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Abstract—We study optimal approximations of sets in various metric spaces with sets of balls
of equal radius. We consider an Euclidean plane, a sphere, and a plane with a special non-
uniform metric. The main component in our constructions of coverings are optimal Chebyshev
n-networks and their generalizations. We propose algorithms for constructing optimal coverings
based on partitioning a given set into subsets and finding their Chebyshev centers in the Eu-
clidean metric and their counterparts in non-Euclidean ones. Our results have both theoretical
and practical value and can be used to solve problems arising in security, communication, and
infrastructural logistics.
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1. INTRODUCTION

The problem of approximating complex geometric figures with sets that are more convenient
for processing is a classical problem in computational geometry [1] and is interesting both from
a theoretical point of view and in relation to multiple applications in problems of cellular [2] and
space communication [3], logistics [4], in constructing reachability sets for controllable systems [5].

The easiest and at the same time most convenient way to proceed is to replace the figure with
a union of a fixed number of points. Such constructions were first introduced by A.L. Garkavi who
defined, in particular, the notion of the optimal Chebyshev n-network [6, 7]. In previous work, we
have already studied the constructions of approximations for objects with sets of a fixed number
of points on the Euclidean plane [8, 9], on a sphere in a Euclidean space [10], and on a plane with
non-uniform metric [11, 12]. All of these problems admit a common mathematical formalization.
Consider a metric space X with metric ρ. We pose the problem of minimizing, for a given compact
set M , the value maxm∈M minsi∈S ρf (m, si), where S is a set containing a given number of points.
This problem can be solved with methods of computational geometry [1].

In this work, we apply new methods for constructing optimal n-networks and their generaliza-
tions in various metric spaces based on iterative computational procedures. Their key elements
include partitioning sets into subsets lying in the influence zone of each point from the previous
iteration and computing points that are centers of these zones in the considered metric.
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2. CONSTRUCTING AN OPTIMAL NETWORK IN THE EUCLIDEAN METRIC

One of the main practical problems that reduce to finding an optimal Chebyshev n-network
is the problem of placing communication towers [2]. If we assume that communication quality is
directly related to the proximity of a user to the nearest tower, and assume the tower itself to
be a material point, we get an optimal placement criterion which in this case is minimization of
Hausdorff distance [13] between the compact set and a set with a given number of points. This
problem is closely related to another problem, which grows in importance every year: the problem of
optimal placement of sensor networks [14] created with high-precision sensors that control a certain
territory. From the geometric point of view the domain of operation for each sensor is a circle.
Sensor networks are applied to monitor natural phenomena, solve problems in biology, medicine,
and security. Similar settings in the domain of architecture have been considered in [15, Chapter 3].

Let us formulate the optimal approximation problem for a compact set on a plane with Euclidean
metric. We assume that the deviation of one bounded closed set A from another set B is defined
in the Hausdorff metric [13] as

h(A,B) = max
a∈A

min
b∈B

‖a− b‖. (1)

Now an n-network [7] is a nonempty set on the plane that consists of at most n points. We
denote by Σn the set of all n-networks.

Problem 1. For a given compact set M ⊂ R
2 and number n ∈ N, find such an n-network for

which the Hausdorff distance h(M,Sn) is minimal among all elements of the set Σn.

This problem can be considered as an optimal covering problem for a compact set M by a union
of n balls of equal radius r. The optimality criterion here is the value of r, and we would like
to minimize it. Points si, i = 1, . . . , n, of the n-network Sn are centers of the balls O(si, r) that
constitute an optimal coverage, and their radius equals r = h(M,S).

The problem of optimal approximation of a set with n points in the simplest case, for n = 1,
reduces to finding the Chebyshev center of a set. This notion was introduced by A.L. Garkavi for
a set M in Banach space [6]. In a Euclidean space of dimension m the Chebyshev center c(M)
of a set is the center of a ball with smallest radius that completely contains M [7]. Algorithms
for constructing it have been shown, in particular, in [8]. For n > 1 Problem 1 is to construct an
optimal Chebyshev n-network for the set M [16].

Various methods for solving Problem 1 for polygons have been proposed and implemented by
S.A. Piyavskii and V.F. Krotov [17, 18]. They studied the problems on covering flat cells for
constructing networks of man-made satellites. Optimal Chebyshev n-networks have been considered
for a square [19, 20] and a circle [21]. It has been shown for small n that these results are optimal.
One of the authors has considered Problem 1 before for some classes of flat sets [9].

For a given set M and fixed n, the problem of constructing an optimal Chebyshev n-network Sn

can be solve with various methods. We have already developed a software suite [10] based on
applying iterative algorithms for stepwise improvement of an initial network S0

n. In consists of
several procedures that can be viewed as separate algorithms.

The main geometric method for constructing, based on the current n-network Sn, a new iter-
ation ̂Sn that would in some sense more precisely reflect the geometry of set M , is the following
scheme based on Voronoi diagrams [1].

Algorithm 1.

1. Construct the Voronoi diagram for the points of n-network Sn

W (Sn) =
{

w ∈R
2 : ∃si ∈ Sn,∃sj ∈ Sn, ‖w− si‖= ‖w− sj‖= h({w}, Sn)(i �= j)

}

,
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i.e., find points that have two or more nearest elements from the set Sn. By construction, the
Voronoi diagram consists of rays, segments, and their junction points.

2. For each point si ∈ Sn, i = 1, n, construct with the Voronoi diagram a region on the plane
Π(Sn, si) =

{

p ∈ R
2 : ∀j = 1, n (‖p− si‖ � ‖p− sj‖)

}

.

3. Find Dirichlet cells for the points si ∈ Sn, i = 1, n: M(Sn, si) = Pi ∩M , i = 1, n, i.e., subsets
of M that lie no further from si than from other points in the n-network Sn.

4. Construct a new network ̂Sn = {ŝi}ni=1 by the following rule:

ŝi =

{

c(M(Sn, si)), if M(Sn, si) �= ∅

si, if M(Sn, si) = ∅,
i = 1, n. (2)

The algorithm is applied multiple times until the deviation of the new network from the previous
becomes less than a given value δ.

Theorem 1. Let M be a closed bounded set in R
2. Then for every n-network Sn and the set M

obtained for it after running Algorithm 1, the n-network ̂Sn satisfies the estimate

h(M, ̂Sn) � h(M,Sn). (3)

If, moreover, points of n-networks Sn and ̂Sn satisfy

∀i = 1, n, si �= ŝi, (4)

then inequality (3) is strict:

h(M, ̂Sn) < h(M,Sn). (5)

Proof of Theorem 1 is given in the Appendix.

The algorithm 1 is completely similar to, e.g., algorithm A1 from [22]. That work indicates
that in the general case there is no convergence to the globally optimal solution for Algorithm 1.
However, for each generation of initial conditions, under Hausdorff iterations the distance between
the current and next value of the n-network in the limit tends to zero, which is also supported by
the results of [17, 18]. Therefore, some approximation of the optimal network will always be found
in finite time. Due to stochastic choice of initial conditions we can find the optimal among obtained
results.

An important problem in the development of a software suite is to generate the initial iteration
of an n-network Sn to which we can then apply Algorithm 1. This generation is supposed to,
on one hand, provide a relatively uniform distribution of points across the entire region of the
compact set M , while not deviating too far from this region (although note that there may exist
optimal n-networks part of whose points lie outside the set M and even outside its convex hull).
On the other hand, for every run of the software suite the initial n-network Sn must differ from the
previous ones so that we would be able to choose the best approximation out of the ones it obtains.
Naturally, figures with different geometry may require different generation schemes. In particular,
for a square centered at the origin and with sides of length 2l parallel to the coordinate axes we
can use the following scheme.

Algorithm 2.

1. Specify a number γ ∈ (0, 1) as a parameter for generating stochastic components of the
coordinates.

2. Find the least natural number m that satisfies inequality m2 � n.
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Fig. 1. Set M in Example 1, its optimal 16-network approximation and set of circles Ξ.

3. Divide the square M into m2 equal squares Mi, i = 1,m2, with sides of length 2l/m parallel to
the coordinate axes. Squares are numbered. The top row contains squares numbered 1 to m from
left to right; the second row from above, from m+ 1 to 2m, and so on. We denote by xmi and ymi
respectively the horizontal and vertical coordinate of the center of square Mi with number i.

4. Generate two arrays of random numbers each of which consists of n elements: X∗ = {x∗i }ni=1

and Y ∗ = {y∗i }ni=1.

5. If n > m2 −m, as the initial n-network Sn take the set of points with coordinates

Sn =
{

si = (xmi + γl(x∗i − 0.5)/m, ymi + γl(y∗i − 0.5)/m) : i = 1, n
}

. (6)

6. If n � m2 −m, as the initial n-network Sn take the set of points with coordinates

Sn =
{

si =
(

xmi−m + γl(x∗i − 0.5)/m, ymi−m + γl(y∗i − 0.5)/m
)

: i = 1, n
}

. (7)

Remark 1. Algorithm 2 can be used to generate an initial approximation of an n-network not
only for a square but also for a figure which is close in geometry and is embedded into the square.

Example 1. Let us solve Problem 1 for n = 16 for the set M , a square with side 2 and center at
the origin.

We solved it numerically, with multiple applications of Algorithm 1 for initial generation of
n-networks obtained with Algorithm 2.

Approximation S16 for the optimal 16-network has the form

S16 ≈ {(−0.7834;−0.7273), (−0.7834;−0.1820), (−0.7259; 0.3049), (−0.7495; 0.7591),

(−0.3188;−0.7577), (−0.2889;−0.2458), (−0.2364; 0.2469), (−0.2269; 0.7840),

(0.2168;−0.8078), (0.2263;−0.3343), (0.2579; 0.1756), (0.2563; 0.7249),

(0.7524;−0.7573), (0.7879;−0.2420), (0.7801; 0.2992), (0.7318; 0.7833)}.

The Hausdorff distance between square M and the optimal 16-network approximation is r =
h(M,S16) ≈ 0.3482. Note that the resulting 16-network improves over the result found by the
authors in [10] with a 16-network whose Hausdorff distance from the square M was r̃ = 0.3521.

The set M , optimal 16-network S, and the set of circles Ξ covering set M with minimal radius
are shown on Fig. 1. Although the number of points in the optimal n-network approximation is a
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Fig. 2. Set M in Example 2, its optimal 15-network approximation, and set of circles Ξ.

square of 4, they are not placed at the centers of squares Mi, i = 1, 16, from which the figure M is
composed, but form a rather complex structure. Note that the optimal 9-network approximations
for the square found in [21] also do not form a rectangular grid.

Example 2. Let us solve Problem 1 for n = 15 for the set M , an ellipse bounded by the curve
x2 + 2y2 = 1.

We solve this problem in the same way as in the previous example. One characteristic feature
of the set M is that its boundary is a curve of degree two. Therefore, in the construction of a
Dirichlet region we need to find intersections of line segments that occur in the Voronoi diagram
with an ellipse.

Approximation S15 for the optimal 15-network has the form

S15 ≈ {(−0.4787;−0.4315), (−0.5162; 0.4561), (−0.0340;−0.1933), (−0.3757; 0.0182),

(0.3318;−0.4839), (−0.0512; 0.2927), (−0.0815; 0.6776), (−0.0839;−0.6200),

(0.8428;−0.0088), (−0.8308; 0.1779), (0.6704;−0.3234), (0.3294; 0.0086),

(0.3426; 0.4801), (−0.8092;−0.2161), (0.6869; 0.3190)}.
Hausdorff distance between the ellipse M and the approximation for the optimal 15-network is

r = h(M,S15) ≈ 0.2668. The set M , optimal 15-network S, and set of circles Ξ covering set M
with minimal radius are shown on Fig. 2.

3. CONSTRUCTING AN OPTIMAL NETWORK ON A SPHERE

In the design of control systems for underwater robots we need to solve the problem of placing
the sensors on a hemisphere that would ensure covering of the entire hemisphere for a given radius
of sensor operation [23]. From the mathematical point of view this is a problem of finding the
set of points on a sphere such that a given region lies inside the union of spherical segments of
equal radius with centers in these points [24]. In other words, the problem reduces to constructing
a counterpart of an optimal Chebyshev n-network in the spherical metric. Similar problems also
arise in the design of networks of man-made Earth satellites intended for communication, in the
monitoring of ecological processes, or for navigation. In this case we need to account for the shape
of the Earth, which in this case can be assumed to be a ball.

Let us formulate the problem of optimal approximation for a compact set on a sphere of unit
radius, which we denote by Θ. We introduce a metric on a sphere.
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Definition 1. The distance σ(a,b) between points a ∈ Θ and b ∈ Θ on a sphere is the minimal
length of a curve Γ ⊂ Θ connecting points a and b.

Definition 2. Spherical distance hσ(A,B) between a closed set A ⊂ Θ and a closed set B ⊂ Θ
is the value

hσ(A,B) = max
a∈A

min
b∈B

σ(a,b). (8)

We call a spherical n-network a nonempty set that consists of at most n points on a sphere Θ.
We denote by Σσ

n the set of all spherical n-networks.

Problem 2. For a given compact set M ⊆ Θ and number n ∈ N, find such a set of n points
Sn ⊂ Θ for which the value hσ(M,Sn) is minimal among all possible sets.

Problem 2 can be considered as a problem of optimal covering for a compact set M ⊆ Θ by a set
of a fixed number of spherical segments of equal radius. Here the centers of segments coincide with
points from the set Sn. In what follows we will call Sn a spherical n-network. Similar problems of
sphere coverings have been considered in [24].

Unlike the plane, the sets on a sphere, generally speaking, do not have a well-defined Chebyshev
center since for some sets M the point x∗ where function h(M, {x}) takes minimal value is not
unique. For instance, ifM is a circle of unit radius centered at the origin and lying in the plane xOy,
there will be two such points: (0, 0, 1) and (0, 0,−1). However, for sufficiently small compact sets M
bounded by arcs of circles we can find a point where the value of h(M, {x}) is minimal. This lets
us implement, for stepwise improvement of a spherical n-network, a modification of Algorithm 1.
Dirichlet cells in this case correspond to cells on a sphere lying with respect to the spherical metric
no further from one of the points si ∈ Sn than from the rest of the points from Sn. Instead of
center perpendiculars to segments that form a Voronoi diagram, on a sphere we construct arcs of
large circles (centered at the origin) that are equidistant from two points in the n-network. The
algorithm is applied multiple times until the deviation of the new network from the previous one
becomes less than a given value δ.

To solve Problem 2 with a stepwise iterative algorithm, the choice of initial placement of points
is very important. In this work, we have studied mostly coverings of a spherical segment centered
at point (0, 0, 1) of radius r∗ ∈ (0, π). For this case, we have developed the following scheme.

Algorithm 3.

1. Generate an array P = {pi}ni=1 of n random numbers.

2. Construct an array of distances from the points of the n-network to the center of the covered
spherical segment D = {di = (i+ 1)r∗/(n + 1)}ni=1.

3. Find coordinates of points si = (xi, yi), i = 1, n, for the initial approximation by formula
xi = di cos(πpi), yi = di sin(πpi)(−1)i+1, i = 1, n.

The set of points constructed with Algorithm 3 is embedded into the segment M , for which we
propose to solve Problem 2. Here the points (by construction) are at distance at least r∗/(n + 1)
from each other (in the metric on the sphere’s surface). At the same time, there is a significant
amount of randomness in the generation of the coordinates for each element in the set Sn, which
lets us get significantly different results for every new run of the program.

Example 3. Let us solve Problem 2 for the set M = {(x, y, z) : x2 + y2 + z2 = 1, z � 0}, which
is an upper hemisphere of the sphere Θ for n = 18.

This problem was solved with the software suite we developed, by multiple runs of Algorithm 3.
Among the resulting approximate 18-networks we have chosen the one for which the value of
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Fig. 3. Projections on the plane xOy for the set M , its optimal spherical 18-network S, and set of spherical
segments Ξ in Example 3.

hσ(M,Sn) is minimal. This approximation S18 for the optimal spherical 18-network has the form

S18 ≈ {(0.3246; 0.8831; 0.3389), (−0.0657;−0.9965; 0.0508), (−0.3417; 0.0296; 0.9394),

(0.8413; 0.5405; 0), (0.7809; 0.3241; 0.5340), (−0.2595; 0.9531; 0.1559),

(−0.7676; 0.5660; 0.3007), (−0.8000; 0.0004; 0.6), (0.6018;−0.7563; 0.2568),

(−0.6838;−0.6770; 0.2723), (−0.3353; 0.6365; 0.6946), (−0.9960;−0.0579; 0.0676),

(0.1772;−0.2254; 0.9580), (0.2385; 0.4936; 0.8364), (0.2203;−0.7885; 0.5742),

(0.6312;−0.1779; 0.7549), (−0.3878;−0.6366; 0.6666), (0.9587;−0.2020; 0.2004)}.

The spherical distance between set M and S18 is r = hσ(M,S18) ≈ 0.4143. Projections on the
plane xOy for the hemisphere M , approximation S for the optimal spherical 18-network, and
the set of spherical segments Ξ of smallest radius centered at the points of the 18-network and
covering M are shown on Fig. 3.

4. CONSTRUCTING AN OPTIMAL NETWORK IN A NON-UNIFORM METRIC

In spatial economics and transportation logistics, the problem of placing servicing centers [11]
that minimizes the costs of delivering goods to consumers from the nearest center [12, 25] is very
important [4]. This problem reduces to minimization of a functional that defines a non-uniform
metric that characterizes transportation costs in different parts of the region [12]. We have consid-
ered practical problems that lead to settings of this kind and segmented logistical servicing zones
on the territory of Sverdlovks [26] and Irkutsk [27] regions. There, the metric was constructed with
regard to geographical features and non-uniform population density of the territory.

Consider a vector space on a plane with a metric where the distance between points a and b is
defined as follows:

ρf (a,b) = min
Γ∈Γ(a,b)

∫

Γ

dΓ

f(x, y)
, (9)

where 0 < f(x, y) < K is a piecewise continuous function; Γ(a,b) is the set of continuous curve
connecting a and b. If f(x, y) ≡ 1, we have a Euclidean metric.
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This metric arises in problems of transportation and infrastructural logistics [12]. For example,
if we need to find optimal placement for a fixed number n of logistical centers (warehouses, stores)
in case when the consumers are distributed continuously but non-uniformly. If we represent all
objects as points, we can formalize this problem in geometric terms.

Problem 3. For a given compact set M , function f(x, y) with domain (−∞,∞)× (−∞,∞) and
number n ∈ N, find such a set of n points Sn for which the value

max
m∈M

min
j=1,n

ρf (m, si) (10)

will be minimal among all possible sets.

To solve Problem 3, we propose an approach based on an analogy between the propagation of
light in an optically non-uniform medium and finding the minimum of an integral functional (the
optical–geometric approach) [11, 12]. It is known that light, in its motion, chooses the path that
it can travel in minimal time (Fermat’s principle), and also that every point reached by the light
becomes, in turn, a secondary light source (Huygens’ principle). This implies that the front of a
light wave at any moment of time represents a sphere in the metric space with metric (9), where
f(x, y) is the optical permeability of the medium (local speed of light at the corresponding point),
and the set of “illuminated” points is the ball bounded by the front. Here the ball’s radius, generally
speaking, increases with time. We can consider this procedure of running a wave in a medium in
a space of any finite dimension, but for applications it is most interesting to consider the case of
dimension two, so we restrict ourselves to this case in the present work. The procedure of running
a wave has been shown by the authors in [11, 12], so here we omit their formal description. Further
we show an algorithm for solving Problem 3.

We assume that we have some initial n-network S0
n, which can be constructed, for instance, by

random sampling of the points.

Algorithm 4.

1. Construct a counterpart of the Voronoi diagram for the points of the current n-network Sn,
i.e., find points that have two or more nearest elements from the set Sn. We call the points that
have three or more such elements “corner” points. The construction can be done by running
simultaneous light waves from all points si (i = 1, n) and finding those points in the set M which
two or more waves reach at the same time. We also consider the points on the boundary of the
set M where two or more waves arrive corner points.

2. Find Dirichlet cells of the points si ∈ Sn, i.e., subsets of M that lie no further from the point
si than from other points in the n-network Sn. For this purpose, for each point in the set M we
establish which number wave (the numbering of waves corresponds to the numbering of points si)
has arrived to this point first.

3. Construct a new network ̂Sn = {ŝi}ni=1. For this purpose, for each Dirichlet region number i
we find corner points at maximal distance from each other (there can be, obviously, two or more
such points). From these points, we run waves inside the Dirichlet region and find the point that
will be “illuminated” the last. This point is taken as the element ŝi in the new ̂Sn-network.

4. Go to step 1.

The algorithm is applied multiple times until the deviation of the new network from the previous
one becomes less than a given value δ.

Since with this algorithm we can, obviously, find only local extremal points, we have to run the
generation procedure of the initial n-network multiple times (multistart). Note that developing
methods for directed generation of initial positions (with algorithms of type 2 and 3) in this case
meets significant obstacles since we have to account both for the geometry set M and for the
properties of function f(x, y).
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Fig. 4. Set M , approximation of the optimal 4-network S, and set of “circles” in the variational metric Ξ in
Example 4.

Example 4. Solve Problem 3 for n = 4 for the setM = {1 � x � 6; 1 � y � 6}, which is a square,
and medium function

f(x, y) =

⎧

⎪

⎨

⎪

⎩

0.2, a(x, y) � 0.2
a(x, y), 0.2 < a(x, y) < 0.8
0.8, a(x, y) � 0.8,

a(x, y) =
(x− 3.5)2 + (y − 3.5)2

1 + (x− 3.5)2 + (y − 3.5)2
.

We have solved this problem with the developed software suite by multiple runs of Algorithm 4.
From the resulting approximations to 4-networks we have chosen the one with minimal radius of
covering “circles” in the metric (9). Coordinates of its points are

S4 = {si}4i=1 ≈ {(2.88; 2.88), (2.88; 4.12), (4.12; 2.88), (4.12; 4.12)}.
The value of expression (10) equals r ≈ 3.76. Figure 4 shows the set M , network S, and set Ξ of
covering “circles.” One of the “circles” is shown with a thick line (to show its form), and the other
three, located symmetrically, are shown with thin lines. Note that the “circles” are nonconvex, and
their boundaries have complex wave-like geometry in the neighborhood of the point (3.5; 3.5). This
is due to the small value of the speed f(x, y) of propagation in its neighborhood, which curves the
lines of light propagation and makes them significantly different from line segments.

5. QUALITY ESTIMATION FOR THE ALGORITHMS

Our software has been implemented in the MATLAB R2012a software suite and has total
size 389 KBytes. Modeling was done on a desktop computer with Intel(R) Core(TM)2 Duo CPU
E4500 @ 2.21 GHz with 2.00 GB RAM.

In solving Problem 1, we have set various parameters for the time limit on the operation of
the software suite. The number of iterations performed by Algorithm 1 is approximately inversely
proportional to the square root of the accuracy parameter δ. In particular, when computing the
optimal 16-network for a square on a plane for δ = 0.001 the number of iterations was I = 21–23; for
δ = 0.0001, I = 67–83; for δ = 0.00001, the number of iterations was in the range of I = 161–189.
The running time of the software was on average about 5–7 minutes for the smallest accuracy
parameter.
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In solving Problem 2, we similarly performed modeling for different parameters. When con-
structing an optimal spherical 18-network for a hemisphere of unit radius for δ = 0.001 the number
of iterations was I = 54–88; for δ = 0.0001, I = 123–132; for δ = 0.00001, the number of iterations
was in the range I = 206–343. The running time of the software was on average about 12–15 min-
utes for the smallest accuracy parameter.

6. CONCLUSION

The iterative algorithms proposed in this work have been implemented and are successfully
used to construct optimal Chebyshev n-networks and circle approximations for compact sets on a
plane. Similar algorithms let one construct networks and coverings made of spherical segments on
a sphere, i.e., surface with non-Euclidean geometry. These problems are important for technical
applications; in particular, they are used in the design of sensor networks.

An important direction for further applications of these studies is the construction of trans-
portation networks and placing logistical centers for the servicing. In such problems, there often
arises a conceptually different metric that reflects the fact that the environment is non-uniform.
To solve these problems, one uses algorithms previously developed by the authors based on the
optical–geometric approach. Here we can see that in Example 4 the number of points and accuracy
of computations is smaller than in Examples 1–3. This is due to the fact that the implementation of
the optical–geometric approach that we have done requires quite a lot of computational resources.
One possible way to solve this problem appears to be parallelizing the computations.

APPENDIX

Proof of Theorem 1. We denote r = h(M,Sn) Suppose that inequality (3) does not hold. Then
there exists a point m∗ ∈ M that satisfies

min{‖m∗ − ŝi‖ : i = 1, n} > r.

Next we find the point sj from n-network Sn nearest to m∗ in the Euclidean metric (if there are
two or more such points, we can take any one of them). By construction, m∗ lies in Dirichlet cells
M(Sn, sj) and, respectively, M(Sn, sj) is a nonempty set. Consequently, its Chebyshev center is a
point s∗j that belongs to the n-network ̂Sn. By definition of a Chebyshev center it follows that

h
(

M(Sn, sj), {s∗j}
)

� h
(

M(Sn, sj), {sj}
)

.

At the same time, by definition of Dirichlet cellsM(Sn, sj) it follows that its Hausdorff distance from
the points sj does not exceed the Hausdorff distance of the set M from Sn, h(M(Sn,sj),{sj})�r.
Consequently, for the set M(Sn, sj) and points s∗j it holds that h(M(Sn, sj), {s∗j}) � r. Since by
construction m∗ ∈ M(Sn, sj), it also holds that ‖m∗ − ŝj‖ � r, so we arrive at a contradiction.

Let us now show that (4) implies (5). Note that condition (4) means, as a consequence of
formula (2), that all Dirichlet cells M(Sn, si), i = 1, n, are nonempty (otherwise at least one point
in the new n-network ̂Sn would coincide with a point from the old n-network Sn with the same
index). Let us now show that

∀i = 1, n h
(

M(Sn, si), {s∗i }
)

< h
(

M(Sn, si), {si}
)

. (A.1)

By formula (2), points s∗i , i = 1, n are Chebyshev centers of sets M(Sn, si), i = 1, n. Condition (4)
means, respectively, that points si, i = 1, n do not coincide with them. By uniqueness of Chebyshev
centers [6] it follows that for every point that does not coincide with it the Hausdorff distance from

AUTOMATION AND REMOTE CONTROL Vol. 78 No. 7 2017



1300 KAZAKOV, LEBEDEV

a given compact set is strictly larger. Consequently, estimate (A.1) holds. By the definition of a
Dirichlet region, r = max{h(M(Sn, si), {si}) : i = 1, n}. At the same time, for an n-network ̂Sn we
can write an estimate h(M, ̂Sn) � max{h(M(Sn, si), {s∗i }) : i = 1, n}. This, together with inequal-
ities (A.1), implies h(M, ̂Sn) < r, which coincides with (5).
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