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1. INTRODUCTION

Stochastic approximation is interesting for a wide range of researchers. It is being used in com-
putational mathematics to solve stochastic programming problems and by researchers in biology,
chemistry, and medicine. Stochastic approximation is also used in problems of recognition, iden-
tification, learning, and adaptation. In a number of problems it is important that the estimates
converge to the solution from only one side (one-sided convergence). In such problems researchers
often use a modified Robbins–Monro process, namely Anbar’s process [1]. In this work we study
one-sided convergence of the Anbar’s process for some new cases of the choice of the sequence of
steps.

2. PROBLEM SETTING AND MAIN RESULTS

Let Y (x) be a random value depending on the parameter x,

H(y|x) = P (Y (x) < y)

and suppose that regression function M(x) =
∫+∞
−∞ ydH(y/x) is continuous. The problem is to

estimate the root of the regression function θ, M(θ) = 0.

In a number of practical problems, we need to ensure that the estimate converges to the necessary
parameter of the regression function from only one side.

Consider Anbar’s process [1]

Xn+1 = Xn − an(Yn(Xn) + bn),

where X1 is the initial random value, an � 0, bn � 0. The following theorem holds.

Theorem. Suppose that the following conditions hold :

1) |M(x)| � D|x|+B, where D � 0, B � 0 are certain constants, M(x)(X − θ) > 0, x �= θ;

2) inf |M(x)| > 0 for ε < |x− θ| < ε−1, 0 < ε < 1;

3) M(x) = α(x− θ) + δ(x, θ), δ(x, θ) = o(x− θ), x → θ, α > 0;
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4) Ez2(x) � c < ∞ for all x, Zn(Xn) = Yn(Xn)−M(Xn), E(Zn(Xn)|X1,X2, . . . ,Xn) = 0,
E is expectation;

5) an =
A

n
, bn =

b

nβ
, A > 0, b > 0, 0 < β <

1

2
, 2Aα � 1.

Then Xn → θ for n → ∞ with probability one, and Xn > θ only a finite number of times.

Proof. Without loss of generality we assume that θ = 0. By the theorem’s conditions we get

Xn+1 = Xn(1− dn/n)− anZn(Xn)− anbn,

where dn = A(α+Ψ(Xn)), Ψ(x) → 0 for x → 0. Iterating, we get

Xn+1 = X1β1n −
n∑

k=1

akZk(Xk)βkn −
n∑

k=1

akβknbk,

where βkn =
∏n

j=k(1− dj/j), βnn = 1, 1 � k � n− 1.

By definition, dn → a = Aα for n → ∞ with probability one. We denote γn =
∏n

j=j0(1−dj/j) ≈
n−aτn, where j0 = min(j : dk/k < 1, k > j), τn is a slowly changing sequence [2]. We remind that a
sequence of numbers f(n) is called slowly changing in the sense of Siegmund if f(n)nδ ↑, f(n)n−δ ↓
for n � n0(δ) for every δ > 0.

Further, for n � j0 it holds that

Xn+1 = γn

⎛

⎝ε0 −
n∑

k=j0

akZk(Xk)γ
−1
k −

n∑

k=j0

akbkγ
−1
k

⎞

⎠ ,

where

ε0 =

⎛

⎝β1(j0−1)X1 +
j0−1∑

k=1

akβk(j0−1)Zk(Xk) +
j0−1∑

k=1

akβk(j0−1)bk

⎞

⎠ ,

j0 and γn have been defined above.

The following representation holds:

Xn+1 = γn

(

ε̄−
n∑

k=1

akZk(Xk)γ
−1
k −

n∑

k=1

akbkγ
−1
k

)

,

where

ε̄ = ε0 −
j0−1∑

k=1

akZk(Xk)k
a −

j0−1∑

k=1

akbkk
a, 1 � k � j0.

Consider the equality

nβXn+1 = nβγnε− nβγn

n∑

k=1

akZk(Xk)γ
−1
k − nβγn

n∑

k=1

akbkγ
−1
k .

Since Aα � 1
2 and 0 < β < 1

2 , −Aα+ β < 0 and τn is a slowly changing sequence, then
τnn

−a+β → 0 for n → ∞ with probability one. Since γn ≈ n−aτn, we get that γnn
β → 0 with

probability one.
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Then limn→∞ εγnn
β = 0 with probability one. By the theorem’s conditions and Doob’s the-

orem [3] it follows that
∑∞

k=1 k
−1+βZk(Xk) converges with probability one. By the above and

Kroneker’s lemma [4] we find that

γnn
β

n∑

k=1

akZk(Xk)γ
−1
k → 0

for n → ∞ with probability one. By the theorem’s conditions and [2] we get the relation
γnn

β∑n
k=1 akbkγ

−1
k → Ab

a−β for n → ∞ with probability one. This implies that limn→∞ nβXn =

− Ab
a−β and Xn → 0 from below for n → ∞. This completes the proof of the theorem.

We now note the following defect in [5, 6]: these works omit the continuity condition for the
regression function M(x), which is used to prove convergence of the Robbins–Monro algorithm. If
function M(x) is piecewise continuous, and discontinuities of the first kind are allowed, then the
Robbins–Monro process was modified in [7].

3. CONCLUSION

With slowly changing sequences in the sense of Siegmund, we have shown convergence from
below of the modified Robbins–Monro process (Anbar’s process) for cases of the choice of sequence
of steps that had not been considered before.
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