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Abstract—We study the problem of estimating the complexity levels of test problems and
levels of preparation of the students that arises in learning management systems. To solve
the problem, we propose two algorithms for processing test results. The first algorithm is
based on the assumption that random answers of the test takers are described by a logistic
distribution. To compute test problem complexities and levels of preparation of the students,
we use the maximum likelihood method and the quasi-Newton Broyden–Fletcher–Goldfarb–
Shanno optimization method, where the likelihood function is constructed in a special way based
on Rasch’s model. The second algorithm is heuristic and is based on recurrent recomputation of
initial estimates obtained by adding up the positive answers of students separately by columns
and rows of the matrix of answers, where columns correspond to answers of all students for a
specific test, and rows correspond to answers of a specific student for all tests. We consider an
example where we compare the results of applying the proposed algorithms.
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1. INTRODUCTION

Due to the development of learning management systems, there arises a need to automatically
evaluate the knowledge of students based on a set of test problems they have done [1]. But all test
problems have different levels of complexity, and students also have different levels of preparation
unknown a priori. Therefore, the traditional approach to deriving a mark for every specific students
by the number of correct answers to the problems cannot be considered objective. The approach
for which each problem is expertly assigned a specific weight is also rather subjective. Therefore, a
more objective estimate would be based only on the sample obtained from the answers of a group of
students to the proposed test problems. But here there arises a problem of processing the resulting
non-uniform sample.

The work [2] proposed an algorithm for getting an estimate of complexity levels of problems
based on a single-parameter Rasch’s model [3] and Newton’s method for finding estimates that
maximize the likelihood function. But the resulting algorithm had a narrow convergence region.
The work [4] used to solve the same problem the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno
method proposed in [5], which had an infinite convergence radius, i.e., it did not present the problem
of choosing the initial point. Besides, the work [4] established that the log-likelihood function is
strictly concave with respect to parameters that define complexities of problems and preparation
levels of students.

One drawback of the algorithm proposed in [4] was that it did not distinguish complexity levels
for tests solved by the same number of students, even though the level of preparation of these
students might be different.

In this work, we propose two test processing algorithms that do not have the drawback noted
above. The first algorithm is based, similar to the algorithm from [4], on Rasch’s model, the
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maximum likelihood method, and quasi-Newton Broyden–Fletcher–Goldfarb–Shanno method. But
the likelihood function here is different: we introduce to it special weight coefficients that let us
differentiate problem complexities and preparation levels of students that have the same primary
parameters. Besides, in this work we propose an exponential normalization of the estimates ob-
tained by the first algorithm that take value on the entire real axis. This normalization let us
reduce the grades to the commonly used 10-mark scale. The second algorithm is heuristic and is
based on computing the complexity levels of test problems and preparation levels of students by
adding up the columns and rows of the matrix of answers with subsequent recurrent recomputation
of the resulting estimates by adding up the columns and rows of the matrix of answers with weights
taken from the estimates of complexity levels of problems and preparation levels of students found
on the previous step. Computations performed for numerous samples of original data indicate
that estimates obtained with these two algorithms are virtually the same and do not contradict
our intuition regarding the estimates. The nearly perfect matching of estimates obtained by two
different algorithms implicitly validates that the algorithms work correctly.

2. PROBLEM SETTING

Consider the following model. Consider a group of I students who answer J test problems.
Suppose that the result of solving problem j by student i is a random value Xij with realizations
from the set {0, 1}, i.e., we assume that Xij = 1 if the problem was solved by student i and Xij = 0
if not.

These random values can be represented as shown in Table 1.

Table 1. Model for answering test problems

Problem 1 Problem 2 . . . Problem J

Student 1 X11 X12 . . . X1J

Student 2 X21 X22 . . . X2J

. . . . . . . . . . . . . . .
Student I XI1 XI2 . . . XIJ

Obviously, the correctness of answer Xij depends both on the level δj of complexity of problem j
and on the level θi of preparation of student i, i.e., Xij � X(θi, δj). Note that in this case in every
row of Table 1 the preparation level of a student is determined by the same parameter θi, and in
each column the problem’s complexity is also constant and equal to δj . Suppose that all random
values (RV) Xij , i = 1, I , j = 1, J , are independent and have the same distribution defined by
function

f(θi, δj) � P{Xij = 1} = 1− P{Xij = 0}, i = 1, I, j = 1, J , (1)

where function f(θi, δj) takes values from 0 to 1 since it is the probability of the event {Xij = 1}.
Thus, random value Xij has the distribution series shown in Table 2.

Table 2. Distribution series for RV Xij

Xij 0 1

P 1− f(θi, δj) f(θi, δj)

As the mathematical model that relates the success of a student with his or her preparation
level and problem complexity we use the Rasch’s model [3]. Suppose that the distribution func-
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tion f(θi, δj) has logistic form

f(θi, δj) �
exp(bjθi − aiδj)

1 + exp(bjθi − aiδj)
, i = 1, I, j = 1, J , (2)

where the weight

ai �
1

J

J∑

j=1

xij (3)

characterizes the initial estimate for the preparation level of student i, and the weight

bj �
1

I

(
I −

I∑

i=1

xij

)
(4)

characterizes the initial estimate for the complexity of problem j. Parameter θi of this function is
called the preparation level of student i, i = 1, I ; parameter δj , the complexity level of problem j,
j = 1, J .

This logistic function is different from a similar function considered in [4] due to the presence
of weight factors ai and bj . Note that the algorithm from [4] did not distinguish, for instance, the
case when two different students solved one problem each, but one of these problems was solved
by only one student in the group, while the second problem was solved by all students. It is clear
that the preparation level of these two students is different, but the algorithm from [4] graded these
students with exactly the same estimates. We will show below that introducing into the logistic
function weight factors ai and bj lets us solve this problem. We also note that in the proposed
mode, as the preparation level of a student increases from −∞ to +∞, the probability of his or her
correct answer changes from zero to one, and as the complexity of a problem increases from −∞
to +∞, the probability of a correct answer reduces from one to zero.

Suppose that realizations xij of random values Xij form a matrix ||xij ||, where xij ∈{0, 1}, i is
the index of a student in the group, i = 1, I , j is the index of the test problem, j = 1, J .

Remark 1. Suppose that the matrix of answers ||xij || does not have either rows or columns
completely consisting of zeros or ones. We assume that if such columns appear in the matrix ||xij ||,
we simply cross them out.

We formulate the following problem.

Problem. By a sample {xij}, estimate the complexity levels of test problems δj , j = 1, J , and
preparation levels of students θi, i = 1, I .

3. ALGORITHM 1 BASED ON RASCH’S MODEL
AND THE MAXIMAL LIKELIHOOD METHOD

We define Algorithm 1 for processing statistical data under the assumption that distribution
function f(θi, δj) has the form (2).

Consider the joint estimation procedure for unknown parameters θi, δj , i = 1, I , j = 1, J , based
on the maximal likelihood method. Consider a matrix of observable answers ||xij ||, i = 1, I , j = 1, J .
We exclude from the matrix all rows and columns that consist of exclusively either zeros or ones.
Here, if xij = 1, j = 1, J then we let θ

∗
i = 10. If xij = 0, j = 1, J , we let θ

∗
i = 0. Similarly, if xij = 1,

i = 1, I , then δ
∗
j = 0. And if xij = 0, i = 1, I , then δ

∗
j = 10.
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Using the explicit form of function f(θi, δj) from (2), we can find the probability of incorrect
answer by student i for test problem j:

P{Xij(θi, δj) = 0} = 1− f(θi, δj) = 1− exp (bjθi − aiδj)

1 + exp (bjθi − aiδj)

=
1 + exp (bjθi − aiδj)− exp (bjθi − aiδj)

1 + exp (bjθi − aiδj)
=

1

1 + exp (bjθi − aiδj)
.

Thus, probability of the fact that random value Xij takes value xij ∈ {0, 1} can be written as

P{Xij(θi, δj) = xij} =
exp (xij(bjθi − aiδj))

1 + exp (bjθi − aiδj)
,

i.e., if xij = 1 then the numerator equals exp (bjθi − aiδj), and if xij = 0 then the numerator equals
one.

We write the likelihood function

L(x, θ, δ) = P
{
Xij(θi, δj) = xij , i = 1, I, j = 1, J

}
=

I∏
i=1

J∏
j=1

exp (xij(bjθi − aiδj))

I∏
i=1

J∏
j=1

(1 + exp (bjθi − aiδj))

,

where

x� col(x11, . . . , x1J , . . . , xI1, . . . , xIJ), θ� col(θ1, . . . , θI), δ� col(δ1, . . . , δJ ).

Then the log-likelihood function takes the form

L̃(x, θ, δ) � lnL(x, θ, δ) =
I∑

i=1

J∑

j=1

(bjθi − aiδj)xij −
I∑

i=1

J∑

j=1

ln (1 + exp (bjθi − aiδj)). (5)

We formulate the following problem:

(θ∗, δ∗) = argmax
(θ,δ)

L̃(θ, δ). (6)

Solving problem (6), one can estimate complexity levels for problems δ∗ with respect to prepa-
ration levels of the students θ∗.

Remark 2. It is known [7] that estimates obtained based on the maximal likelihood approach
are usually efficient, consistent, and asymptotically normal under minimal assumptions. This is
a significant difference between them and other estimates, including estimates found by the least
squares approach.

To solve problem (6), we study the properties of function (5); in particular, we prove that
function (5) is strictly concave. We begin by reminding the definition of a strictly concave function.

Definition. Function g(u) : Rn → R
1 is called strictly concave on a convex set U ⊂ R

n if for
every λ ∈ (0, 1) and arbitrary u1, u2 ∈ U it holds that

g(λu1 + (1− λ)u2) > λg(u1) + (1− λ)g(u2).

We now formulate one of the main results of this work, which will imply that function (5) has
a unique maximum.
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Theorem 1. Function L̃(x, θ, δ) defined according to (5) is strictly concave with respect to θ and δ
on R

I × R
J .

Proof of Theorem 1 is similar to the proof from [4] since the log-likelihood function in this case
has the same linear structure as [4] and differs only by the presence of constant factors ai and bj.

Using the strict concavity of the log-likelihood function (5), we can find its maximum, which,
as follows from the strict concavity of the log-likelihood function, is unique.

In order to maximize function (5) we use the quasi-Newton method of Broyden–Fletcher–
Goldfarb–Shanno [5], which is based on accumulating information on the curvature of the objective
function by observations on the changes in its gradient, which is a conceptual difference from
Newton-like methods. The class of quasi-Newton methods excludes an explicit construction of the
Hessian, replacing it with a certain approximation. Consider the following sequence constructed
for some function g(u) : Rn → R

1:

uk+1 = uk + αkpk, (7)

where

pk = −H−1
k−1∇g(uk),

Hk+1 = Hk +
yky

T
k

yTk sk
− Hksks

T
kHk

sTkHksk
,

sk = uk+1 − uk, yk = ∇g(uk+1)−∇g(uk),

and αk are found as a solution for the maximization problem

αk = arg max
α∈(0,1)

g (uk + αpk) .

If function g(uk + αpk) is unimodal with respect to scalar parameter α, then in order to solve the
optimization problem we can use a simple dichotomy approach which converges very quickly on
the (0, 1) interval.

Theorem 2 [5]. Let H0 be a symmetric negative definite matrix, let u0 be the initial point, and
suppose that the following conditions hold for some function g(u) : Rn → R

1:

(i) function g(u) is twice continuously differentiable;
(ii) the set G � {u ∈ R

n : g(u) � f(u0)} is convex, and there exist negative constants c and C such
that

c ‖z‖2 � zT∇2g(u)z � C ‖z‖2

for all z ∈ R
n and u ∈ G.

Then sequence {uk}, obtained according to (7), converges to the point u∗, which is the unique
solution of problem

u∗ = argmax
u∈G

g(u).

For convenience we introduce the notation u � col(θ1, . . . , θN , δ1, . . . , δL) and show that condi-
tions of Theorem 2 hold for the function g(u) = L̃(u).

Theorem 3. Conditions of Theorem 2 hold for the function g(u) � L̃(u), defined according to (5).

Proof of Theorem 3 is similar to the proof shown in [4] since the log-likelihood function in this
case has the same structure as [4] and differs only by the presence of constant factors.
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Remark 3. We emphasize that procedure (7) in essence reduces the optimization problem in
a multidimensional space to optimization of a scalar parameter α ∈ (0, 1), which can be done by
various optimization methods [8], for example by dichotomy.

As we have noted above, for Algorithm 1 constructed with the maximal likelihood method,
the obtained estimates θ∗i and δ∗j can take values from −∞ to +∞. But here we establish the
mutual location of estimates on the linear scale (−∞,+∞). Therefore, we reduce, with exponential
normalization, our estimates to a more commonly used 10-mark scale while preserving their mutual
location.

For this purpose we let

θ
∗
i =

{
5 exp(d1(θ

∗
i − θm)), θ∗i − θm � 0

10− 5 exp(d2(θ
∗
i − θm)), θ∗i − θm > 0,

where

θm = θim , im = arg min
i=1,I

|ai − 5|,

and d1 and d2 are some scaling parameters:

d1 =
ln(θmin/5)

θ∗min − θm
, d2 =

ln((10 − θmax)/5)

θ∗max − θm
,

where

θmin =
10

J
min
i=1,I

J∑

j=1

xij, θmax =
10

J
max
i=1,I

J∑

j=1

xij ,

θ∗min = min
i=1,I

θ∗i , θ∗max = max
i=1,I

θ∗i .

Thus, if θ∗i = θ∗min then θ
∗
i = θmin. If θ

∗
i = θ∗max then θ

∗
i = θmax.

The factor 5 was chosen so that the resulting estimates are symmetric with respect to θm, and
the number θm itself is the average level of preparation that corresponds to the average level on
the 10-mark scale, i.e., number 5.

Similarly, we let

δ
∗
j =

{
5 exp(c1(δ

∗
j − δm)), δ∗j − δm � 0

10− 5 exp(c2(δ
∗
j − δm)), δ∗j − δm > 0,

where

δm = δjm , Jm = arg min
j=1,J

|bj − 5|,

c1 =
ln(δmin/5)

δ∗min − δm
, c2 =

ln((10 − δmax)/5)

δ∗max − δm
,

δmin =
10

I
min
j=1,J

(
I −

I∑

i=1

xij

)
, δmax =

10

I
max
j=1,J

(
I −

I∑

i=1

xij

)
,

δ∗min = min
j=1,J

δ∗j , δ∗max = max
j=1,J

δ∗j .

In this case, if δ∗j = δ∗min then δ
∗
i = δmin. If δ

∗
i = δ∗max, then δ

∗
i = δmax.
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4. ALGORITHM 2 BASED ON RECURRENT RECOMPUTATION OF COMPLEXITY
LEVELS OF PROBLEMS AND PREPARATION LEVELS OF STUDENTS

We define Algorithm 2 for solving the above problem, which is in essence a heuristic algorithm
based on the idea that the traditional way of estimation, when the grade of a student is based
on the number of problems he or she has solved correctly, must be corrected with regard to the
complexity of solved problems. But the complexity levels of problems are not known in advance.
Therefore, in Algorithm 2 proposed below we recurrently refine the preparation levels of students
and complexity levels of test problems. Consider a matrix ||xij || consisting of zeros and ones with
elements

xij ∈ {0, 1} , i = 1, I, j = 1, J .

Suppose that I � 5, J � 5, since the case of a small sample is of no practical interest. First, similar
to Section 3, we exclude from the matrix ||xij || columns and rows that contain either all ones or
all zeros. Suppose that the student’s mark θi = 10 if the ith row contains all ones and θi = 0 if it
contains all zeros. Similarly, we let δj = 10 if column j contains all zeros and δj = 0 if that column
contains all ones. Next we process the rest of the elements of matrix ||xij ||, assuming without loss
of generality that there are I rows and J columns left.

We add up the columns and rows of the matrix separately and get numbers that correspond to
the number of students who have solved problem j and the number of problems solved by student i:

a0i =
J∑

j=1

xij, b0j =
I∑

i=1

xij , i = 1, I, j = 1, J .

Next we compute normalized values of the resulting sums that give us initial characteristics for
the preparation level of student i and complexity level of problem j corresponding to the 10-mark
scale:

a0i =
10

J
a0i , b

0
j =

10

I
(I − b0j ), i = 1, I, j = 1, J . (8)

Next we compute new sums of columns and rows but with the resulting weights:

a1i =
J∑

j=1

b
0
jxij , i = 1, I,

b1j =
I∑

i=1

a0ixij , j = 1, J .

Next we compute new values for the preparation level of student i and complexity level of problem j:

a1i = a1i
10
J∑

j=1
b
0
j

, i = 1, I, (9)

b
1
j =

(
I∑

i=1

a0i − b1j

)
10
I∑

i=1
a0i

, j = 1, J . (10)

We continue the iterative process, computing aki and b
k
j , k = 2, 3, . . . . Suppose that these

sequences converge:

aki → a∗i , b
k
j → b∗j , i = 1, I, j = 1, J .
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First note that these limit values, if they exist, cannot all be equal to zero at the same time. We
assume, for example, that b̄kj → 0. Then according to (9)

āki →
J∑

j=1

> Δi > 0,

since by assumption all xij, j = 1, J cannot be equal to zero. Therefore, according to (10):
b̄kj → b∗j > 0, since by assumption all xij, i = 1, I , cannot be equal to one at the same time. We
have arrived at a contradiction.

The resulting limit values, if they exist, will be interpreted as estimates of the preparation level
of student i and complexity level of problem j:

θ̂∗i � a∗i , i = 1, I, δ̂∗j � b∗j , j = 1, J . (11)

Let us obtain necessary conditions for the convergence of Algorithm 2. With this purpose we
let

ai
def
=

aki
10

=
ak+1
i

10
and bj

def
=

b
k
j

10
=

b
k+1
j

10

and according to (9) and (10) we get the following relations:

ai =

J∑
k=1

bkxik

J∑
k=1

bk

, i = 1, I, (12)

bj =

I∑
l=1

al −
I∑

l=1
alxlj

I∑
l=1

al

, j = 1, J . (13)

Thus, we get that limit values ai, i = 1, I , and bj, j = 1, J , if they exist, must satisfy the following
system of nonlinear equations:

J∑

k=1

(ai − xik)bk = 0, i = 1, I, (14)

I∑

l=1

(xlj − 1 + bj)al = 0, j = 1, J , (15)

excluding the case ai = 0, i = 1, I and bj = 0, j = 1, J , since in this case uncertainty arises in
Eqs. (12) and (13) and in every row and every column of matrix ||xij || not all elements are equal
to zero or one simultaneously. Substituting one equation into another and vice versa, we get two
independent systems of quadratic equations:

I∑

l=1

(xlj − 1 + bj)
J∑

k=1

bkxlk = 0, j = 1, J , (16)

J∑

k=1

(ai − xik)
I∑

l=1

al(1− xlk) = 0, i = 1, I. (17)
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Let us show that the resulting system has only one admissible solution ai ∈ (0, 1), i = 1, I ,
bj ∈ (0, 1), j = 1, J . Note that each equation has only a2i , b

2
j appearing squared. For instance, con-

sider Eq. (16) for j = 1. We conclude that the equation has the following structure of a quadratic
equation:

cb21 + db1 + p = 0,

where

c =
I∑

l=1

xl1, d =
J∑

k=2

bk

I∑

l=1

xlk, p =
J∑

k=2

bk

(
I∑

l=1

xlk(xl1 − 1)

)
.

Note that the discriminant of this equation equals D = d2 − 4pc. But the free coefficient c < 0
since all bk are positive according to (13), factors xlk are equal to zero or one, and by assumption
all xl1 cannot be equal to one at the same time. Therefore,

√
D > d, and d > 0. Consequently, the

quadratic equation in question can have only one positive root

b1(b2, . . . , bJ) =
1

2c
(−d+

√
D),

which according to (13) satisfies condition 0 < b1 < 1, i.e. is admissible. Note that function
b1(b2, . . . , bJ ) is convex and strictly increasing with respect to every variable. Similarly, one can
show that Eqs. (16) for other j = 2, J have only one admissible root bj. If we now fix bj in every
equation numbered j = 1, J , then the system of Eqs. (16) becomes linear with respect to variables
b1, . . . , bJ , and it has a nonzero determinant since b2j occur only in their own equation with index j.
Therefore, the resulting system of linear equations is feasible and has a unique admissible solution.
The same considerations could be done for the system of Eqs. (17), showing that it has only one
admissible solution.

Remark 4. Note that by choosing the initial approximation we can influence the convergence
rate of the iterative process. In essence, the proposed iterative algorithm lets us refine the initial
approximation, which is chosen in such a way as one traditionally grades a student: how many
problems he or she has solved out of the 10 available, that is the grade. The iterative algorithm
corrects this grade by taking into account problem complexities. In turn, test complexity levels are
refined according to the information on how the students were solving test problems.

Remark 5. Unfortunately, we cannot prove that estimates, obtained with the proposed Algo-
rithm 2 converge to “correct” values. But numerous computations done for different initial data and
under large dimensions indicate that the normalized estimates obtained with Algorithm 2 virtually
coincide with normalized estimates resulting from Algorithm 1 based on the maximum likelihood
method. In particular, this effect is demonstrated in the numerical example that we show below.
Note also that the problem dimension must be sufficiently large, with I > 4 and J > 4, which we
observe in practical problems. For small dimensions, e.g., for I = 2 and J = 3, one can construct
a counterexample where Algorithm 2 enters a loop. This effect is probably due to the lack of aver-
aging for small samples; there is no looping on large samples. Therefore,, it appears that sufficient
conditions for the convergence of Algorithm 2 is related to the problem dimension, but the study
of this question falls outside the scope of this paper.

Let us show the results of processing test results on a 10-mark scale, assuming that

θ
∗
max = θ̂max, θ

∗
min = θ̂min, δ

∗
max = θ̂max, δ

∗
min = θ̂min,
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where

θ̂max = max
i=1,I

10

J

J∑

j=1

xij , θ̂min = min
i=1,I

10

J

J∑

j=1

xij ,

δ̂max = max
j=1,J

10

I

(
I −

I∑

i=1

xij

)
, δ̂min = min

j=1,J

10

I

(
I −

I∑

i=1

xij

)
.

Besides, we find in the resulting solution (θ∗, δ∗) maximal and minimal values:

θ∗max = max
i=1,I

θ∗i , imax = argmax
i=1,I

θ∗i ,

θ∗min = min
i=1,I

θ∗i , imin = arg min
i=1,I

θ∗i ,

δ∗max = max
j=1,J

δ∗j , jmax = arg max
j=1,J

δ∗j ,

δ∗min = max
j=1,J

δ∗j , jmin = arg max
j=1,J

δ∗j .

Converting values (θ∗, δ∗) to a 10-mark scale, we let

θ
∗
imax

= θ̂max, θ
∗
imin

= θ̂min,

δ
∗
jmax

= δ̂max, δ
∗
jmin

= δ̂min.

Next we find the recomputation coefficients in relations

θ
∗
i = aθ∗i + b, δ

∗
j = cδ∗j + d,

using equations

aθ∗imax
+ b = θ̂max, aθ∗imin

+ b = θ̂min,

cδ∗jmax
+ d = δ̂max, cδ∗jmin

+ d = δ̂min.

Then we get that

a =
θ̂max − θ̂min

θ∗imax
− θ∗imin

, b = θ̂max − aθ∗imax
,

c =
δ̂max − δ̂min

δ∗jmax
− δ∗jmin

, d = δ̂max − cδ∗jmax
.

Finally, to these results we ca add estimates for those students and problems that initially obtained
maximal and minimal marks equal to 10 and 0.

5. NUMERICAL EXAMPLE

As a sample problem to illustrate the efficient operation of the proposed algorithm for estimating
complexity levels of problems, we consider a simple example.

Table 3 shows the results of students passing the tests, picked in such a way as to observe both
very weak and very strong students.

Note that number a0i = ai corresponds to the grade obtained by student i via traditional grading
on a 10-mark scale, and b0j = bj corresponds to a traditional estimate of the complexity level for
problem j.
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Table 3. Results of solving test problems ||xij ||
Problem j

1 2 3 4 5 a0i =
10

J

J∑
j=1

xij
Student i

����������
1 1 0 0 0 0 2
2 0 0 0 0 1 2
3 0 1 0 1 1 6
4 0 1 1 1 1 8
5 0 1 1 1 1 8

b0j =
10

I

(
I −

I∑
i=1

xij

)
8 4 6 4 2

Table 3 shows that students 1 and 2 solved only one problem each, but student 1 solved a
problem that nobody else had solved, while the second solved only the last problem that was also
solved by all other students.

Consider the operation of Algorithm 2 based on recurrent recomputation of complexity levels
of problems and preparation levels of students. The solution is a vector of problem complexities
equal to

δ∗2 = col
(
7.99, 2.52, 4.29, 2.52, 2.01

)
,

and vector of student preparation levels equal to

θ∗2 = col
(
4.13, 1.04, 3.65, 5.86, 5.86

)
.

We give resulting values after a linear normalization to the 10-mark scale:

δ
∗
2 = col

(
8.0, 2.51, 4.29, 2.51, 2.0

)
,

θ
∗
2 = col

(
5.84, 2.0, 5.24, 8.0, 8.0

)
.

Here Algorithm 2 needed 13 iterations for the process to converge up to the second decimal
place.

Table 3 shows that problems 2 and 4 were solved by the same students. Therefore, complexity
levels of these problems (2.51) are the same. Problem 5 was solved by almost all students except
student 1. Therefore, complexity level of this problem is the lowest, 2.0. At the same time, only
one student solved problem 1, therefore, the complexity level of this problem is the highest, 8.0.

Although student 1 solved only one problem, but the hardest one, her preparation level is
estimated by value 5.84. At the same time, preparation level for student 2 is the lowest, equal
to 2.0, since he solved only the easiest problem. Preparation levels of students 4 and 5 are the
highest since they solved almost all problems, except for 1, and the level of these students turned
out to be higher than for student 1 who solved exactly the one problem that students 4 and 5 did
not; but student 1 solved only one problem, even though it was the hardest one.

Let us now consider the results of the operation of an algorithm based on the maximum likelihood
method with respect to proposed weight coefficients.

As the starting point for the Broyden–Fletcher–Goldfarb–Shanno method, we use the zero vector

u0 = col
(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

The vector of problem complexities in this case turned out to be equal to

δ∗1 = col
(
5.06, −4.11, −0.53, −4.11, −6.08

)
.
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Table 4. Preparation levels of students θ∗i , i = 1, 5

Algorithm 1 Exponential normalization 5.58 2.0 5.0 8.0 8.0

Algorithm 2 Linear normalization 5.84 2.0 5.24 8.0 8.0

Table 5. Complexity level of problem δ∗j , j = 1, 5

Algorithm 1 Exponential normalization 8.0 2.77 5.0 2.77 2.0

Algorithm 2 Linear normalization 8.0 2.51 4.29 2.51 2.0

The vector of preparation levels of students turned out to be equal to

θ∗1 = col
(
−1.75, −6.98, −2.40, 2.47, 2.47

)
.

We give the resulting estimates in the 10-mark scale with the exponential normalization defined
above:

δ
∗
1 = col

(
8.0, 2.77, 5.0, 2.77, 2.0

)
,

θ
∗
1 = col

(
5.58, 2.0, 5.0, 8.0, 8.0

)
.

Tables 4 and 5 show results that indicate that the introduced weights let us differentiate students
who solved only one problem each, but with different complexity. Results of applying Algorithm 2
are very similar to the results of applying Algorithm 1. The relative position of estimates for
student preparation and complexity levels of problems in both algorithms is the same, and they
look more objective than estimates obtained based on the algorithm from [4]. Note that a change
in the weights of the terms in Algorithm 1 with respect to proposed values leads to completely
different results that do not correspond to the results of Algorithm 2 and intuitive considerations.

We have chosen a simple example so that it would be easy to check the results of the resulting
estimates with intuitive considerations. In high-dimensional samples it would be hard to perform
this kind of analysis.

The operation of the algorithms has been tested on examples of high dimension, in particular
for a 100× 100 matrix, i.e., for 100 students and 100 problems. Here the numerous initial data
were generated randomly, since a full enumeration would contain an astronomical number of possi-
bilities. Note that both algorithms in all cases gave close estimates, which implicitly confirms that
Algorithm 2 works correctly, and the iterative procedure converges to “correct” estimates close
to the estimates obtained with Algorithm 1. Here the total time of operation for Algorithm 2
was 0.19 seconds. Note that the operation time of Algorithm 2 increases insignificantly when prob-
lem dimension grows, since, first, it has relatively low algorithmic complexity, and second, as the
dimension grows the number of iterations needed for convergence remains virtually unchanged.
The total running time of Algorithm 1 was 2.8 seconds, which is naturally due to the algorithmic
complexity and high number of iterations. We performed computations on an Intel Core i5-6600
3500 MHz CPU and 8 GB of RAM. To speed up computation, we have used the Cython extension
and the Numpy/SciPy libraries.

Remark 6. Note that numerous computations for different initial data indicate that heuristic
Algorithm 2 yields approximately the same estimates as Algorithm 1 based on the maximal likeli-
hood approach. Stability of Algorithm 2 seems to be related to the law of large numbers, when on
every iteration we add small corrections to current estimates with different signs, and the number
of corrections grows as iterations accumulate. But this effect requires additional study.

Remark 7. We emphasize that the resulting test complexity levels have been found not with
expert estimates of the teachers but based on the results shown by the students on these tests.
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Remark 8. These algorithms are used in the learning management system CLASS.NET [6] used
in Moscow Aviation Institute to study mathematical disciplines.

6. CONCLUSION

In this work, we consider the problem of constructing estimates for complexity levels of problems
and preparation levels of students based on their results shown on test problems.

To solve this problem we have proposed two algorithms for test processing. The first algorithm
is based on Rasch’s model, the maximal likelihood method, and the quasi-Newton method of
Broyden–Fletcher–Goldfarb–Shanno for maximizing the likelihood function. The second algorithm
is heuristic and is based on recurrently refining the estimates obtained by adding up the rows and
columns of the matrix of answers with weights found on the previous step.

Both algorithms successfully process all matrices of answers, yielding close results, and also
correctly distinguish the complexities of problems and preparation levels of students that have the
same initial parameters. However, Algorithm 2 proves to be more efficient in its operation than
Algorithm 1 since it has low algorithmic complexity.

The main result of this work is the detection of an effect that heuristic Algorithm 2 yields
approximately the same estimates as Algorithm 1 based on maximizing the likelihood function for
the logistic Rasch’s model.

Efficiency of the proposed methods has been tested with statistical data on student results in a
learning management system CLASS.NET.
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