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1. INTRODUCTION

Inventory control systems where servicing time for the claims is a positive value are called
Queueing-Inventory Systems (QIS). A detailed survey of the literature devoted to such systems can
be found in [1].

Literature analysis has shown that QIS models with server with vacations have been studied very
little, although this servicing model from an economic point of view is more profitable compared
to classical schemes since if there is no queue and/or inventory the server can often be used to
perform secondary jobs; such models have been studied in quite some detail in classical queueing
systems theory, see, e.g., [2–4].

In latest years, QIS models with a server with vacations have been considered in [5–13]; these
works assumed that system inventory is durable, and the server starts its vacation instantaneously
if the system’s warehouse is empty and (or) the number of claims in the system is zero [5–12]. At
the same time, QIS models where inventory has a finite lifetime and the server goes to vacation
not instantaneously but during some (random) time “ponders” a decision to go to vacation (early
vacation) are also of interest. And if during this “pondering” there appears a possibility to service
claims, the server becomes available; otherwise it goes to a delayed vacation. The work [13] considers
a system with durable inventory and repeat claims with instantaneous servicing of claims; it uses a
server vacation scheme close to the one we propose here. The work [13] has studied a system where
the server begins a random downtime period as soon as the inventory level becomes zero. Here
either at the end or inside that period it becomes available when the inventory replenished again;
otherwise the server goes to vacation for a random time and becomes available for a replenished
inventory only at the end of that time, and under no replenishment a new downtime period begins
and so on. In other words, downtime and server vacation period alternate, and both periods have
exponential probability distribution functions (p.d.f.) with different means.

The works [5–13] used different modifications of Neuts’ matrix-geometric method [14] to compute
the state probabilities for multidimensional Markov chains that are mathematical models of the
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systems in question. As the authors of these works note, these methods are very hard to implement
in practice and often suffer from computational instability due to the ill-posedness of the large
dimensional matrices used in these methods. Similar problems arise in the spectral decomposition
method [15, 16].

In this work, we study a QIS model with perishable inventory (Perishable Queueing-Inventory
System, PQIS) and with early and delayed vacations of the server. Such PQIS models are used
to analyze the operation of blood banks, systems for processing expirable information, supply
systems for foodstuffs and so on [17–19]. To compute state probabilities of the corresponding
three-dimensional Markov chain (3-D MC), we develop an approximate method based on hierar-
chical merging of the states [20]. This method lets us present explicit formulas for approximate
computation of the characteristics of the system in question, which are used further to perform cost
analysis for the system. Previously, the method of merging the states of a 2-D MC had been used to
study systems with durable [21] and perishable inventories [22] in the presence of an “immovable”
server.

2. MODEL DESCRIPTION AND PROBLEM SETTING

The system has a warehouse of volume S, 0 < S < ∞, and contains one server for servicing
claims. The incoming flow of claims is Poisson with parameter λ, 0 < λ < ∞, and every claim
requires a certain inventory of unit size, i.e., after servicing a claim the level of inventory in the
warehouse reduces by one. Servicing times for claims are independent and identically distributed
(i.i.d.) random values (r.v.) with a joint exponential p.d.f. with parameter μ, 0 < μ < ∞. Claims
are impatient only during their sojourn time in the queue, i.e., a claim present at the server is
patient. Admissible waiting times for the claims in a queue are i.i.d. r.v. with exponential p.d.f.
with parameter τ , 0 < τ < ∞.

Each unit of inventory independently of the others becomes unsuitable for use after a random
time that has exponential p.d.f. with parameter γ. Here we assume that inventory which is already
at the step of transmission for a claim cannot perish.

The inventory warehouse is replenished according to the (s, S) policy, i.e., the system makes an
order if the level of inventory reduces from value s+ 1 to s, and here to exclude repeat orders we
assume that the ordering point is s < S/2. The times when inventory is replenished are positive
i.i.d. r.v. with exponential p.d.f. with parameter ν.

The server is in the operational state (status) only if both values, the level of inventory in the
system and the length of the queue of claims, are positive. If at least one of these values is zero,
the server goes to vacation, and here we distinguish two different periods of vacation for the server:
early and delayed.

At the moment when the warehouse empties out, the system regardless of the queue state enters
a period of early vacation of the server. The duration of this period is a random value that has
exponential p.d.f. with parameter α > 0. If during this period the inventory replenishes, and the
queue has at least one claim, the server becomes available; otherwise it goes to delayed vacation.
The server goes to early vacation with the same p.d.f. regardless of the inventory level if the
system has no more claims, and here if inside that period a claim arrives and the level of inventory
is greater than zero, the server becomes available; otherwise it goes for delayed vacation.

Since the incoming flow is Poisson, and time intervals between the orders are i.i.d. r.v. with
exponential distribution, the true time the server spends in the state of early vacation is determined
every time as a minimum of two exponentially distributed r.v. In other words, if the early vacation
of the server is interrupted by an arriving claim, the true time of the server’s early vacation has
exponential distribution with parameter λ+ α, and if the early vacation is interrupted by arriving
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inventory, the true time the server spends on early vacation has an exponential distribution with
parameter ν + α.

After the early vacation is over, the server goes for a delayed vacation whose duration is an r.v.
with exponential p.d.f. with parameter β > 0. If during delayed vacation the level of inventory
of this system and/or length of the queue of claims are zero, the server goes for delayed vacation
again, and its duration has the same distribution; otherwise the server goes to operational mode.

The maximal system capacity, including the claim in the server, equals N , 0 < N < ∞, i.e., a
received claim is lost if at that moment the system already has N claims.

The problem is to find a joint distribution of the level of inventory for the system, the number
of claims in the system, and the server’s status. If we solve this problem we will know all necessary
system characteristics. Due to space constraints, here we only consider three of them: average level
of inventory in the warehouse (Sav); probability of losing a claim (PL); average intensity of the
orders (RR).

3. MATHEMATICAL MODEL OF THE SYSTEM

System operation at an arbitrary moment of time is defined by a 3-D MC, and its states are
defined by vectors n = (n1, n2, n3), where the first and second components show respectively the
current level of inventory and the number of claims in the system, and the third component denotes
the server status, i.e.,

n3 =

⎧
⎪⎨

⎪⎩

1, if the server is in the operational state
2, if the server is in early vacation
3, if the server is in delayed vacation.

The state space (SS) of this chain E is represented as a union of three mutually disjoint sets:

E = E1

⋃
E2

⋃
E3, (3.1)

where

E1 = {n : n1 = 1, . . . , S, n2 = 1, . . . , N, n3 = 1} ,
E2 = {n : n1 = 0, n2 = 0, 1, . . . , N, n3 = 2; n1 = 1, . . . , S, n2 = 0, n3 = 2} ,
E3 = {n : n1 = 0, 1, . . . , S, n2 = 0, 1, . . . , N, n3 = 3} .

The description of the system in question shows that transitions between states in the SS (3.1)
are related to the following events:

(i) arrival of claims,

(ii) finishing the servicing process for a claim,

(iii) claims leaving the queue due to their impatience,

(iv) end of inventory lifetime,

(v) arrival of new inventory,

(vi) the server leaving for early vacation,

(vii) interrupting early vacation,

(viii) the server leaving for delayed vacation, and

(ix) the server returning from delayed vacation.

The intensity of transition from state n to state n′ is denoted by q(n,n′), n,n′ ∈ S. These values
define the infinitesimal generator for this chain, and to construct it with regard to events (i)–(ix)
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it makes sense to distinguish the following cases in the choice of the original state: 1) n ∈ E1;
2) n ∈ E2; 3) n ∈ E3.

Case n ∈ E1:

q(n,n′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ, if n′ = n+ e2

μ, if n1 > 1, n2 > 1, n′ = n− e1 − e2 or
n1 = 1 or n2 = 1,n′ = n− e1 − e2 + e3

(n1 − 1) γ, if n′ = n− e1

(n2 − 1) τ, if n′ = n− e2

ν, if n1 � s, n′ = n+ (S − s) e1

0 otherwise.

(3.2)

Case n ∈ E2:

q(n,n′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ, if n1 = 0, n′ = n+ e2
or n1 > 0, n2 = 0, n′ = n+ e2 − e3

α, if n′ = n+ e3

n2τ, if n′ = n− e2

ν, if n2 > 0, n′ = n+ (S − s) e1 − e3
or n1 � s, n2 = 0, n′ = n+ (S − s) e1

n1γ, if n′ = n− e1

0 otherwise.

(3.3)

Case n ∈ E3:

q(n,n′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ, if n′ = n+ e2

β, if n1n2 > 0, n′ = n− 2e3

n1γ, if n′ = n− e1

n2τ, if n′ = n− e2

ν, if n1 � s, n′ = n+ (S − s) e1

0 otherwise.

(3.4)

Here ei denotes the ith ortovector of the three-dimensional Euclidean space, i = 1, 2, 3.

Thus, the mathematical model for this PQIS is a three-dimensional Markov chain with SS (3.1),
and its infinitesimal generator is defined from relations (3.2)–(3.4). This chain has a stationary
distribution for all positive values of system parameters since it is finite and irreducible.

Let p(n) denote the stationary probability of the state n ∈ E. These values satisfy the system
of equilibrium equations (SEE), composed on the basis of relations (3.2)–(3.4) (we do not show this
SEE here explicitly since it is very cumbersome).

The system characteristics in question are defined via state probabilities of the above-described
3-D MC. The average level of inventory in the warehouse can be computed as

Sav =
S∑

k=1

k
∑

n∈E
p (n) δ (n1, k), (3.5)

where δ (i, j) are Kroneker symbols.
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Using full probability formulas, we find that the probability of losing a claim PL is defined as

PL =
3∑

k=1

Pk × PLk, (3.6)

where P1, P2, P3 is the probability that the server is in operational state, in early and delayed
vacation respectively, PL1, PL2, PL3 are probabilities of losing a claim when the server is in the
operational state, in early and delayed vacation respectively. Probabilities of the server staying in
various states are defined as follows:

Pk =
∑

n∈E
p (n) δ (n3, k), k = 1, 2, 3. (3.7)

Probabilities of losing a claim when the server is in various states consist of two terms: (1) prob-
ability of losing a claim at its arrival time due to congestion in the buffer and (2) probability of
losing a claim from the queue due to its impatience. In other words, we have

PLk =
∑

n∈Ek

p (n)
(
δ (n2, N) + δ (n2, N )Pk (n1, n2)

)
, k = 1, 2, 3, (3.8)

where δ (u, v) = 1− δ (u, v) and Pk(n1, n2) is the probability of the event that in state (n1, n2, k)
the claim is lost due to impatience. Values Pk(n1, n2), k = 1, 2, 3, can be computed from

P1(n1, n2) =
(n2 − 1) τ

(n2 − 1) τ + λI (n2 < N) + (n1 − 1) γ + μ
,

P2(n1, n2) =
n2τ

n2τ + λI (n2 < N)
,

P3(n1, n2) =
n2τ

n2τ + λI (n2 < N) + n1γ
,

where I(A) denotes the indicator function of A.

Since the inventory warehouse is replenished according to the (s, S) policy, to compute the
average intensity of the orders we get the formula

RR = (μ+ sγ)
∑

n∈E1

p(n)δ(n1, s+ 1) + (s+ 1)γ
3∑

i=2

∑

n∈Ei

p(n)δ(n1, s+ 1). (3.9)

We have noted above that to find state probabilities of this 3-D MC with matrix methods [14–16]
proves to be inefficient or even impossible for models of large dimension. Therefore, in what follows
we propose an alternative method for solving this problem.

4. APPROXIMATE ANALYSIS OF THE MODEL

The approximate method proposed here can be used under certain asymptotical conditions,
namely: in what follows we assume that the intensity of claim arrival significantly exceeds the
intensity of the server leaving for vacation (this condition quite plainly corresponds to the operation
mode of real PQIS, see, e.g., [8]). Then, on the first level of hierarchy in SS (3.1) we introduce the
merging function

U (n) =< n3 >, if n ∈ En3 ,
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where < n3 > is an merged state that includes all states from the class En3 , n3 = 1, 2, 3. We denote
Ω = {< n3 >: n3 = 1, 2, 3}.

Then state probabilities for the original model are defined as follows:

p (n) ≈ ρn3 (n1, n2)π (< n3 >) , (4.1)

where ρn3 (n1, n2) is the probability of state (n1, n2) inside the split model with state space En3 ,
π (< n3 >) is the probability of merged state < n3 >∈ Ω.

Remark 1. Here and below by a split (with respect to the original) model with given SS we
understand a model that takes into account only connections between states included in its SS and
disregards connections between states from different classes occurring in the SS partition in the
original model.

Now (4.1) shows that to compute the stationary distribution for the original chain we will need
to find the probabilities of states for three 2-D MC and one 1-D MC with three states. For large
dimensions of SS (3.1) computational obstacles arise also in the finding of a stationary distribution
for the 2-D MC with state space En3 , n3 = 1, 2, 3. Therefore, to these chains we can also apply the
merging procedure (second level of hierarchy).

We first consider the split model with state space E1. Here and below in order to correctly
apply the method we assume that the intensity of claims arrival significantly exceeds the intensity
of inventory perishing in the system (see [8]). Under this assumption we consider in the set E1 the
following partition:

E1 =
S⋃

i=1

E i
1 , E i

1

⋂
E j

1 = ∅, if i �= j, (4.2)

where E i
1 = {(n1, n2) ∈ E1 : n1 = i}, i = 1, . . . , S.

Then, based on splitting (4.2) we define the merging function

U1 ((n1, n2)) =< n1 >, if (n1, n2) ∈ E n1
1 ,

where < n1 > is an merged state that includes all states from the class E n1
1 . We denote Ω1 =

{< n1 >: i = 1, . . . , S}.
Similar to (4.1) we have:

ρ1 (n1, n2) ≈ ρn1
1 (n2)π1 (< n1 >) , (4.3)

where ρn1
1 (n2) is the probability of state (n1, n2) in a split model with state space E n1

1 , π1 (< n1 >)
is the probability of merged state < n1 >∈ Ω1.

In the class of states E i
1 , i = 1, . . . , S, the first component is constant and equals i. There-

fore, when we study split models with SS E i
1 the state (i, n2) ∈ E i

1 can be defined with only the
second component, i.e., for convenience of exposition the state (i, n2) is simply is denoted by n2,
n2 = 1, . . . , N . The intensity of transition between states n2 and n′

2 in the split model with SS E i
1

is denoted by q1 (n2, n
′
2). Then relations (3.2)–(3.4) imply tat

q1
(
n2, n

′
2

)
=

⎧
⎪⎨

⎪⎩

λ, if n′
2 = n2 + 1

(n2 − 1)α, if n′
2 = n2 − 1

0 otherwise.

(4.4)
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Now (4.4) implies that state probabilities of all split models with SS E i
1 , i = 1, . . . , S, are com-

puted in the same way, i.e.,

ρi1 (n2) =
σα (n2 − 1)
N−1∑

j=0
σα (j)

, n2 = 1, 2, . . . , N, (4.5)

where σα (j) =
(λ/α)j

j! .

Transition intensities between merged states < i >, < j >∈ Ω1, denoted as q1 (< i >,< j >),
are computed as follows:

q1(< i >,< j >) =

⎧
⎪⎨

⎪⎩

(i− 1) γ + μ (1− ρ1 (1)) , if j = i− 1
ν, if i � s, j = i+ S − s
0 otherwise.

(4.6)

Remark 2. In (4.6) the superscript of probability ρ1 (1) is omitted since we define it in the same
way for all split models (see (4.5)).

Then relations (4.6) for computing the probabilities of merged states π1 (< n1 >), < n1 >∈ Ω1,
imply the following expressions (see [22]):

π1(< n1 >) =

⎧
⎪⎪⎨

⎪⎪⎩

a1(n1)π1(< s+ 1 >), if 1 � n1 � s

b1(n1)π1(< s+ 1 >), if s+ 1 � n1 � S − s

c1(n1)π1(< s+ 1 >), if S − s+ 1 � n1 � S,

(4.7)

where

a1(n1) =
s+1∏

i=n1+1

Λ1 (i)

ν + Λ1 (i− 1)
; b1(n1) =

Λ1 (s+ 1)

Λ1 (n1)
; c1(n1) =

ν

Λ1 (n1)

s∑

i=n1−S+s

a1 (i),

Λ1 (i) =

{
0, i = 1
(i− 1) γ + μ (1− ρ1 (1)) , 2 � i � S.

Probability π1(< s+ 1 >) can be found from the normalization condition, i.e.,

S∑

i=1

π1 (< i >) = 1.

Further, using (4.5) and (4.7) we find from (4.3) the stationary distribution in the split model
with SS E1.

Now consider the split model with SS E2. For this model we consider the following partition of
space states:

E2 = E 0
2

⋃
E 1

2 , E 0
2

⋂
E 1

2 = ∅, (4.8)

where

E 0
2 = {(n1, n2) ∈ E2 : n1 = 0;n2 = 0, 1, . . . , N} ,
E 1

2 = {(n1, n2) ∈ E2 : n1 = 1, . . . , S;n2 = 0} .
Further, based on splitting (4.8) we define the merging function:

U2 (n1, n2) =

{
< 0 >, if (n1, n2) ∈ E 0

2

< 1 >, if (n1, n2) ∈ E 1
2 ,
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where < k > is the merged state that includes all states from the class E k
1 , k = 0, 1. We denote

Ω2 = {< k >: k = 0, 1}.
In the class of states E 0

2 the first component is constant and equal to zero, i.e., in models with SS
E 0

2 state (0, n2) can be defined with only the second component n2, n2 = 1, . . . , N . The intensity
of transition between states n2 and n′

2 in the split model with SS E 0
2 is denoted by q02 (n2, n

′
2).

Relations (3.2)–(3.4) imply that

q02
(
n2, n

′
2

)
=

⎧
⎪⎨

⎪⎩

λ, if n′
2 = n2 + 1

n2τ, if n′
2 = n2 − 1

0 otherwise.

(4.9)

Now (4.9) implies that probabilities of states n2 in the model with SS E 0
2 , denoted by ρ02(n2),

are computed as state probabilities for the Erlang model M/M/N/0 with load λ/τ (Erl), i.e.,

ρ02 (n2) =
στ (n2)
N∑

j=0
στ (j)

, n2 = 0, 1, . . . , N, (4.10)

where στ (j) =
(λ/τ)j

j! .

In the class of states E 1
2 , the second component is constant and equal to zero, i.e., in models

with SS E 1
2 state (n1, 0) can be defined with only the first component n1, n1 = 1, . . . , S. The

intensity of transition between states n1 and n′
1 in the split model with SS E 1

2 is denoted by
q12 (n1, n

′
1). Here relations (3.2)–(3.4) imply that

q12
(
n1, n

′
1

)
=

⎧
⎪⎨

⎪⎩

ν, if n1 � s, n′
1 = n1 + S − s

n1γ, if n′
2 = n2 − 1

0 otherwise.
(4.11)

Similar to (4.7), (4.11) implies that probabilities of states n1 of the model with SS E 1
2 , denoted

by ρ12 (n1), are computed as follows:

ρ12(n1) =

⎧
⎪⎪⎨

⎪⎪⎩

a2(n1)ρ
1
2(s+ 1), if 1 � n1 � s

b2(n1)ρ
1
2(s+ 1), if s+ 1 � n1 � S − s

c2(n1)ρ
1
2(s+ 1), if S − s+ 1 � n1 � S,

(4.12)

where

a2(n1) =
s∏

i=n1

Λ2 (i)

ν + Λ2 (i− 1)
; b2(n1) =

s+ 1

n1
; c2(n1) =

ν

n1γ

s∑

i=n1−S+s

a2 (i);

Λ2 (i) =

{
0, i = 0
(i+ 1) γ, 1 � i � s.

Probability ρ12(s+ 1) can be found from the normalization condition, taking into account that
∑S

i=1 ρ
1
2 (i) = 1. Then (4.10) and (4.12) imply that intensities of transitions between merged states

< k >,< k′ >∈ Ω2 can be found as follows:

q2(< k >,< k′ >) =

{
νρ02 (0) , if k = 0, k′ = 1

γρ12 (1) , if k = 1, k′ = 0.
(4.13)
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Probabilities of merged states π2 (< k >), < k >∈ Ω2 are easy to compute from (4.13). Further,
using (4.10) and (4.12) we can find, similar to (4.3), the stationary distribution in the split model
with SS E2.

Finally, we consider the split model with SS E3. Similar to (4.2) here we consider the following
partition:

E3 =
S⋃

i=0

E i
3 , E i

3

⋂
E j

3 = ∅, if i �= j, (4.14)

where E i
3 = {(n1, n2) ∈ E3 : n1 = i}, i = 0, 1, . . . , S. Based on splitting (4.14) we define the merging

function:

U3 ((n1, n2)) =< n1 >, if (n1, n2) ∈ E n1
3 , (4.15)

where < n1 > is the merged state that includes all states from the class E n1
3 . We denote Ω3 =

{< n1 >: i = 0, 1, . . . , S}.
Further, we repeat these procedures in the same way for the split model with SS E1. Therefore,

we will not go into the details of these procedures here but will only mention the differences. Note
that probabilities of states ρi3 (n2), n2 = 0, 1, . . . , N , in all split models with SS E i

3 , i = 0, 1, . . . , S,
are computed in the same way (do not depend on the superscript) as state probabilities for the
classical Erlang model M/M/N/0 with load λ/τ(Erl) (see (4.10)).

Transition intensities between merged states < i >, < j >∈ Ω3 of this model are defined as
follows:

q3(< i >,< j >) =

⎧
⎪⎨

⎪⎩

iγ, if j = i− 1
ν, if i � s, j = i+ S − s
0 otherwise.

(4.16)

Thus, relations (4.16) imply that probabilities of merged states π3 (< n1 >), < n1 >∈ Ω3, can
be computed as follows:

π3(< n1 >) =

⎧
⎪⎪⎨

⎪⎪⎩

a3(n1)π3(< s+ 1 >), if 0 � n1 � s

b3(n1)π3(< s+ 1 >), if s+ 1 � n1 � S − s

c3(n1)π3(< s+ 1 >), if S − s+ 1 � n1 � S,

(4.17)

where

a3(n1) =
s+1∏

i=n1+1

iγ

ν + (i− 1) γ
; b3(n1) =

s+ 1

n1
; c3(n1) =

ν0
n1γ

s∑

i=n1−S+s

a3 (i).

Probability π3(< s+ 1 >) can be found from the corresponding normalization condition. Fur-
ther, due to relations (4.10) and (4.17) similarly to (4.3) we can find stationary probabilities for
the states of the split model with SS E3.

Now to compute the stationary distribution for the original 3-D MC we will need to find the
probabilities of merged states, i.e., π(< k >), < k >∈ Ω (see (4.1)). After certain transformations
we get that intensities of transitions between states < k >, < k′ >∈ Ω are computed as follows:

q
(
< k >,< k′ >

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ (π1(< 1 >) + ρ1 (1) (1− π1 (< 1 >))) , if k = 1, k′ = 2

νπ2 (< 0 >)
(
1− ρ02 (0)

)
+ λπ2 (< 1 >) , if k = 2, k′ = 1

α, if k = 2, k′ = 3

β (1− ρ3 (0)) (1− π3 (< 0 >)) , if k = 3, k′ = 1,

0 otherwise.

(4.18)
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Remark 3. In (4.18) and below superscripts of probabilities ρ1 (i) and ρ3 (i) are omitted since
they are defined in the same way for all split models.

Relations (4.18) easily yield the necessary probabilities π(< k >), < k >∈ Ω.

Finally, for approximate computation of the stationary distribution for the original 3-D MC we
find the following formulas:

for the cases n3 = 1 and n3 = 3:

p(n1, n2, n3) ≈ ρn3(n2)πn3(< n1 >)π(< n3 >); (4.19)

for the case n3 = 2:

p (n1, n2, 2) ≈
{

ρ02 (n2) π2 (< 0 >) π (< 2 >) , if n1 = 0

ρ12 (n1) π2 (< 1 >) π (< 2 >) , if n1 > 0.
(4.20)

With (4.19) and (4.20), after certain transformations we get the following formulas for approxi-
mate computation of characteristics (3.5)–(3.9):

Sav ≈ π (< 1 >)
S∑

k=1

kπ1 (< k >) + π (< 2 >) π1 (< 1 >)
S∑

k=1

kρ12 (k)

+ π (< 3 >)
S∑

k=1

kπ3 (< k >);

Pk ≈ π (< k >) , k = 1, 2, 3;

PL1 ≈ π (< 1 >)

(

ρ1 (N) +
S∑

k=1

π1 (< k >)
N−1∑

i=2

ρ1 (i)P 1 (k, i)

)

;

PL2 ≈ π (< 2 >) π2 (< 0 >)

(

ρ02 (N) +
N−1∑

k=1

ρ02 (k)P2 (0, k)

)

;

PL3 ≈ π (< 3 >)

(

ρ3 (N) +
S∑

k=0

π3 (< k >)
N−1∑

i=1

ρ3 (i)P 3 (k, i)

)

;

RR ≈ (μ+ sγ) π (< 1 >)π1 (< s+ 1 >)

+ (s + 1)γπ(< 2 >)π2(< 1 >)ρ12(s + 1) + (s + 1)γπ(< 3 >)π3(s+ 1).

5. NUMERICAL RESULTS

The resulting formulas let us study the behaviour of system characteristics with respect to the
changes of any its load or structural parameters. At the same time, due to space constraints here
we consider only one optimization problem for this system.

Suppose that all structural and load system parameters, apart from the intensity of the incoming
flow of claims, have fixed values, and the only controlled parameter is the order point (i.e., s). Let
us consider a rater important problem of finding such values of the parameter s that minimize the
total costs (TC) related to system operation.

In stationary mode, the said costs are defined as follows:

TC (s) = crRR+ chSav + clλPL, (5.1)

where cr is the cost of one order of inventory; ch is the price of storing a unit of inventory volume
per unit of time; cl is the penalty for losing one claim.
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Results of solving problem (5.2)

λ 5 6 7 8 11 13 16 19 22 25

s∗ 8 9 10 11 12 13 14 15 16 17

TC∗ 28.94 31.37 34.33 37.55 47.97 55.37 67.46 81.91 99.86 121.72

TC∗
sim 26.12 32.87 31.56 32.28 49.63 58.21 63.33 78.25 95.76 125.32

Thus, the optimization problem can be written as follows:

s∗ = argmin {TC (s) : 0 � s � s} , (5.2)

where

s =

{
�S/2� , if S is odd
�S/2� − 1, if S is even,

�x� denotes the whole part of x.

For all values of input parameters problem (5.2) has a solution since the set of possible solutions
is discrete and finite. To solve (5.2) one can use standard minimization methods for functions of a
discrete argument, including full enumeration.

The table shows the results of solving problem (5.2) for the following values of system parameters:
S = 90, N = 25, μ = 4, γ = 1.4, ν = 4, τ = 6, β = 1.3, α = 1. Coefficients in the functional (5.1)
were chosen as follows [8]: cr = 15, ch = 0.2, cl = 5.

In the table, TC∗ and TC∗
sim are minimal values of functional (5.1) computed with the approach

we proposed and with the imitational approach respectively. In numerical experiments, the values
of parameter λ changed with step one, and the table shows those values of this parameter for which
the optimal solution of the problem changes. It is important to note that optimal solutions of
problem (5.2) in both approaches are the same, which is not true for the values of functional (5.1).

The table shows that the optimal solution of problem (5.2) is piecewise constant and increases
at a sufficiently slow rate with respect to the change of intensity of the incoming flow. It is also
important to note that it is invariant in a relatively wide range of changing the intensity of the
incoming flow of claims, which is very important from the practical point of view. Here we also
note that for chosen original data for λ > 28 the optimal solution of problem (5.2) is always s∗ = 0.

As for the time needed to solve problem (5.2) under various approaches, we note that the
proposed formulas let us solve it in a few seconds while the imitational approach needs, in order to
get more reliable results (with five percent confidence interval) several tens of hours on a computer
with the following characteristics: memory command in MatLab; maximum possible array: 562 MB
(5.890e+008 bytes) (limited by contiguous virtual address space available); memory available for all
arrays: 2163 MB (2.268e+009 bytes) (limited by virtual address space available); memory used by
MATLAB: 1743 MB (1.828e+009 bytes); physical memory (RAM): 8092 MB (8.485e+009 bytes).

6. CONCLUSION

In this work, we have proposed a model for a servicing system with one server and perishable
inventory where impatient claims can form queues of limited length. The system adheres to the
(s, S) policy of replenishing inventory, and the times of servicing claims and fulfilling orders are
positive random values. The server is in the operational state if the system has at least one claim and
inventory of size at least one. In the absence of inventory and/or claims the server goes for an early
vacation over random time, and the server becomes available if during this period inventory arrives
and the system has claims. From the early vacation state the server goes to the delayed vacation
state and sojourns there for a random time. After the time in the state of delayed vacation is over,
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the server begins servicing claims if inventory is present; otherwise it goes for a vacation period
again. We have shown that the mathematical model of this system is a three-dimensional Markov
chain. We have developed both an exact and an approximate method to find out its characteristics,
and here the exact method is based on solving the SEE for state probabilities and is efficient only
for systems of moderate dimension. The approximate approach is based on hierarchical merging of
states in the three-dimensional Markov chain and can be applied for asymptotic analysis of systems
of any dimension.
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