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Abstract—We consider a diffusion process and its approximation with a Markov chain whose
trends contain a nonlinear unbounded component. The usual parametrix method is inapplicable
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growing trend and pass to a stochastic differential equation with bounded drift and diffusion
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1. INTRODUCTION

This work is a continuation of our previous paper [1] that considered the case of a linear trend.
It is known that the parametrix method is usually applied for stochastic differential equations
(SDE) with bounded drift and diffusion coefficients (see [2–4]). However, in practice diffusions
with unbounded coefficients occur quite often. The main goal of this work is to obtain a procedure
that reduces the original equation with unbounded drift to an equation with bounded drift. The
idea of this procedure is to consider a new process and, using Ito’s formula, write down the stochastic
differential for that process. We consider an auxiliary ordinary differential equation (ODE) that
results by removing the Brownian component and the bounded part of the drift in the original
SDE. The new process is constructed as the preimage of the original process under the action of
backward phase flow of this ODE. A similar procedure is also given for Markov chains.

To apply Ito’s formula, we need smoothness with respect to initial conditions and initial time
moment. Therefore, we need the corresponding smoothness conditions for an unbounded trend
component [5]. We note that to apply the procedure introduced in this work conditions of the exis-
tence and uniqueness theorem for ODE solutions must hold not only locally but also on the entire
interval [0, T ]. We also note that a local approach could be developed under weaker conditions.

2. CONDITIONS AND MAIN RESULT

Consider the following diffusion model:

dYt = {F (t, Yt) +m(t, Yt)} dt+ σ(t, Yt)dWt,

Y0 = x0 ∈ R
d, 0 � t � T,

(1)

where F (t, y) and m(t, y) are d-dimensional vector functions, σ(t, y) is a (d × d) diffusion matrix,
Wt is a standard d-dimensional Wiener process.
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In what follows we denote by F∗(t,x) the derivative with respect to the spatial variable x for a
fixed t. Thus, F∗(t,x) is a linear operator from R

d to R
d. We will use standard notation Dν

xF (t, x)
for higher order derivatives.

We introduce the following assumptions.

A1 (uniform ellipticity). Matrix a := σσ∗ is uniformly elliptic, i.e., there exists Λ � 1 such that
∀(t, x, ξ) ∈ [0, T ] × (Rd)2

Λ−1 |ξ|2 � 〈a(t, x)ξ, ξ〉 � Λ |ξ|2 .

A2 (smoothness of the trend component). Function F (t, x) ∈ C2
(
[0, T ]× R

d
)
and

max
t∈[0,T ]

‖Dν
xF (t, x)‖ � MF , |ν| = 1, 2.

Here ‖·‖ is the Euclidean norm of the vector (for |ν|=1) or matrix (for |ν|=2).

A3 (boundedness of the trend component). Components of the vector function m(t, x) are
continuous and bounded on (t, x) ∈ [0, T ]× R

d.

Consider an ordinary differential equation corresponding to Eq. (1),

dx

dt
= F (t, x) (2)

and transformation G : [0, T ] ×R
d → [0, T ]× R

d defined as

G(t,x) = (t,g(t; t0,x)) ,

where

g(t; t0,x) = (g1(t; t0,x), . . . , gd(t; t0,x))

is the solution of ODE (2) satisfying the initial condition g(t0; t0,x) = x.

Now assumption A2 and the two theorems formulated below imply that G is a diffeomorphism
of class C2. In particular, this gives us the necessary smoothness and lets us apply Ito’s lemma to
the process Ỹt introduced below.

Theorem A [5, p. 200]. Suppose that the right-hand side of Eq. (2) is r � 1 times continuously
differentiable in some neighborhood of the point (t0, x0). Then solution φ(t) with initial condition
φ(t0) = x is a differentiable function from class Cr jointly with respect to variables t and x when t
and x vary in some (perhaps smaller) neighborhood of the point (t0, x0):

F ∈ Cr ⇒ φ ∈ Cr for r � 1.

Note that under the assumptions of Theorem A continuous differentiability with respect to t0
follows from Theorem 5.2.1 from [6].

Theorem B [7, p. 392]. Suppose that a function F (t, x), continuous in t, satisfies for t ∈ [a, b]
and x ∈ B (where B is a Banach space) the following conditions:

‖F (t, x)‖ � M1 +M0 ‖x‖ ,
‖F (t, x2)− F (t, x1)‖ � M2 ‖x2 − x1‖ ,

where Mi, i = 0, 1, 2, are positive constants. Then for any x0 ∈ B and t0 ∈ [a, b] differential Eq. (2)
has on the entire interval [a, b] a unique solution x = φ(t) satisfying the initial condition φ(t0) = x0.

Let now t0 = 0. Consider a new stochastic process

Ỹt = g−1(0; t, Yt), Ỹ0 = Y0 = x0, (3)

where Yt is a solution of Eq. (1). We now formulate the main result of this work.
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Theorem. Suppose that assumptions A1–A3 hold, and Yt is a solution of SDE (1) with, generally
speaking, unbounded trend. Then process Ỹt defined in (3) is a diffusion process with stochastic
differential

dỸt = m̃
(
t, Ỹt

)
dt+ σ̃

(
t, Ỹt

)
dWt,

where

m̃ (t, y) = g−1
∗ (t; 0, y)

⎧⎨
⎩m(t,g(t; 0, y)) +

1

2

d∑
i,j=1

cij(t, 0, y)
d∑

p=1

σip(t,g(t; 0, y))σjp(t,g(t; 0, y))

⎫⎬
⎭ ,

σ̃(t, y) = g−1
∗ (t; 0, y)σ(t,g(t; 0, y)).

The vectors cij are defined in (12), moreover, all trend components m̃(t, y) are bounded.

Proof of Theorem. The derivative g∗(t; t0,x) := ‖zik(t; t0,x)‖, zik(t; t0,x) = ∂gi(t;t0,x)
∂xk

, i, k =
1, . . . , d, of the solution of Eq. (2) with initial condition x satisfies the variational equation with
initial condition g∗(t0; t0,x) = I, where I is the unit matrix:

∂

∂t
g(t; t0,x) = F (t,g(t; t0,x)),

∂

∂t
g∗(t; t0,x) = F∗(t,g(t; t0,x))g∗(t; t0,x),

g(t0; t0,x) = x,g∗(t0; t0,x) = x∗ = I

(4)

(for more details see [5, p. 225]). Moreover,

∂

∂t0
g(t; t0,x) = −g∗(t; t0,x)F (t0,x). (5)

The proof of (5) is contained, for example, in [7]. It is clear that g∗(t; t0,x) is the matrix of the
differential at point x for the direct (t0, t)-transform defined by the forward phase flow. Similarly,
the inverse matrix g−1∗ (t; t0,x) is the matrix of the differential for the (t, t0)-inverse transform
defined by the backward phase flow. Relation (5) can be interpreted geometrically as follows. The
derivative of the solution with respect to the original time moment is the vector image of the tangent
vector −F (t0,x) under the action of the differential at point x for the direct (t0, t)-transform defined
by the forward phase flow. The matrix of the differential for the inverse transform equals the inverse
matrix of the differential of the transform defined by the forward phase flow. Symmetrically to (5)
we get that

∂g−1(t0; t,y)

∂t
= −g−1

∗ (t; t0,g
−1(t0; t,y))F (t,y). (6)

Note that in the linear case F (t,x) = b(t)x, and using notation from [1] we get that

F (t,g(t; t0,x)) = b(t)g(t; t0,x), F∗(t,g(t; t0,x)) = b(t), g∗(t; t0,x) = Φ(t),

where Φ(t) is the fundamental matrix corresponding to system (2) which in this case will be a
linear system.

Now (4) and (6) imply relations for the linear case:

Φ′(t) = b(t)Φ(t),
[
Φ−1(t)

]′
= − [Φ(t)]−1 b(t).
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We denote Ψ(t,y) := g−1(0; t,y) and apply the d-dimensional Ito’s formula to process Ỹt =
Ψ(t, Yt). In order to apply Ito’s formula, we need to compute the first and second derivatives with
respect to the spatial variable y and first derivatives with respect to the time t. Differentiating the
identity

gi
(
t; 0,g−1(0; t,y)

)
= yi, (7)

we get that

∂

∂yk
gi(t; 0,g

−1(0; t,y)) =
d∑

l=1

∂gi(t; 0,g
−1(0; t,y))

∂g−1
l (0; t,y)

∂g−1
l (0; t,y)

∂yk
=

∂yi
∂yk

= δik,

and, consequently,

g−1
∗ (t; 0,g−1(0; t,y)) =

∥∥∥∥∥
∂g−1

i (0; t,y)

∂yk

∥∥∥∥∥ :=
∥∥∥zik(t; 0,g−1(0; t,y))

∥∥∥ . (8)

Now (4) and Liouville’s theorem [5] imply that for some C > 1

C−1 � detg∗(t; t0,x) = exp

t∫

0

trace[F∗(s,g(s; t0,x))]ds � C (9)

and by Theorem 8.65 from [8]

‖g∗(t; t0,x)‖ � C(d, T ). (10)

Now (8)–(10) imply that all elements zik(t; 0,g−1(0; t,y)) of the inverse matrix g−1∗ (t; 0,g−1(0; t,y))
are bounded, and since functions m(t, Yt) and σ(t, Yt) are bounded then functions m̃(t, Yt) :=
g−1∗ (t; 0,g−1(0; t, Yt))m(t, Yt) and σ̃(t, Yt) :=g−1∗ (t; 0,g−1(0; t, Yt))σ(t, Yt) are also bounded. Now
(7) implies that

∂2

∂yj∂yk
gi(t; 0,g

−1(0; t,y)) =
d∑

l=1

∂

∂yj

[
∂gi(t; 0,g

−1(0; t,y))

∂g−1
l (0; t,y)

]
∂g−1

l (0; t,y)

∂yk

+
d∑

l=1

∂gi(t; 0,g
−1(0; t,y))

∂g−1
l (0; t,y)

∂2g−1
l (0; t,y)

∂yj∂yk
= 0,

or, in our notation,

∂2

∂yj∂yk
gi(t; 0,g

−1(0; t,y)) =
d∑

l,p=1

∂zil(t; 0,g
−1(0; t,y))

∂g−1
p (0; t,y)

zpj(t; 0,g−1(0; t,y))

×zlk(t; 0,g−1(0; t,y)) +
d∑

l=1

zil(t; 0,g
−1(0; t,y))

∂2g−1
l (0; t,y)

∂yj∂yk
= 0. (11)

Differentiating both parts of (4) with respect to x and applying A2 and Gronwall’s inequality [8,
Theorem 8.65], we get that uniformly in (t,y) ∈ [0, T ] × R

d and for 1 � i, l, p � d

∣∣∣∣∣
∂zil(t; 0,g

−1(0; t,y))

∂g−1
p (0; t,y)

∣∣∣∣∣ � C,
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where the constant C depends only on T andMF , which follows from assumption A2. Consequently,

cijk(t, 0,g
−1(0; t,y)) :=

d∑
l,p=1

∂zil(t; 0,g
−1(0; t,y))

∂g−1
p (0; t,y)

zpj(t; 0,g−1(0; t,y))

×zlk(t; 0,g−1(0; t,y)) � C1 < ∞.

We get from (11) that
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2g−1
1 (0; t,y)

∂yj∂yk
...

∂2g−1
d (0; t,y)

∂yj∂yk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= −g−1
∗ (t; 0,g−1(0; t,y))cjk(t, 0,g

−1(0; t,y)), (12)

where

cjk(t, 0,g
−1(0; t,y)) =

⎛
⎜⎜⎝

c1jk(t, 0,g
−1(0; t,y))
...

cdjk(t, 0,g
−1(0; t,y))

⎞
⎟⎟⎠ ,

and, consequently, all components of the vector in the left-hand side of (12) are bounded. Applying
the d-dimensional Ito’s formula, we get that

dỸt,k =
∂g−1

k (0; t, Yt)

∂t
dt+

d∑
i=1

∂g−1
k (0; t, Yt)

∂yi
dYt,i +

1

2

d∑
i,j=1

∂2g−1
k (0; t, Yt)

∂yi∂yj
dYt,idYt,j , k = 1, . . . , d.

For dỸt = (dỸt,1, . . . , dỸt,d)
T from (1), (6) and (12) we get that

dỸt = −g−1
∗
(
t; 0,g−1(0; t, Yt)

)
F (t, Yt)dt

+ g−1
∗
(
t; 0,g−1(0; t, Yt)

)
[(F (t, Yt) +m(t, Yt))dt+ σ(t, Yt)dWt]

+
1

2
g−1
∗ (t; 0,g−1(0; t, Yt))

d∑
i,j=1

cij(t, 0,g
−1(0; t, Yt))

d∑
p=1

[σip(t, Yt)σjp(t, Yt)]dt

= g−1
∗ (t; 0, Ỹt)

⎧
⎨
⎩m(t,g(t; 0, Ỹt)) +

1

2

d∑
i,j=1

cij(t, 0, Ỹt)
d∑

p=1

[σip(t,g(t; 0, Ỹt))σjp(t,g(t; 0, Ỹt))]

⎫
⎬
⎭dt

+ g−1
∗ (t; 0, Ỹt)σ(t,g(t; 0, Ỹt))dWt := m̃(t, Ỹt)dt+ σ̃(t, Ỹt)dWt,

(13)

where

m̃(t, Ỹt) = g−1
∗ (t; 0, Ỹt)

⎧
⎨
⎩m(t,g(t; 0, Ỹt))

+
1

2

d∑
i,j=1

cij(t, 0, Ỹt)
d∑

p=1

[
σip(t,g(t; 0, Ỹt))σjp(t,g(t; 0, Ỹt))

]
⎫⎬
⎭ ,

σ̃(t, Ỹt) := g−1
∗ (t; 0, Ỹt)σ(t,g(t; 0, Ỹt)).

We get that process Ỹt satisfies Ito’s SDE (13) with bounded coefficients m̃(t, y) and σ̃(t, y).

This completes the proof of the theorem.

In the linear case, all vectors cjk = 0 since g∗(t; t0,x) = Φ(t) does not depend on the initial
condition x.
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3. EXAMPLE

Consider nonlinear unbounded trend exclusion in the stochastic differential equation

dYt =
√
Y 2
t + 1dt+ σdWt, Y0 = x0, σ > 0, t ∈ [0, T ]. (14)

In this example, F (t, x) =
√
x2 + 1, a = σ2, m(t, x) = 0, and assumptions A1–A3 hold. The

differential equation

dx(t)

dt
=
√
x2(t) + 1

can be solved by separating the variables

x∫

x0

dy√
y2 + 1

= ln

(
y +

√
y2 + 1

) ∣∣∣∣
x

x0

= ln

⎛
⎝ x+

√
x2 + 1

x0 +
√
x20 + 1

⎞
⎠ =

t∫

t0

ds = t− t0.

Resolving the latter equation with respect to x, we get that

x = x(t; t0, x0) =
A2 − 1

2A
, A = et−t0

(
x0 +

√
x20 + 1

)
.

And vice versa, by given (t, x(t)) with the backward phase flow we find that

x0 +
√
x20 + 1 = et0−t

(
x+

√
x2 + 1

)
,

x0(t0; t, x(t)) =
B2 − 1

2B
, B = et0−t

(
x+

√
x2 + 1

)
.

In what follows t0 = 0, and the nonnegative stochastic process Ỹt is defined as follows:

Ỹt = e−t
(
Yt +

√
Y 2
t + 1

)
, Yt =

e2tỸ 2
t − 1

2etỸt

,

where Yt is a solution of SDE (14). By Ito’s formula we find the stochastic differential process Ỹt:

dỸt = −e−t
(
Yt +

√
Y 2
t + 1

)
dt+ e−t

⎛
⎝1 + Yt√

Y 2
t + 1

⎞
⎠
(√

Y 2
t + 1dt+ σdWt

)

+
1

2
e−t σ2

(
1 + Y 2

t

)3/2 dt =
1

2
e−t σ2

(
1 + Y 2

t

)3/2dt+ e−tσ

⎛
⎝1 + Yt√

Y 2
t + 1

⎞
⎠ dWt

=
σ2

4

e2tỸ 3
t(

e2tỸ 2
t + 1

)3 dt+ σ
2etỸ 2

t

e2tỸ 2
t + 1

dWt.

The trend and diffusion of process Ỹt are bounded in [0, T ]× R:

m̃(t, x) =
σ2

4

e2tx3

(e2tx2 + 1)3
, σ̃(t, x) =

2σetx2

e2tx2 + 1
, t ∈ [0, T ].
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4. MARKOV CHAINS

Suppose that assumption A1–A3 hold.

By Hadamard’s global inversion theorem, G : Rd → R
d : x → x+hF (t, x) is a C2 diffeomorphism

for every t ∈ [0, T ] and sufficiently small h.

We consider a (generally speaking, non-uniform) partition 0 = tn0 < tn1 < . . . < tnn = T and
Markov chain

X(tnk+1) = X(tnk ) + hnk {F (tnk ,X(tnk )) +m(tnk ,X(tnk ))} +
√
hnkσ (tnk ,X(tnk )) ε(t

n
k+1), (15)

X(0) = x ∈ R
d, k = 0, . . . , n− 1, hnk = tnk+1 − tnk .

A4. There exists a constant C > 1 such that

C−1 � hnk
hnl

� C for n � 1 and 1 � k, l � n,

lim
n→∞hn1 = 0.

Consider the difference equation

ĝ(tnk+1; 0, x) − ĝ(tnk ; 0, x)

hnk
= F (tnk , ĝ(t

n
k ; 0, x)), ĝ(0; 0, x) = x, (16)

where ĝ(tnk ; 0, x) are Euler broken lines corresponding to the partition 0 = tn0 < tn1 < . . . < tnn = T ,
that start at point x at time moment 0 and are constructed for the solution g(t; 0, x) of equation
ẋ = F (t,x), g(0; 0, x) = x. If we let X̂(tnk) := ĝ−1(0; tnk ,X(tnk )) and replace x with X̂(tnk) in (16),
we will get that

ĝ(tnk+1; 0, X̂(tnk))− ĝ(tnk ; 0, X̂(tnk ))

hnk
= F (tnk , ĝ(t

n
k ; 0, X̂(tnk))),

X̂(tnk) = ĝ(0; 0, X̂(tnk )).

Then (15) can be rewritten as

ĝ
(
tnk+1; 0, X̂(tnk+1)

)
= ĝ

(
tnk+1; 0, X̂(tnk)

)
+ hnkm

(
tnk , ĝ(t

n
k ; 0, X̂(tnk ))

)

+
√
hnkσ

(
tnk , ĝ(t

n
k ; 0, X̂(tnk))

)
ε(tnk+1).

Iterating (16), we get that

ĝ(tnk+1; 0, x) := Ln
tn
k+1

(x),

where Ln
t (x) are Euler broken lines for equations ẋ = F (t,x) starting at point x and corresponding

to the partition 0 = tn0 < tn1 < . . . < tnn = T :

Ln
tn1
(x) = x+ hn1F (0, x),

. . .

Ln
tn
k+1

(x) = Ln
tn
k
(x) + hnk+1F (tnk , L

n
tn
k
(x)).

Iterating the latter equation, we get that

ĝ(tnk+1; 0, x) = x+
k∑

j=0

hnj+1F (tnj , ĝ(t
n
j ; 0, x)), (17)

ĝ(tnk ; 0, x) = (ĝ1(t
n
k ; 0, x), . . . , ĝd(t

n
k ; 0, x))

T.
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We introduce the Jacobi matrix ĝ∗(tnk ; 0, x) := ‖ẑij(tnk ; 0, x)‖, ẑij(tnk ; 0, x) :=
∂ĝi(tnk ;0,x)

∂xj
. The inverse

matrix is given by ĝ−1∗ (tnk , 0, y) :=
∥∥ẑ ij(tnk ; 0, y)

∥∥, ẑ ij(tnk ; 0, y) :=
∂ĝ−1

i (0;tnk ,y)
∂yj

. Differentiating (17)

with respect to x, we get that

ĝ∗(tnk+1; 0, x) = I +
k∑

j=0

hnj+1F∗(tnj , ĝ(t
n
j ; 0, x))ĝ∗(t

n
j ; 0, x), (18)

∥∥ĝ∗(tnk+1; 0, x)
∥∥ �

√
d+K

k∑
j=0

hnj+1

∥∥∥ĝ∗(tnj ; 0, x)
∥∥∥ . (19)

To estimate the left-hand side of (19), we use the following lemma.

Lemma (discrete Gronwall’s lemma [8]). Let {yn} and {gn} be two nonnegative sequences, and
let c be a nonnegative constant. Suppose that

yk+1 � c+
k∑

j=0

gjyj, k � 0,

then

yk+1 � c+
k∏

j=0

(1 + gj) � c exp

⎛
⎝

k∑
j=0

gj

⎞
⎠ .

We use this assumption with yk = ‖ĝ∗(tnk ; 0, x)‖, c =
√
d, gj = Khnj+1, j = 0, . . . , k. We get

from (19) that

∥∥ĝ∗(tnk+1; 0, x)
∥∥ �

√
d exp (KT ) , k = 0, . . . , n − 1.

We can now check by substitution that Eq. (18) has an explicit solution

ĝ∗(tnm; 0, x) =
0∏

j=m−1

[I + hnj+1F∗(tnj , ĝ(t
n
j ; 0, x))] (20)

(where we let
∏0

j=−1[I + hnj+1F∗(jh, θ̂jh(x))] = I). Indeed, substituting (20) into (18), we get that

I +
k∑

j=0

⎧⎨
⎩[I + hnj+1F∗(tnj , ĝ(t

n
j ; 0, x)) − I]

0∏
l=j−1

[I + hnl+1F∗(tnl , ĝ(t
n
l ; 0, x))]

⎫⎬
⎭

= I +
k∑

j=0

⎧⎨
⎩

0∏
l=j

[I + hnl+1F∗(tnl , ĝ(t
n
l ; 0, x))] −

0∏
l=j−1

[I + hnl+1F∗(tnl , ĝ(t
n
l ; 0, x))]

⎫⎬
⎭

= I +
0∏

l=k

[I + hnl+1F∗(tnl , ĝ(t
n
l ; 0, x))] − I = ĝ∗(tnk+1; 0, x).

If every matrix I + hnl+1F∗(tnl , ĝ(t
n
l ; 0, x)), l = 0, 1, . . . , k, is invertible then ĝ∗(tnk+1; 0, x) is also

invertible:

ĝ−1
∗ (tnk+1; 0, x) =

k∏
j=0

[I + hnj+1F∗(tnj , ĝ(t
n
j ; 0, x))]

−1.
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By assumptions A2 and A4 ‖hnj+1F∗(tnj , ĝ(tnj ; 0, x))‖ � hnj+1K < 1
2 for sufficiently large n, so each

matrix I + hnj+1F∗(tnj , ĝ(tnj ; 0, x)), j = 0, 1, . . . , k, is invertible. Consequently,

max
0�m�n

∥∥∥ĝ−1
∗ (tnm; 0, x)

∥∥∥ � max
0�m�n

m−1∏
j=0

∥∥∥[I + hnj+1F∗(tnj , ĝ(t
n
j ; 0, x))]

−1
∥∥∥

� max
1�m�n

m−1∏
j=0

1

1−
∥∥∥hnj+1F∗(tnj , ĝ(t

n
j ; 0, x))

∥∥∥

� max
1�m�n

m−1∏
j=0

(
1 +

Khnj+1

1−Khnj+1

)
� (1 + 2Khnj+1)

n � C(K,T )

for sufficiently large n. Passing in (18) to the limit n → ∞, we get ĝ∗(φn(t); 0, x) → g∗(t; 0,x),
φn(t) = inf

{
tni : tni � t < tni+1

}
, where g∗(t; 0,x) is a solution of equation

g∗(t; 0,x) = I +

t∫

0

F∗(u,g(u; 0,x))g∗(u; 0,x)du,

or

∂

∂t
g∗(t; 0,x) = F∗(t,g(t; 0,x))g∗(t; 0,x),g∗(0; 0,x) = I.

As we have noted above, x → x+ hF (t, x) is a C2-diffeomorphism for every t ∈ [0, T ] and sufficiently
small h. This implies that ĝ−1(0; tnk , y) is uniquely determined by and smoothly depends on y. Con-
sequently, the mapping R

d → R
d : x → ĝ(tnk ; 0, x) is a C2-diffeomorphism. The differential of this

mapping is given by the Jacobi matrix ĝ∗(tnk ; 0, x) := ‖ẑij(tnk ; 0, x)‖, ẑij(tnk ; 0, x) =
∂ĝi(tnk ;0,x)

∂xj
. The

differential of the inverse mapping is given by matrix ĝ−1∗ (0; tnk , y) :=
∥∥ẑ ij(0; tnk , y)

∥∥, ẑ ij(0; tnk , y) =
∂ĝ−1

∗i (0;tn
k
,y)

∂yj
. We define

X̃(tnk) = ĝ−1(0; tnk ,X(tnk )).

Then we have that

X̃(tnk+1)− X̃(tnk) = ĝ−1(0; tnk+1,X(tnk+1))− ĝ−1(0; tnk+1, ĝ(h
n
k ; t

n
k ,X(tnk )))

=

⎛
⎝

1∫

0

ĝ−1
∗ (0; tnk+1,Ψu(X̃(tnk), ε(t

n
k )))du

⎞
⎠(X(tnk+1)− ĝ(hnk ; t

n
k ,X(tnk ))

)

= hnk

⎛
⎝

1∫

0

ĝ−1
∗ (0; tnk+1,Ψu(X̃(tnk ), ε(t

n
k )))du

⎞
⎠m(tnk , ĝ(t

n
k ; 0, X̃(tnk)))

+
√
hnk

⎛
⎝

1∫

0

ĝ−1
∗ (0; tnk+1,Ψu(X̃(tnk), ε(t

n
k )))du

⎞
⎠ σ(tnk , ĝ(t

n
k ; 0, X̃(tnk)))ε(t

n
k+1),

where

Ψu(X̃(tnk), ε(t
n
k )) := ĝ(hnk ; t

n
k ,X(tnk )) + u[X(tnk+1)− ĝ(hnk ; t

n
k ,X(tnk ))]

= X(tnk ) + hnkF (tnk ,X(tnk )) + uhnkm(hnk ,X(tnk )) + u
√
hnkσ(h

n
k ,X(tnk ))ε(t

n
k+1)

= ĝ(tnk ; 0, X̃(tnk)) + hnkF (tnk , ĝ(t
n
k ; 0, X̃(tnk ))) + uhnkm(tnk , ĝ(t

n
k ; 0, X̃(tnk)))

+u
√
hnkσ(t

n
k , ĝ(t

n
k ; 0, X̃(tnk )))ε(t

n
k+1).
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We denote now

m̃(tnk , X̃(tnk), ε(t
n
k+1)) =

⎛
⎝

1∫

0

ĝ−1
∗ (0; tnk+1,Ψu(X̃(tnk ), ε(t

n
k+1)))du

⎞
⎠m(tnk , ĝ(t

n
k ; 0, X̃(tnk))), (21)

σ̃(tnk , X̃(tnk), ε(t
n
k+1)) =

⎛
⎝

1∫

0

ĝ−1
∗ (0; tnk+1,Ψu(X̃(tnk ), ε(t

n
k+1)))du

⎞
⎠ σ(tnk , ĝ(t

n
k ; 0, X̃(tnk ))). (22)

This leads to the Markov chain

X̃(tnk+1)= X̃(tnk)+hnkm̃(tnk , X̃(tnk), ε(t
n
k+1))+

√
hnk σ̃(t

n
k , X̃(tnk), ε(t

n
k+1))ε(t

n
k+1) (23)

with bounded coefficients m̃(tnk ,X̃(tnk),ε(t
n
k+1)) and σ̃(tnk ,X̃(tnk ),ε(t

n
k+1)).

Remark. Markov chain (23), obtained as a result of the above-mentioned trend exclusion pro-
cedure, differs from the original Markov chain (15). The difference is that now both trend and
diffusion depend on innovations ε(tnk+1). This more general form of Markov chains was studied
in [9]. The authors of [9] considered the following class of Markov chains:

X(tnk+1) = Ψk

(
X(tnk),

εk+1√
n
,
1

n

)
,

where Ψk : Rd×R
N ×R+ → R

d are smooth functions, and εk, k ∈ N, is a sequence of independent
centered random vectors (innovations). In that work, they consider the case when tnk = k

n and
study the convergence Ef(X(t)) → Ef(Y (t)), where Y (t) is a continuous time Markov process.
The proof is based on a new version of the Malliavin calculus proposed by the authors. As it
usually happens with such an approach, they assume infinite differentiability of the functions Ψk.
In the present work, this corresponds to infinite differentiability of functions F , m, and σ in the
model (15). The main result of [9] was obtained under assumptions (1.9)–(1.11) from [9], which, as
it is easy to see, does not hold for the model (15) since function F is unbounded. It suffices to let
α = γ = 0 and β = 1 in (1.10) from [9] to see that this condition does not hold. On the contrary,
for the dynamics (23) one can show a whole class of models with infinitely differentiable F , m, and
σ for which these conditions hold, which lets us apply the results of [9].

In the linear case

F (t, x) = b(t)x, F∗(tnj , ·) = b(tnj )

and

ĝ−1
∗ (tnk+1; 0,Ψu(X̃(tnk))) =

k∏
j=0

[I + hnj+1b(t
n
j )]

−1. (24)

If we substitute (24) into (21) and (22), we see that (23) in the case of a uniform partition coincides
with the equation obtained in [1].

5. CONCLUSION

In this work, we have shown a procedure that lets us reduce the original equation with unbounded
trend to an equation with bounded trend. A similar procedure is also given for Markov chains.
This work is a continuation of our previous work [1] on a modification of the parametrix method.
In what follows we plan to consider a procedure that lets one reduce an original equation with
unbounded diffusion to an equation with bounded diffusion.
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