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Abstract—We consider the optimal control problem for a system defined by a one-dimensional
diffusion equation with a fractional time derivative. We consider the case when the controls
occur only in the boundary conditions. The optimal control problem is posed as the problem of
transferring an object from the initial state to a given final state in minimal possible time with
a restriction on the norm of the controls. We assume that admissible controls belong to the
class of functions L∞[0, T ]. The optimal control problem is reduced to an infinite-dimensional
problem of moments. We also consider the approximation of the problem constructed on the
basis of approximating the exact solution of the diffusion equation and leading to a finite-
dimensional problem of moments. We study an example of boundary control computation and
dependencies of the control time and the form of how temporal dependencies in the control
dependent on the fractional derivative index.
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1. INTRODUCTION

Dynamic systems of non-integer order have attracted increasing attention of researchers in re-
cent years [1–4]. We consider both systems with lumped parameters (defined in terms of fractional
order equations with total derivatives) and systems with distributed parameters (defined in terms
of fractional partial differential equations). Interest in such systems stems from a significant volume
of experimental observations and models of real physical systems and processes that exhibit the
signs of the so-called “fractional dynamics” [5]. In particular, the fractional-order diffusion equa-
tion investigated in this work formalizes the phenomena of anomalous diffusion in inhomogeneous
and/or irregular (fractal) media, for example, the diffusion of biopolymers in living cells and charge
carriers in amorphous semiconductors or electrolytes (see [6, 7] and references therein). In these
publications, it is noted that the operator of fractional differentiation can be understood both in
the sense of Caputo and in the sense of Riemann–Liouville (see Appendix, item 1). Such ambiguity
is due to the lack of a unified definition of the fractional differentiation operation (and the existence
of several dozen alternative definitions), as well as the absence of clear consequences from physical
theories (for example, from the theory of “random walks,” CTRW) or from experimental data that
would allow to select a particular unique species of fractional derivatives.

In the last 15–20 years, researchers have been interested in the task of control of systems of
fractional order [3, 4, 8]. The possibilities are studied of using fractional order systems or elements
to perform fine-tuning of controllers and construct more complex control strategies that would take
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TIME-OPTIMAL BOUNDARY CONTROL 885

into account the previous state of the system and/or the state of the system in a rather extensive
and extended area of space. Here we can note, for example, the use of non-integer order controllers
for controlling microclimate and power systems. The so-called supercapacitors (capacitors with
strongly irregular electrodes), viscoelastic elements in vibration protection systems, porous and
microstructured media, which are carriers or transmitters of matter or heat, are considered as
elements or systems of fractional order. In most publications, optimal control problems were
studied mainly for fractional-order systems with lumped parameters within the framework of the
variational approach [9, 10], where, as a rule, the control was assumed to be continuous in advance,
and explicit constraints on its norm were not considered. The works [11–13] consider the optimal
control problem for a fractional-order diffusion equation with the Riemann–Liouville derivative and
quadratically-integrable distributed control. In this case, the minimization problem is solved for a
functional which is quadratic in both state and control.

In this work, for systems with distributed parameters defined by the diffusion equation with a
fractional order time derivative, we consider the problem of finding the optimal boundary control
that ensures the shortest control time for a given constraint on the control norm (the performance
problem). As follows from the above, such a problem has not been solved earlier for this class of
systems: known publications do not consider boundary control and do not solve the performance
problem. At the same time, these issues have both an undoubtable theoretical interest and a
certain practical significance. Boundary control is very important, for example, in problems of
heating structurally complex materials or creating (maintaining) a given concentration of a certain
substance diffusing through a semipermeable membrane into a limited area of space. In both cases
mentioned here, a given state can be achieved by applying influences to the boundary of a given
region. The performance problem is important since there exist a huge number of applications
where it is necessary to bring the system to a predetermined state (for example, to heat to the
desired temperature or create the desired concentration of the substance) in the shortest possible
time, based on technological or economic requirements.

To solve this problem, in this work we use the method of moments, known in the classical theory
of systems [14]. This method has previously been used to study the optimal control problem of
fractional-order systems [15, 16]. Thus, for the systems with distributed parameters considered in
this work, we solve the problem of finding a quadratically-integrable boundary control of minimal
norm [16]. In addition, we show that, using the method of moments, one can investigate the
optimal control problem not only in the case of boundary control, but also in the case of distributed
control [17].

2. PROBLEM SETTING

We consider a system whose state is defined by the following equation:

C
0 D

α
t Q(x, t) = K

∂2Q(x, t)

∂x2
, t � 0, x ∈ [0, L], (1)

where Q(x, t) is the state of the system, K is the diffusion coefficient, C
0 D

α
t is the operator

of Caputo’s fractional differentiation with respect to time (see Appendix, item 1), α ∈ (0, 1],
(x, t) ∈ Ω = [0, L] × [0,∞). We will call Eq. (1) a diffusion equation of fractional order. In what
follows we assume K = 1, since this simplifies the computations somewhat, and the solution of
the diffusion equation for a diffusion coefficient other than one does not qualitatively differ from
the solution for an arbitrary (positive) coefficient, which can be found in [7]. The optimal control
problem for this case can be considered completely similarly to the considerations shown in this
work. Such a choice is also related to the fact that earlier A.G. Butkovskii had considered this
problem for systems of integer order, which makes it possible to compare the results given below.
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886 KUBYSHKIN, POSTNOV

We assume that the function Q(x, t) is differentiable on the positive semiaxis with respect to
the time variable and twice differentiable on the interval [0, L] with respect to the spatial variable.

The initial and boundary conditions for Eq. (1) are given as follows:

Q(x, 0+) = Q0(x), x ∈ [0, L], (2)[
bi
∂Q(x, t)

∂x
+ aiQ(x, t)

]
x=xi

= hi(t) + ui(t), t � 0, (3)

where ai and bi are constant coefficients, b1 � 0, b2 � 0; hi(t) are some known fully regular (differ-
entiable) functions, i = 1, 2, x1 = 0, x2 = L. Functions u1(t) ∈ L∞[0, T ] and u2(t) ∈ L∞[0, T ] are
boundary controls. Such a choice of controls as essentially bounded functions leads to the fact that
equality in expression (3) should be understood not pointwise but as equality almost everywhere
(since essentially bounded functions can be undefined on a set of measure zero, and two such func-
tions are the same if they differ only on a set of measure zero). We will also assume that when
t > 0 the continuity conditions are fulfilled: Q(0, t) = Q0(0), Q(L, t) = Q0(L).

The final condition is defined as follows:

Q(x, T ) = Q∗(x), T > 0, x ∈ [0, L]. (4)

Boundary controls can be combined into a vector U(t) = (u1(t), u2(t)) ∈ L∞[0, T ], the norm of
which will be expressed by the formula

‖U(t)‖ = vrai max
t∈[0,T ]

max
i

|ui(t)|,

where vraimax denotes an essential maximum of the function in question, i.e. the lower bound of
the set of numbers A such that the set of values t ∈ [0, T ], for which max

i
|ui(t)| > A, has measure

zero [14].

We pose the optimal control problem as follows.

Problem 1 (optimal control). Find controls u1(t) ∈ L∞[0, T ] and u2(t) ∈ L∞[0, T ] such that for
system (1) with initial condition (2) and boundary conditions (3), the final state (4) is reached in
minimal possible time T ∗ with a constraint on the control norm ‖U(t)‖ � l, l > 0.

3. REPRESENTATION OF THE OPTIMAL CONTROL PROBLEM
IN THE FORM OF A PROBLEM OF MOMENTS

For system (1)–(3), the exact analytic solution is known [7, formula (14)]. Let us write it for
the final state (4):

Q(x, T ) = Q∗(x) = R(x, T ) + v1(x)u1(T ) + v2(x)u2(T )

−
∞∑
n=1

Xn(x)

T∫
0

Eα,α[−λn(T − t)α]
[
v1n × C

0 D
α
t u1(t) + v2n × C

0 D
α
t u2(t)

]
dt

(T − t)1−α
, (5)

where

v1(x) =
a2(x− L)− b2

a2b1 − a1b2 − a1a2L
; v2(x) =

b1 − a1x

a2b1 − a1b2 − a1a2L
;

R(x, T ) = V (x, T ) +
∞∑
n=1

Eα[−λnT
α] [Q0n − Vn(0+)− v1nu1(0+)− v2nu2(0+)]Xn(x)

−
∞∑
n=1

Xn(x)

T∫
0

Eα,α[−λn(T − t)α]
[
C
0 D

α
t Vn(t)

]
(T − t)1−α

dt;
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Q0n, Vn(t) and v(1,2)n are the coefficients of the expansion of functions Q0(x), V (x, t), and v1,2(x)
with the system of eigenfunctions {Xn(x)}; V (x, t) = v1(x)h1(t)+ v2(x)h2(t); Eα,β(t) is a two-
parameter Mittag-Leffler function [2] (see Appendix, item 1); Eα(t) = Eα,1(t). The eigenvalues λn

and eigenfunctions Xn(x) are the result of solving the following Sturm–Liouville problem [7]:

X ′′(x) + λX(x) = 0,[
biX

′(x) + aiX(x)
]
x=xi = 0, i = 1, 2.

Equation (5) includes the fractional derivatives of functions u1,2(t), which are (by definition) the
convolution of the first derivative of these functions with a fractional power function. Therefore,
if the controls u1,2(t) are differentiable, then their Caputo’s fractional derivative will be defined
everywhere on the considered interval. Previously we have noted that controls are assumed to
be functions from the space L∞[0, T ]. You can additionally require that these functions are dif-
ferentiable, but such a requirement will be redundant and may narrow the class of functions for
admissible controls too much. We note here that the first derivative of piecewise-constant functions
will be defined in the class of generalized functions and can be represented as a linear combination
of delta functions, and the Caputo derivative of the delta function is defined in the class of con-
tinuous functions (see Appendix, item 2). We will show below that the optimal controls obtained
as a result of solving the problem of moments [14] are represented by piecewise-constant functions
(see below, formula (12)) and in the case considered in this work these functions have at most a
countable number of discontinuity points and monotonicity intervals.

Functions Q∗(x) and R(x, T ) that occur in (5) can also be expanded in the system of func-
tions {Xn(x)}, and below we denote the corresponding coefficients of the expansion as Q∗

n

and Rn(T ). Since the system is complete, for the equality in (5) to hold it is necessary and
sufficient that a similar equality holds for the corresponding expansion coefficients for every n.
Thus, expression (5) can be written in the form of some generalized problem of moments of the
form

T∫
0

gn(t, T )
[
v1n × C

0 D
α
t u1(t) + v2n × C

0 D
α
t u2(t)

]
dt = c̃n(T ), n = 1, 2, . . . , (6)

where

c̃n(T ) = Rn(T ) + v1nu1(T ) + v2nu2(T )−Q∗
n,

gn(t, T ) =
Eα,α[−λn(T − t)α]

(T − t)1−α
. (7)

Using the formula of fractional integration by parts (see Appendix, item 1, formula (A.4)), we
can convert expression (6) to a form that contains the moments of immediate boundary controls
(see Appendix, item 3):

T∫
0

gn(t, T ) [v1nu1(t) + v2nu2(t)] dt = cn(T ), (8)

where

cn(T ) =
Q∗

n −Rn(T )− (v1nu1(0) + v2nu2(0))Eα(−λnT
α)

λn
. (9)

We should note right here that solving the problem of moments (8) generally allows one to
find only the combination Ũ(t) = v1u1(t) + v2u2(t) and not each individual control. Individual
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controls can be found in a number of special cases, for example when the relation between them
is known (defined by a known function), or when one of the controls is zero, or when the two
controls are equal to each other. All these special cases are non-trivial and have a completely clear
physical meaning: heating (or introducing a diffusing substance) in reality can be carried out not
independently on each of the boundaries, but, for example, by sources with the same temperature
or known (e.g., constant) temperature difference at the boundaries.

The solution of the infinite-dimensional problem of moments (8) in the general case can not
always be obtained, and it is not always possible to determine its solvability [14, 18]. In addition,
in practice it is often sufficient to find an approximate solution that describes the system state
with acceptable accuracy. Since the series in (5) are expansions in the complete system of (eigen)
functions {Xn(x)} and are assumed to be uniformly convergent, we can replace these series with
a finite sum with any given accuracy. Then such an approximate solution can be, similar to the
above calculations, reduced to a finite-dimensional problem of moments whose dimension will be
determined by the number of retained terms of the series occurring (5), chosen based on the required
accuracy of the approximation. Below we will consider the finite-dimensional problem of moments.

It is known that the problem of moments (8) with fixed n = N and u1,2(t) ∈ L∞[0, T ] is equiv-
alent to the following conditional convex minimization problem [14].

Problem 2 (conditional minimization). Find

min
ξ1,...,ξN

⎛
⎝

T∫
0

∣∣∣∣∣
N∑
i=1

ξigi(t)

∣∣∣∣∣ dt
⎞
⎠ =

⎛
⎝

T∫
0

∣∣∣∣∣
N∑
i=1

ξ∗i gi(t)

∣∣∣∣∣ dt
⎞
⎠ (10)

given that

N∑
i=1

ξici = 1, (11)

where ξi are arbitrary numbers, and the numbers ξ∗i correspond to the solution of the minimization
problem, i = 1, . . . , N .

In this case, the optimal control will be determined by the formula [14]

Ũ(t) = l sgn

[
N∑
i=1

ξ∗i gi(t)

]
, t ∈ [0, T ∗], (12)

where T ∗ is the smallest nonnegative real root of equation

ΛN (T ) = l, (13)

where

1

ΛN (T )
=

⎛
⎝

T∫
0

∣∣∣∣∣
N∑
i=1

ξ∗i gi(t)

∣∣∣∣∣ dt
⎞
⎠ .

Formula for the general solution of problem (5) and, therefore, expressions for the moments cn(T )
(formula (9)) includes the values u1,2(0) and u1,2(T ). In the general case, these values should be
determined based on additional assumptions or constraints imposed on the system, for example,
from the principle of matching the boundary and initial conditions at given points [16]. In the case
we consider here, U(t) ∈ L∞[0, T ], these values can be determined based on the fact that the control
is represented by a piecewise constant function (12) that takes only the values ±l; for example,
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TIME-OPTIMAL BOUNDARY CONTROL 889

one can let u1,2(0) = l, u1,2(T ) = (−1)M l (M is the number of switchings in the corresponding
controls).

The work [16] studies the correctness and solvability of the problem of moments (8) for a fixed n
in case U(t) ∈ Lp[0, T ], p > 1; the key condition of this problem is the boundedness of the norm of
functions gn(t, T ) (formula (7)). It was shown that for U(t) ∈ L∞[0, T ] the problem of moments
is correctly posed and solvable provided that inequality α > 0 is satisfied, i.e., for all considered
values α ∈ (0, 1].

4. SAMPLE COMPUTATION OF THE OPTIMAL CONTROL

Let us consider the system (1) and specify the initial and final conditions in the following form:

Q(x, 0) = Q0,

Q(x, T ) = QT ,

where Q0, Q
T are constants, x ∈ [0, L].

In what follows we consider an example of calculating the optimal control that occurs in the
Dirichlet boundary conditions. We will consider the solution obtained by approximating the infinite-
dimensional problem of moments of finite-dimensionality.

Boundary conditions (3) are assumed to be the same on both boundaries and equal to

Q(0, t) = u(t),

Q(L, t) = u(t).

Eigenfunctions Xn(x) and eigenvalues λn in this case will look like

Xn(x) = sin
πnx

L
, (14)

λn =

(
πn

L

)2

. (15)

Then the problem of moments (8) can be written in the following form (see Appendix, item 4):

T∫
0

gn(t, T )u(t)dt = cn(T ), (16)

where

cn(T ) =
QT −Q0Eα[−λnT

α]

λn
.

Note that in the resulting formula for the moments, the quantities u1,2(0) and u1,2(T ) do not
occur at all, so the task of finding them does not arise in this example.

We will consider an approximate solution for the problem of moments (16) when N = 3. Then,
using condition (11), we arrive at the following unconditional minimization problem:

1

Λ3(T )
= min

ξ1,ξ2
ρξ(T ),

where

ρξ(T ) =

T∫
0

∣∣∣∣ξ1g1(t) + ξ2g2(t) +
1− ξ1c1 − ξ2c2

c3
g3(t)

∣∣∣∣ dt.
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890 KUBYSHKIN, POSTNOV

Fig. 1. Dependence of the control time on the parameter α. The Y-axis is in logarithmic scale.

This unconditional minimization problem can be solved numerically using the algorithm proposed
in [14, Ch. 4, § 1]. We first set test values of ξ01,2. For them, we find the point T 0 where the plot
of the function y = ρξ(T ) intersects the line y = 1/l. Then we minimize the function ρξ(T

0) with
respect to ξ1,2, finding the values ξ11,2 for which there is a new intersection point T 1, and so on.

The criterion for stopping this procedure at iteration k + 1 is the condition |T k+1−T k

T k | < ε, where
ε is the predefined estimation accuracy. This algorithm was implemented in the software suite
MATLAB 7.9. The estimation accuracy of the control time was set at the level ε = 0.05, and the
point of intersection of the above-mentioned graphs was found with the same accuracy.

The control time T ∗ and numbers ξ∗1,2 found using the above algorithm make it possible, ac-
cording to (12), to write down an approximate solution of the optimal control problem posed in
the form

u(t) = lsgn

⎛
⎝

t∫
0

[
ξ∗1g1(τ) + ξ∗2g2(τ) +

1− ξ∗1c1 − ξ∗2c2
c3

g3(τ)

]
dτ

⎞
⎠ .

Having computed the control, we can now compute an approximation for the system state at
the final time moment T ∗, using an approximation of the solution of (5) as a partial sum

QN (x, T ∗) =
2

π

N∑
n=1

sin
√
λnx

n
(1− (−1)n)

×
⎡
⎣Q0Eα(−λn(T

∗)α)− u(T ∗) + λn

T ∗∫
0

gn(t)u(t)dt

⎤
⎦+ u(T ∗). (17)

Next, we present the results of computations that illustrate the resulting solution and its prop-
erties. Calculations were carried out with the following values of the problem’s parameters: L = 1,
Q0 = 10, QT = 30.

Figure 1 shows the dependencies of the control time on the parameter α for different values
of the parameter l: l = 100 (solid line), l = 200 (dotted line), l = 500 (dot-and-dash line). We
can see that the curve is characterized by rapid growth for small α and saturation in the region
α > 0.8. In addition, we see that as the value of l increases (“weakening” the constraint), the
value of T ∗ decreases. Figure 2 shows the temporal dependencies of the controls obtained as a
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Fig. 2. Temporal dependencies of the control for different values of the parameter α. Top down:
α = 0.2, α = 0.35, α = 0.6, α = 0.9, α = 1.

Fig. 3. The spatial distribution of the system state approximation for t = T ∗ for different values of the param-
eter N : N = 3 (solid line), N = 10 (dotted line), N = 100 (dot-and-dash line).

result of calculation for different values of α for l = 100. In this case, the relative time τ = t/T ∗ is
plotted along the X-axis. We can see that when α < 0.5 and α > 0.5 the control has a qualitatively
different character: in the first of these areas it either does not have switching points or has only one
such point (for α > 0.25), and in the second of these areas, the control always has two switching
points. As α increases, the distance between switching points also increases, and their position
shifts toward smaller values of the relative time.

Figure 3 presents an evaluation of the system state at t = T ∗ for α = 0.2, l = 100 and various
values of the parameter N . It can be seen that although the control was calculated with respect
to only three moments, increasing the number of terms in the expression for estimating the state
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makes it possible to increase the accuracy of the resulting estimate and bring the state to the
required constant value QT = 30. There is also a noticeable manifestation of the Gibbs effect (the
presence of oscillations and the presence of regions near the boundaries of the interval where the
solution is very different from the desired one), the magnitude of which decreases as N grows. We
should also note that we have seen no explicit dependence of the state estimate on the index α:
for the same values of the remaining parameters, the curves corresponding to different values of α
practically coincide.

Finally, we note that the results obtained in this section with α = 1 qualitatively coincide with
the corresponding results obtained in [14, Chap. 5, §§ 2 and 3] and [19, Chap. 4, §§ 1 and 2]. In
addition, the distribution of control switching points on the time interval is of the same nature as
for systems with integer order [19, 20].

5. CONCLUSION

In this work we have studied the problem of finding a time-optimal boundary control with
respect to a given constraint on the control norm for a system with distributed parameters defined
by a diffusion equation with a fractional time derivative. We have considered a control that can
be represented in the form of a piecewise constant function. The problem has been reduced to an
infinite-dimensional problem of moments and solved with a finite-dimensional approximation. We
have shown an example of solving the problem and analyzed properties of the solution. Our results
can be used in the search for optimal control for systems defined by equations of quasiparabolic
type with a fractional time derivative, in particular, for controlling thermal and diffusion processes
in various systems.
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APPENDIX

1. Let us give a brief outline of the fractional calculus used in this article.

The left-sided Caputo’s fractional derivative of order α ∈ (0, 1] with respect to time for a func-
tion Q(x, t) is defined by the following expression [2, Ch. 2]:

C
0 D

α
t Q(x, t) =

1

Γ(1− α)

t∫
0

∂Q

∂t

dτ

(t− τ)α
.

The right-hand Riemann–Liouville fractional derivative and integral of order α ∈ (0, 1] of a
function f(t) are defined as follows [2, Ch. 2]:

RL
t Dα

T f(t) = − d

dt

1

Γ(1− α)

T∫
t

f(τ)dτ

(τ − t)α
, (A.1)

tI
α
T f(t) =

1

Γ(α)

T∫
t

f(τ)dτ

(τ − t)1−α
. (A.2)

We have the identity

RL
t I

1−{α}
T = RL

t D
{α}−1
T . (A.3)
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The formula of fractional integration by parts looks like [21]:

T∫
0

f(t)× C
0 D

α
t g(t)dt =

T∫
0

g(t) × RL
t Dα

T f(t)dt

+

[α]∑
j=0

[
RL
t D

{α}+j−1
T f(t)× RL

t D
[α]−j
T g(t)

]∣∣∣T
0
, (A.4)

where [α] and {α} are respectively the integer and fractional parts of α.

The Mittag-Leffler function plays an important role in the fractional calculus; representation of
this function in the form of a power series [2, Ch. 1] is as follows:

Eα,β(t) =
∞∑
k=0

tk

Γ(αk + β)
. (A.5)

This series converges in absolute value on the entire real axis.

2. Consider a piecewise constant function of the form

f(t) = sgn

( ∞∑
k=1

ξkgk(t)

)
,

where ξi are numbers, gk(t) are the functions which monotonic, continuous and positive definite
almost everywhere, t ∈ [0, T ]. We assume that this series converges in absolute value on the interval
t ∈ [0, T ]. The functions gk(t) given by formula (7) have one breakpoint, turning to infinity at
t = T , but on the semi-interval t ∈ [0, T ) they are continuous, monotonic, and positive definite.
Consequently, each such function belongs to a class of functions with a finite number of monotonicity
intervals, and a linear combination of a countable number of such functions will change its sign at
most a countable number of times. Then function f(t) will have at most a countable number of
jumps in the semi-interval t ∈ [0, T ) (and on the segment t ∈ [0, T ], where it will be defined almost
everywhere).

Then the derivative of the function f(t) will be defined in the class of generalized functions and
can be represented in the form

df(t)

dt
=

∞∑
m=1

lmδ(t− tm),

where tm are breakpoints of the function f(t), lm are coefficients. Consequently, the Caputo
derivative of the function f(t) will look like

C
0 D

α
t f(t) =

1

Γ(1− α)

∞∑
m=1

lm(t− tm)−α.

3. We give a detailed derivation of the formulas (8) and (9). Consider the integral in (6) that
contains the moments of fractional order derivatives of the boundary controls. Using the fractional
integration by parts formula (A.4), we can obtain for the integral in question (6):

T∫
0

gn(t, T )
[
v1n × C

0 D
α
t u1(t) + v2n × C

0 D
α
t u2(t)

]
dt

=

T∫
0

[v1nu1(t) + v2nu2(t)]× RL
t Dα

T gn(t, T )dt (A.6)

+
[
[v1nu1(t) + v2nu2(t)]× RL

t I1−α
T gn(t, T )

]∣∣∣T
0
.
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Here we have used identity (A.3). According to the definitions of the right-hand Riemann–Liouville
fractional differentiation and integration operators (A.1), (A.2), and the above (see the explanation
for formula (6)) expression for gn(t, T ), we get that

RL
t Dα

T gn(t, T ) = − 1

Γ(1− α)

d

dt

T∫
t

(τ − t)−α(T − τ)α−1Eα,α [−λn(T − τ)α] dτ,

RL
t I1−α

T gn(t, T ) =
1

Γ(1− α)

T∫
t

(τ − t)−α(T − τ)α−1Eα,α [−λn(T − τ)α] dτ.

The integral in the right-hand side of the latter two expressions can be calculated with a represen-
tation of the Mittag-Leffler function in the form of a power series (A.5). Since this series converges
in absolute value on the entire real axis, one can immediately change the order of integration and
summation in the formula and write:

T∫
t

(τ − t)−α(T − τ)α−1Eα,α [−λn(T − τ)α] dτ

=
∞∑
k=0

(−λn)
k

Γ[α(k + 1)]

T∫
t

(τ − t)−α(T − τ)α(k+1)−1dτ

=
∞∑
k=0

(−λn)
k

Γ[α(k + 1)]
(T − t)αkB(1− α,α(k + 1))

= Γ(1− α)Eα [−λn(T − t)α] ,

where B(α, β) is the Euler beta function, B(α, β) = Γ(α)Γ(β)
Γ(α+β) .

We now compute the derivative of the resulting expression, using also the representation of the
Mittag-Leffler function in the form of a power series (A.5):

d

dt
Γ(1− α)Eα [−λn(T − t)α] =

1

T − t

∞∑
k=0

[−λn(T − t)α]k αk

Γ(αk + 1)

=
1

T − t

∞∑
k=1

[−λn(T − t)α]k

Γ(αk)
.

The sum in the resulting expression can be (by making the substitution k = m+1 in the subscript)
rewritten as

∞∑
k=1

[−λn(T − t)α]k

Γ(αk)
=

∞∑
m=0

[−λn(T − t)α]m+1

Γ(αm+ α)
= −λn(T − t)αEα,α [−λn(T − t)α] .

In the end we will have

RL
t Dα

T gn(t, T ) = −λn(T − τ)α−1Eα,α [−λn(T − τ)α] = −λngn(t, T ),
RL
t I1−α

T gn(t, T ) = Eα [−λn(T − τ)α] .
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Substituting these expressions in the right-hand side of (A.6), we get:

T∫
0

gn(t, T )
[
v1n × C

0 D
α
t u1(t) + v2n × C

0 D
α
t u2(t)

]
dt

= −λn

T∫
0

[v1nu1(t) + v2nu2(t)] gn(t, T )dt+ [v1nu1(T ) + v2nu2(T )]

− [v1nu1(0) + v2nu2(0)]Eα [−λnT
α] .

Substituting the resulting formula in (6) and taking into account the explicit expression for c̃n, we
get formula (8) due to notation (9).

4. The initial, final, and boundary conditions chosen in Section 4 follow from (2)–(4) when the
following relations hold:

a1 = a2 = 1, b1 = b2 = 0,

h1(t) = h2(t) = 0, u1(t) = u2(t) = u(t),

v1(x) = 1− x

L
, v2(x) =

x

L
.

We introduce in addition the function f(x) = 1, x ∈ [0, L]. Then ∀(x, t) ∈ Ω

V (x, t) = 0,

v1(x) + v2(x) = f(x) = 1, (A.7)

v1(x)u1(t) + v2(x)u2(t) = f(x)u(t) = u(t). (A.8)

Due to (A.7), (A.8), the expression in square brackets in (8) can be written as

v1nu1(t) + v2nu2(t) = (v1(x) + v2(x))nu(t) = fnu(t).

We now write the problem of moments (8) and the moments (9) for the example in question, taking
into account the above relations:

T∫
0

gn(t, T ) [v1nu1(t) + v2nu1(t)] dt = fn

T∫
0

gn(t, T )u(t)dt = cn(T ), (A.9)

cn(T ) =
QTfn − Eα[−λnT

α] (Q0 − u(0)) fn − fnu(0)Eα[−λnT
α]

λn

= fn
QT −Q0Eα[−λnT

α]

λn
.

As we can see from the resulting formulas, the left- and right-hand sides of expression (A.9) contain
the factor fn (which is not identically zero). Canceling it out, we get the expression (16).
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