×1, O3, Θ3×1, I3e1, I3e2, I3e3, I3e

2
1, I3e

2
2, I3e2e3,

I3e1e
′
1, I3e2e

′
2, I3e1e

′
2, I3e1e

′
3, I3e2e

′
1, I3e2e

′
3, I3e3e

′
1, I3e2e

′),
where index j is omitted for brevity and Oi gives the ith column of the turn matrix O defined
above. In addition, denote

x̃0 =
(
∇1 |B| , ∇1∇1 |B| , ∇2 |B| , ∇1∇2 |B| , ∇3 |B| , ∇1∇3 |B|

)
,

x̃i =
(
K1i,K2i,K3i, L11i, L22i, L12i, L13i, L23i,

M11i,M22i,M12i,M13i,M21i,M23i,M31i,M32i

)
.
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Construct the state vector x ∈ R54 x = (x̃0, x̃1, x̃2, x̃3)
T , and the measurement vector z ∈ R3,

z = (g1, g2, g3)
T , which satisfy the relationships

xj+1 = Ãjxj + qj, qj ∈ N(0, Q̃j), E
[
qiq

T
j

]
= Q̃jδij , Pj = E

[
xjx

T
j

]
,

zj = H̃jx+ rj, rj ∈ N(0, R̃), E [rirj] = R̃δij ,

due to expressions (4) and (5). Here rj ∈ R3 is the noise vector of the vector measuring device
with the diagonal covariance matrix R̃. Like in the previous case, the optimal estimate of the
state vector can be obtained using a discrete-time Kalman filter, with the initial values x0 = Θ54×1

and P0 adjusted through experimental data analysis.

First of all, once again note that the magnetometric system needs measuring devices for orienta-
tion angles: the field model is defined in the geographic coordinate system while the measurements
are performed in the coordinate system associated with the aircraft. Next, in order to coordinate
the measurements in different courses, it is necessary to introduce a coincidence condition for the
gradient vectors, which yields an additional correcting measurement.

After the calibration procedure, the existing deviation can be compensated using the following
formulas:

for the tensor gradiometer,

Γ0{ij} = Γ{ij} − Ĥ
(
Θ10×1, K{ij}, L{ij}1, L{ij}2, L{ij}3, M{ij}1, M{ij}2, M{ij}3

)T
;

for the vector gradiometer,

g0i = gi − H̃ (Θ1×6, x̃1, x̃2, x̃3)
T .

All values correspond to the same measurement.

5. INTEGRATION ALGORITHM OF MAGNETOMETRIC
AND INERTIAL NAVIGATION SYSTEMS

Consider an integration algorithm of the inertial and correlation-extremal navigation systems
(INS-CENS) in the following setup. A two-component platform inertial system with a horizontal
platform and a relatively free azimuthal orientation is chosen as the INS. A baroaltimeter is used
for altitude measurements. Correcting information consists in the values of the magnetic field
gradient g = (g1, g2, g3)

T . For implementing the integration algorithm, the airborne computer reads
navigational data from inertial sensors and also solves the difference equations for the error vector
and its covariance matrix; this solution will be used at the correction stage. The covariance matrix
must be calculated taking into account the error equations.

The premeasured values of the magnetic field gradient are defined as a set of measurements per-
formed at several points in a certain three-dimensional bounded domain. Using some interpolation
algorithm (in this paper, cubic interpolation), the measurements are transformed into continuous
functions that relate the magnetic field gradient and its derivatives with respect to y1 and y2 to
the coordinates of the measurement points M(y1, y2, y3). Denote the functions by g = Φ(M) and
∇1g = ∇1Φ(M), ∇2g = ∇2Φ(M). Assume the components of these vector-valued functions are
written in the geographic coordinate system.

The integration algorithm includes two stages as follows [21]. The first stage is intended to
roughly estimate the positioning errors by the measured physical field parameters. This stage
starts when the aircraft flies along a reference segment in accordance with the indications of the
continuously operating INS. For the first stage, it is necessary to analyze the statistical parameters
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of the reference map and to define the correlation radius of the current flight altitude. Next,
the admissible value domain of the INS error vector is divided into a certain number of equal
segments, each being smaller than the correlation radius. For all segments, a trajectory in the error
vector space is initiated, which is calculated using the error equations with the initial conditions
that match the center of the admissible domain. For each time instant, the field value can be
found from the reference map for the current coordinates yielded by the inertial navigation system.
For all trajectories, it is necessary to calculate an integral that describes the likelihood degree
of a corresponding hypothesis. The hypotheses that do not satisfy the likelihood conditions are
gradually eliminated by comparing this degree with a given threshold. The first stage ends as soon
as a unique hypothesis is obtained.

At the second stage, the INS correction problem by the measured values of the magnetic field
gradient is reduced to a stochastic optimal estimation problem. To this end, let us introduce some
notations. For the jth measurement, define

Ain =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I2 I2Δt Θ2×3 Θ2×2
ˆ̂y

−ω2
0I2Δt I2 + 2u3TΔt Θ2×3 Θ2×2

ˆ̂w

Θ3×2 Θ3×2 I3 + ω̂Δt Θ3×2 I3Δt

Θ2×2 Θ2×2 Θ2×3 I2 Θ2×3

Θ3×2 Θ3×2 Θ3×3 Θ3×2 I3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, T =

(
0 1
−1 0

)
,

H in =
(
−Δ1, Θ3×2,−OT Φ̂y(M) + Δ2ŷ, Θ3×5

)
, Φy(M) = ORΦ(M),

Δ1 = OT

(
∇1Φy(M) ∇2Φy(M)

)
, Δ2 =

(
Δ1 Θ3×1

)
,

whereM is a model point with model coordinates y ∈ R3; w ∈ R3 means the model relative velocity;
u ∈ R3 gives the earth angular velocity projected into the axes of the model trihedron; ω ∈ R3 is the
absolute angular velocity of the model trihedron; ω0 denotes the Schuler frequency; OR specifies the
turn matrix from the geographic trihedron to the model trihedron; OT indicates the turn matrix
from the instrument trihedron to the trihedron associated with the measuring device (this matrix
is assumed to be defined without errors); note that index j is omitted. In addition, for an arbitrary
vector f ∈ R3, let

f̂ =

⎛
⎜⎜⎝

0 f3 −f2

−f3 0 f1

f2 −f1 0

⎞
⎟⎟⎠

and

ˆ̂
f =

(
0 f3 −f2

−f3 0 f1

)
.

For the jth measurement, write the state vector x ∈ R12, x =
(
δyT , δwT , βT ,ΔfT , vT

)T
, and

also the measurement vector z ∈ R3, z = g −OTΦy(M), where δy ∈ R2 are the dynamic errors
of the model coordinates; δw ∈ R2 mean the dynamic errors of the model velocities; β ∈ R3 de-
notes a small turn angle from the model trihedron to the instrument trihedron; Δf ∈ R2 is the
instrument error vector of newton meters; v ∈ R3 gives the drift of the gyro platform [30]; finally,
g ∈ R3 is the measured vector of the magnetic field gradient. The vector g can be written as
g = OT (I3 + β̂)Φ(M ′), where the point M ′ has the coordinates y′ = y − δy − β̂y, δy3 = 0. Then
the measurement vector allows the representation z = H inx+ r (up to the linear terms of the
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Taylor expansion), where r ∈ R3 is the sensor noise vector. Hence, the above vectors satisfy the
relationships

xj+1 = Ain
j xj + qj, qj ∈ N

(
0, Qin

)
, E

[
qiq

T
j

]
= Qinδij ,

zj = H in
j xj + rj, rj ∈ N

(
0, Rin

)
, E [rirj] = Rinδij ,

where the covariance matrices Qin and Rin are defined by the characteristics of the inertial and
magnetic sensors. The discrete Kalman filter gives the optimal estimate of the state vector com-
ponents; this estimate is used at each step of the algorithm for INS correction.

6. NUMERICAL SIMULATION

To illustrate the efficiency of the suggested integration algorithm for the data supplied by the
platform inertial navigation system and magnetic gradiometers, we performed a numerical simu-
lation of this algorithm using the real data of the magnetic field from a test flight on a segment.
During simulation, it was assumed that the aircraft has a straight flight with a constant velocity
and a slowly changing orientation. The model of the inertial system errors was adjusted for a
correct description of medium accuracy sensors. As a result, we obtained a relationship between
the positioning error of the aircraft and the distance travelled S.

Fig. 5. Numerical simulation results for integration algorithm.

The simulation results are shown in Fig. 5. Here solid line corresponds to the magnetic field
gradient projected into the flight direction, ∇S|B|; dashed line, to the horizontal component of the
positioning error

δy =
√
(y′1 − y1)2 + (y′2 − y2)2

by the data obtained using the integration algorithm. Clearly, the error rapidly decreases below
20 m. This testifies to a high efficiency of the suggested integration solution for the data from
magnetic gradiometers and the INS.

7. CONCLUSIONS

This paper has presented an analytical survey of the existing solutions for airborne measurements
of the magnetic field gradient. It has been demonstrated that the key attributes of the magnetic
field gradient (such as temporal instability and a small correlation radius) make it promising to
use correlation-extremal navigation systems based on magnetic gradiometry. Much attention has
been paid to the compensation problem for the indications of magnetic gradiometers. For solving
this problem, we have developed an approach with a stochastic model of the anomalous field and
designed a Kalman filter to estimate the compensation coefficients. A numerical simulation by
real data has illustrated an efficient decrease of the inertial navigation system errors in case of
integration with the magnetometric correlation-extremal navigation system.
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