
ISSN 0005-1179, Automation and Remote Control, 2017, Vol. 78, No. 7, pp. 1276–1289. c© Pleiades Publishing, Ltd., 2017.
Original Russian Text c© A.B. Dolgui, A.V. Eremeev, V.S. Sigaev, 2017, published in Avtomatika i Telemekhanika, 2017, No. 7, pp. 125–140.

STOCHASTIC SYSTEMS

Analysis of a Multicriterial Buffer Capacity Optimization

Problem for a Production Line

A. B. Dolgui∗,a, A. V. Eremeev∗∗,b, and V. S. Sigaev∗∗∗,c

∗IMT Atlantique, LS2N, Nantes, France
∗∗Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences,

Novosibirsk, Russia
∗∗∗SJC “Avtomatika-servis,” Omsk, Russia

e-mail: aalexandre.dolgui@mines-nantes.fr, beremeev@ofim.oscsbras.ru, csigvs@mail.ru

Received December 19, 2015

Abstract—We consider a multicriterial optimization problem for volumes of buffers in a pro-
duction line. We assume that the line has a series-parallel structure, and during its operation
equipment stops occur due to failures, stops that are random in the moments when they arise
and in their durations. The volumes of buffers are integer-valued and bounded from above. As
criteria we consider the average production rate of the line, capital costs for installing buffers,
and the inventory cost for intermediate products. To approximate the Pareto optimal set we
use evolutionary algorithms SIBEA and SEMO. Problems with larger dimension experimentally
support the advantage of the modified SEMO algorithm with respect to the hypervolume of
the resulting set of points.
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1. INTRODUCTION

In the design of automated control systems for production and a number of other decision
making support systems, it is important to develop approximation algorithms for the set of Pareto
optimal solutions. In control over such industrial systems as machining lines, flexible manufacturing
systems, or automated assembly lines where parts move from one machine to the next with some
transport mechanism, the following optimization problem arises for the volumes of buffers.

Due to equipment failures, during a line’s operation, failures of units of equipment (EU) arise,
with random starting times and durations. The consequences of these failures extend to adjacent
operations because it either becomes impossible to pass a part to the next operation or there are no
parts at the EU’s input. The presence of buffers (reservoirs) for storing the parts between EUs lets
one decrease the influence of failures on adjacent operations and improve the average production
rate of a line. However, to install buffers one has to invest into additional capital costs and increase
the number of parts being stored. The problem is to choose volumes of buffers while taking into
account the line’s average productivity, capital costs for installing the buffers, and storage costs for
the parts.

The importance of such optimization problems for production lines has been demonstrated in [1].
A significant economic effect of applying the methods for solving such problems on automobile
plants of PSA Peugeot Citroën has been shown in [2].

Analysis of industrial lines that accounts for equipment failures is usually done via constructing
Markov models with discrete or continuous time under the assumption of geometric or exponential
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distributions of EU’s time to failure and their repair times (see, e.g., [3]). The duration of processing
a part can be assumed to be either deterministic or random (usually with geometric, exponential,
or Erlang probability distribution). In case of continuous time and deterministic durations of
processing the parts individual non-Markov transitions are approximated by Markov ones under
the assumption of exponential distributions of the corresponding random values [4–6]. Under
sufficiently natural assumptions, the resulting Markov models have a stationary distribution (see [7],
Chapter 2), and the average throughput and average number of parts in each buffer in steady state
mode are well defined for them.

Most works in the literature on the problem of optimizing volumes of buffers have been related
to single-criterial settings (see, e.g., [8–10]). Other publications have considered more than one
criterion but used their weighted sum [11, 12]. In [13], the ant colony algorithm and the evolutionary
algorithm from [14] have been adapted for the multicriterial optimization problem of buffer sizes.
As the criteria they considered maximization of average production rate of a line, computed with
a simulation algorithm, and minimization of the total size of buffers. A well-known version of
the multicriterial genetic algorithm [15] has been adapted in [16] to a bicriterial problem of buffer
allocation, where the criteria are average production rate of the line in the steady state and capital
costs for installing the buffers.

One characteristic feature of this work is that in the problem setting we use three criteria:
maximization of average line throughput in the steady state, minimization of capital costs for
installing buffers, and minimization of average inventory costs for the parts in intermediate buffers.
Computations of the average productivity of a line and average number of parts in the buffers
use an efficient approximate method for analyzing it [4] based on replacing line segments with
“equivalent” EU.

Unlike single-criterial variations of the problem, which use a convolution of criteria or place
some criteria into constraints, the tri-criterial setting has not one optimal value of a criterion but
rather an entire set of unimprovable values for the vector of three criteria (Pareto front). The
considered tri-criterial problem setting appears to be the most relevant on the stage of finding a
way to develop production, when we have not yet chosen the planned production rate and the
structure of production line. On this stage, analysis of the Pareto front lets a decision maker make
his or her choice among the set of unimprovable options of buffer distributions. On latter stages of
decision making, when we have defined the required production rate or bounded the total volume
of buffers, single-criterial problem settings may prove to be more relevant.

Exact methods for computing the average line throughput are known for the case of two and,
in some special cases, three sequential EUs divided by buffers (see, e.g., the survey [3]). For the
general case one uses approximate approaches such as decomposition, aggregation, or simulation
modeling [3, 4].

Since there are no exact methods to compute the average line productivity and average number
of stored parts, in this work to approximate the Pareto set we use evolutionary algorithms, whose
application to this problem does not require us to compute the criteria exactly.

2. PROBLEM SETTING

Let n be the number of buffers and m be the number of EUs in the line. We denote by Z+ the set
of nonnegative integers. We introduce the vector of variables h = (h1, . . . , hn) ∈ Z

n
+, where hi is the

volume of the ith buffer, i = 1, . . . , n. The structure of the line is represented by a directed series
parallel graph G, where vertices b0, . . . , bn+1 correspond to buffers and arcs a1, . . . , am correspond
to units of equipment. Each arc is directed from the vertex of the input buffer of the corresponding
EU to the vertex of its output buffer. Multiple arcs are possible, they correspond to EUs with
common buffers working in parallel. The only vertex b0 that has no incoming arcs corresponds
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to the input buffer of the line, and the only vertex bn+1 without outgoing arcs corresponds to the
output buffer. Each vertex bj is assigned with the maximal number of parts hj that can be stored
in buffer j, and h0 = hn+1 = ∞. We assume that the line input always has a sufficient number of
parts, and processed parts can be stored in the output buffer since it has unbounded size.

Any EU can be in states “operational,” “failure” (EU is being repaired after it has broken down),
“blocked” (impossible to transfer a processed part to the next operation), and “idle” (there are no
parts at the EU’s input). According to the above assumptions, EUs related to the buffer on system
input cannot be in the “idle” state, while EUs related to the buffer on the system output cannot
be in the “blocked” state.

In case when the buffer is full at the output of some EU, the part processed by it cannot be
moved out of the EU and remains in the EU until some space frees up in the buffer. In case when
several EUs are waiting for free space in the same buffer, when the space is freed for one part, one
of these EUs chosen with equal probabilities. In a situation when several EUs are waiting for parts
to come from some buffer which is empty at the present time, at the moment when part appears in
the buffer one of these EUs chosen with equal probabilities and stops being idle (the arrived part
is loaded to this EU for processing).

Each arc ai in graph G is characterized by a triple of parameters (TF
i , T

R
i , Ui) ∈ [1,∞)2 × N,

where N is the set of natural numbers. While in the “operational” state, EU number i has a
constant time for processing a part, denoted by Ui ∈ N, i = 1, . . . ,m. Failures and repairs for
different EUs occur independently, and time to failure, similar to the repair time for an EU, has a
geometric distribution. For each EU, TF

i ∈ [1,∞) is the average time to failure, and TR
i ∈ [1,∞)

is the average repair time. If an EU number i is operational, and its input buffer j is nonempty
and buffer j′ at its output is not full (i.e., it is not in the “failure,” “blocked,” or “idle” state),
then every Ui units of time this EU adds to buffer j′ one part and takes one part from buffer j. In
the “blocked” and “idle” states EU does not fail. In the “failure,” “blocked,” and “idle” states EU
does not change the numbers of parts in its input and output buffers. At the moment of failure,
processing of the current part is stopped, and after repair it is continued until the completion.
The processing time for a part after repair equals the processing time remaining at the moment of
failure.

The possibility to model such a production line with a discrete time Markov chain is discussed
in Appendix A. There we also give a formal definition of average line production rate V (h) and
average number of parts qj(h) in buffer j, j = 1, . . . , n, in stationary mode.

We define the set of admissible solutions for the considered problem of choosing buffer sizes as
D = {h|0 � hi � di, i = 1, . . . , n}, where di is the maximal admissible size of buffer i, i = 1, . . . , n.
In this work we consider the multicriterial optimization problem for volumes of buffers for a series
parallel structure of the line with the following criteria:

—average throughput of the line in stationary mode V (h) → max;

—capital costs for installing buffers J(h) → min, where

J(h) =
n∑

j=1

Jj(hj),

Jj(hj) is the cost of installing buffer j with volume hj ;

—the inventory cost for parts in intermediate buffers Q(h) → min, where

Q(h) =
n∑

j=1

wjqj(h),

wj is the storage cost for parts in buffer j.
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2.1. Aggregation Schemes for Line Segments

Similar to [4–6, 17, 18] and some other papers we assume in what follows that the number of
parts xj in buffer j is measured not by an integer but by a continuous value from [0, hj ]. This
simplification is due to the need to reduce computational costs and is based on the observation
that only boundary states when the buffer’s contents are either 0 or hj can lead to stopping the
equipment. For all other states, the line’s throughput does not change regardless of the buffer
state in (0, hj). By passing from discrete states to a continuous ones, we can replace by a sin-
gle state with real parameter xj the entire set of internal states with buffer occupancy in the
interval (0, hj).

In this work, as an algorithm for approximate computation of the line’s parameters in the steady
state we use an algorithm from [4] based on replacing line segments with “equivalent” EUs. Next,
approximate values for V (h), q1(h), q2(h), . . . , qn(h) and Q(h) found with this aggregation method
are denoted respectively by V ′(h), q′1(h), q′2(h), . . . , q′n(h), and Q′(h).

Aggregation procedures have been developed for two kinds of line segments: with two sequential
EUs (rule R1) and with two parallel EUs (rule R2). During operation, the algorithm sequentially
chooses two-machine segments and replaces them with single EUs with “equivalent” parameters
until it gets a line consisting of a single EU. Average productivity of this EU yields the value V ′(h),
and average values of the number of parts in buffers excluded in aggregation by rule R2 yield the
corresponding values q′j(h).

The accuracy of the above-described heuristic depends on the order in which we aggregate line
segments. The efficiency of various rules for choosing an EU pair to apply the aggregation procedure
has been studied in [19] in detail. In this case rule R1 always, whenever possible, has higher priority
than rule R2. In case when we have several alternatives when choosing a pair with sequential EUs,
the higher priority goes to a pair with smaller buffer capacity.

Computational experiments [4] with instances from [18] have shown that this aggregation method
has deviation inside 5 % of the average values obtained by simulation modeling. By computing
confidence intervals for V (h) we have established for some of these examples that the value V ′(h)
found by aggregation lies in the interval with confidence level 0.99.

2.2. Pareto Front Approximation Algorithms

Suppose that on the set of admissible solutions D we know a criterial vector function f =
(f1, . . . , fk) that takes values in the space of criteria f(x) = (f1(x), . . . , fk(x)) ∈ R

k, x ∈ D, where
k is the number of criteria. We introduce the Pareto domination relation in the space R

k for the
case when all criteria are supposed to be maximized: vector f = f(x), x ∈ D Pareto dominates
vector f̄ = f(x̄), x̄ ∈ D, if there is at least one strict inequality among fi(x) � fi(x̄), i = 1, . . . , k.
In case of criteria that have to be minimized the domination relation in the space of criteria is
introduced in a similar way. A solution x ∈ D dominates solution x̄ ∈ D if the vector f(x) Pareto
dominates vector f(x̄). The set D̃ of all non-dominated admissible solutions is called the set of
Pareto optimal solutions (Pareto set). The Pareto front is the set F := f(D̃).

Since in the general case it appears to be impossible to exactly compute the criteria V (h) and
Q(h), as the first step of approximation for the Pareto front we replace the domination relation
defined by criteria V , J , and Q, with the domination relation defined by criteria V ′, J , and Q′. We
denote the latter relation by �′, and the corresponding Pareto front by F ′. Further, it follows from
the results of [20] that exactly computing F ′ is an NP-hard problem and may require excessive
computational resources. Therefore, we make the second approximation step, which is to find an
approximate solution for the problem of finding the Pareto front F ′ via evolutionary algorithms
SIBEA [21] and SEMO [22].
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In the operation of the SEMO algorithm (Simple Evolutionary Multiobjective Optimizer), on
each iteration we choose a parent individual at random from the population, which contains pair-
wise non-dominated solutions (individuals). Next, from the parent individual with the mutation
operation we obtain an offspring, which we add to the population if it does not contain individuals
that dominate the offspring or individuals with the same value of the vector criterion. All indi-
viduals in the population that are dominated by this offspring are removed. As a result of this
algorithm, we get the population Π computed by the end of its operation.

Algorithm 1 (SEMO).

1. Generate at random solution x and let Π := {x}.
2. While the stopping criterion is not satisfied:

2.1. Choose at random an individual x from population Π.

2.2. Construct an offspring x′ := Mut(x) (operator Mut(x) will be defined below).

2.3. Remove dominated individuals from the population, Π := Π\{z ∈ Π|x′ �′ z}.
2.4. If �z ∈ Π such that z �′ x′ or f(z) = f(x′) then Π := Π ∪ {x′}.

The algorithm’s stopping criterion is defined in one of the following ways:

—stop if the maximal number of iterations has been reached;

—stop if the maximal time allotted for this run has been reached.

An individual taken at random from the population is subject to the mutation operator for
which the chosen solution is changed at random. In application to the considered problem, the
action of a mutation operator is defined by the function Mut(h) = (h1 + ξ1, . . . , hN + ξN ), where
ξi are integer-valued random values uniformly distributed from max{−hj ,−Δ} to min{dj −hj,Δ},
j = 1, . . . , N . Here Δ is an algorithm parameter that defines the intensity of the mutations.

To define the next algorithm, we will need the definition of hypervolume [23, 24]. Let us choose
in the space of criteria a reference point r = (r1, . . . , rk) (one usually selects the point r which is
definitely dominated by all points f(x), x ∈ D). For the set A ⊆ D, the hypervolume IH(A) is
defined as follows:

IH(A) = V OL

(
⋃

a∈A
[r1, f1(a)]× · · · × [rk, fk(a)]

)
,

where V OL(·) denotes the Lebesgue measure. In case when criteria are supposed to be minimized,
the definition of hypervolume is modified in an obvious way.

The (μ+ 1)-SIBEA algorithm is based on the Simple Indicator-Based Evolutionary Algorithm
(SIBEA) proposed in [24]. During the execution of this algorithm, on each iteration we add to
population Π of size μ an offspring x created from the parent individual chosen at random. Then,
we remove from the population an individual whose contribution to the value of the population’s
hypervolume according to criteria V ′, J , and Q′ is minimal. As the reference point we have chosen
the point r = (0, J(d1, . . . , dn),

∑n
j=1wjdj). The algorithm’s stopping criterion is defined in the

same way as in the SEMO algorithm.

Algorithm 2 (the scheme of (μ + 1)-SIBEA).

1. Generate at random a population Π of size μ.

2. While the stopping criterion is not satisfied:

2.1. Choose at random an individual x from population Π.

2.2 Construct an offspring x′ := Mut(x) and add it to the population Π′ := Π ∪ {x′} (operator
Mut(x) has been considered above).

2.3. Find d(x) := IH(Π′)− IH(Π′\{x}) for each individual x ∈ Π′.
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2.4. Choose an individual z ∈ Π′ such that d(z) = minx∈Π′ d(x). If there are several such indi-
viduals, choose one of them at random.

2.5. Remove the selected individual from the population, Π := Π′\{z}.
Similar to the SEMO algorithm, the value of the entire population’s hypervolume does not

decrease as the number of iterations grows, but unlike SEMO the population size in the SIBEA
algorithm remains constant.

The SIBEA algorithm aims to approximate the Pareto set with a bounded number of points. It
is important to bound the population size if we want to approximate the Pareto optimal set with
a comparatively small number of solutions.

3. COMPUTATIONAL EXPERIMENT

SEMO and SIBEA have been implemented in the Visual Studio 2010 integrated development
environment. In order to further diversify the population, we also consider a modification of the
SEMO algorithm where the initial population consists of 1000 individuals generated at random.
In what follows we denote this algorithm by SEMO+. All experiments have been done on an
Intel Core i5 desktop computer (2,4 GHz CPU, 4 Gb of RAM). The mutation intensity was set to
Δ = 2.

In the experiments, we used a series of problems AS from [18] and a problem P0 of small dimen-
sion. The P0 problem is constructed based on a line with a sequential structure with three intermedi-
ate buffers and four EUs, where d1 = d2 = d3 = 20, TF

1 = TF
4 = 30, TF

2 = TF
3 = 15, TR

1 = TR
4 = 200,

TR
2 = TR

3 = 100, U1 = U2 = U3 = 3000. The AS series consists of problems constructed based on
flow lines no. 1, 2, 6, 7, 8 from [18] with real data from the Renault industrial facilities. Test exam-
ple no. 3 from [18] was not used since it demonstrates a special case when approximate computation
of the line’s throughput V ′ significantly differs from the results of simulation modeling. Besides, it
was noted in [19] that examples of this kind are not realistic.

Lines nos. 4 and 5 from [18] are not used due to their low dimension. Parameters of the other
lines are given in Appendix C. The storage costs for parts wj , j = 1, . . . , n, were assumed to be
unit in all problems, Jj(hj) ≡ hj , j = 1, . . . , n.

The small size of the space of solutions for problem P0 has let us fully enumerate it with a
simple lexicographic enumeration algorithm. Based on these results, we have evaluated the speed
of finding the solutions from the Pareto front F ′ depending on the number of generated sample
points in the SEMO and SIBEA algorithms (by a sample point we mean a solution for which we
compute the values of the criteria). In the experiments, the operation time of the algorithms was
limited to one hour.

Figure 1 demonstrates the process of the algorithms’ operation, where the horizontal axis shows
the number of elements found in the Pareto front, and the vertical axis shows the number of
generated sample points. Figure 1 indicates that algorithm SEMO wins over SIBEA in terms
of the number of found elements from the Pareto front F ′. Similar results also follow for the
AS1 problem, where the space of solutions could also be exhaustively studied with lexicographic
enumeration. Besides, Fig. 1 illustrates a situation when on a low dimensional problem it is better
to use lexicographic enumeration than evolutionary algorithms. For the problems with larger
dimension, such as experimentally support solutions such as AS2, AS6, and AS7, the complete
enumeration of all solutions in reasonable time does not appear to be possible.

As we have already mentioned above, to compare the algorithms on a series of problems AS,
each algorithm got one hour of operation, and after this hour we computed the hypervolume of
the resulting population. The size of the initial population for the SIBEA algorithm was equal to
the number of non-dominated solutions found by the lexicographic enumeration algorithm (pos-
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Fig. 1. Number of found points from F ′ in the algorithms’ operation. Problem P0.

Fig. 2. Relative value of the hypervolume.

sibly incomplete) over the same time period of one hour. In one hour of computation, complete
enumeration of the solution space stopped and resulted in the full set F ′ only in the problem AS1.
Enumeration was done in increasing lexicographic order �L, where h �L h′ if for some k it holds
that hk > h′k, hk+1 = h′k+1, . . . , hn = h′n. Figure 2 demonstrates the results of the algorithms’ op-
eration on the entire series of problems AS. The number of solutions enumerated lexicographically,
size of the set D, and the number of sample solutions computed in algorithms SIBEA, SEMO, and
SEMO+, are shown in Table 1. The horizontal axis in Fig. 2 shows the ratio of the hypervolume
of the population obtained by each algorithm to the best value of the hypervolume found in our

Table 1. Problem dimensions and number of sample solutions computed in one hour

n |D| Lexicographic
enumeration

SIBEA SEMO SEMO+

AS1 4 4× 105 1.3× 105 1.4× 103 8.6× 106 8.7× 106

AS2 9 9× 1011 1.3× 105 2.1× 103 1.4× 106 9.6× 105

AS6 13 2× 1022 1.3× 105 1.2× 104 8.8× 106 7.8× 106

AS7 7 9× 107 1.3× 105 2.2× 104 1.7× 107 1.6× 107

AS8 7 5× 108 1.3× 105 7.7× 103 1.2× 107 1.5× 107
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Fig. 3. Populations obtained by algorithms SEMO and SEMO+ for problem AS6.

experiments for this problem in one hour. The graph indicates that problem AS1 proved to be easy
for all algorithms; on problems AS2 and AS8 the value of the population hypervolume obtained by
SIBEA is larger than for SEMO; on problems AS6 and AS7, the SEMO algorithm has the upper
hand.

We have established that on problems AS2 and AS8 the population in algorithm SEMO is
localized in a comparatively small subset of the space of solutions. To find the reason for the
localization, we have obtained the entire set F ′ for problem AS8 with complete lexicographic
enumeration (which took more than six hours). We have established that for the precision of
comparing the values V ′(h) and Q′(h) around 10−15, the preimage of the Pareto front F ′ is the set
of solutions of the form (0, 0, 0, 0, 0, h6 , 0), where h6 = 0, . . . , 2000.

Figure 3 shows on the left the values of buffers 2 and 6 for individuals from the population
constructed by the SEMO algorithm. The figure indicates that the population of the SEMO
algorithm also does not have enough diversity to get the entire set F ′. As the experiment with
SEMO+ showed, the population of this algorithm was not localized (see Fig. 3 on the right), as it
did for SEMO, which led to a better approximation of the Pareto front F ′.

To perform statistical comparison of the operation of algorithms SEMO and SEMO+ on the
problem AS8, we have run each of them 30 times until we obtained the entire Pareto front F ′. The
average number of iterations that the SEMO+ algorithm needs to find the entire set F ′ was 3×105,
and for the SEMO algorithm this value was equal to 3×106. By the results of these experiments we
constructed two 30-element samples where we observed the number of sample solutions until the
entire set F ′ was constructed on each of the 30 runs of the algorithm. The nonparametric Mann–
Whitney criterion applied to compare these samples showed that the differences were statistically
significant at level p < 0.01.

Thus, for the AS8 problem the SEMO+ algorithm finds a Pareto front F ′ faster than the SEMO
algorithm. In general, for the entire series of problems AS the values of population hypervolumes
obtained by the SEMO+ algorithm have also proven to be maximal, as shown in Fig. 2.

4. CONCLUSION

Our experiments have shown that if the number of points in our approximation of a Pareto
front is not bounded from above by some predefined value, then the SEMO+ algorithm has an
advantage over the SEMO and SIBEA algorithms with regard to the hypervolume of the resulting
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set of solutions. However, if the approximating set must consist of a relatively small number of
solutions then the SEMO and SEMO+ algorithms lose to the SIBEA algorithm.

In practice, the decision maker can analyze only a comparatively small number of “promising”
variations of the buffer distribution, so the best approach for a decision maker appears to be to
use the set of solutions found by the SIBEA algorithm. The accuracy of our approximation for
the Pareto front in this case can be approximately estimated by comparing the hypervolumes of
populations constructed by SIBEA and SEMO+.
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APPENDIX A

This Appendix describes the Markov model for a production line with series-parallel structure
as shown in Section 2.

The states of the line in question are defined by a set of parameters (α1, . . . , αm, x1, . . . , xn, y1,
. . . , ym). Here αi = 0 if EU number i is in the “failure” state, and αi = 1 otherwise. The value
xj ∈ {0, 1, . . . , hj} determines the number of parts in buffer j. The value yi ∈ {0, 1, . . . , Ui} is the
number of units of time already spent to process an existing part on EU number i. The value yi is
zero if the EU is in the “idle” state. When an EU is in the “blocked” state, the value of yi remains
unchanged and equal to Ui. The set of all states is

S = {0, 1}m ×Πn
j=1{0, 1, . . . , hj} ×Πm

i=1{0, 1, . . . , Ui}.

The system in question is described with a Markov chain M with discrete time and set of
states S. With nonzero probability, in

∑m
i=1 Ui(m+

∑n
j=1 hj) transitions we can, starting from any

state, reach the state (0, . . . , 0) where all buffers are empty, there are no parts under processing,
and all machines are in the “failure” state. Properties of Markov chains (see, e.g., [25], Chapter V,
Section 2) imply the following proposition.

Proposition 1. A Markov chain M has stationary distribution π to which the probability distri-
bution of the states of the line tend for t → ∞ from any initial state.

The average line throughput in the steady state is
∑

i:ai=(bj ,bn+1) π(Si)/Ui, where summation is
done over the set of arcs incoming into the vertex bn+1, and Si is the set of states of the system
where αi = 1 and yi = Ui.

APPENDIX B

Let us describe a simplified Markov model for a production line in the case of two sequential EUs
proposed in [6] (similar models were considered in [5, 26]) together with aggregation rules for pairs
of sequential and parallel EUs that let one use this model for lines with series-parallel structure
and arbitrary complexity.

The approximation to the model described in Section 2 and Appendix A is that the occupied
volume of the buffer and time parameter are assumed to be real, and the geometric distributions of
transition probabilities are replaced by exponential distributions with the same expectations. The
failure intensity for the ith EU equals λi = 1/TF

i , the repair intensity is μi = 1/TR
i . We denote the

rate of processing for the parts on the ith EU by ci, ci = 1/Ui.
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Let h be the volume of the buffer between EUs. We consider two kinds of states: the set
of internal states Sint = {(α1, α2, x) : α1, α2 ∈ {0, 1}, x∈ (0, h)} and the set of boundary states
Sfr = {(α1, α2, x) :α1, α2 ∈{0, 1}, x ∈ {0, h}}, where αi have the same meaning as in Appendix A.
Let Boolean random values Ai correspond to the values αi, and let a real random variable X corre-
spond to the number of parts in the buffer. We denote the probabilities of states from Sfr at time
moment t by

Pα1,α2(0, t) := P{(A1, A2,X) = (α1, α2, 0) at time moment t}

and

Pα1,α2(h, t) := P{(A1, A2,X) = (α1, α2, h) at time moment t}.

We denote by Fα′
1,α

′
2
(x, t) the probability of the event that at time moment t random variable

(A1, A2,X) equals (α1, α2, x
′), where x′ < x, and assume that there exist derivatives fα1,α2(x, t) =

∂Fα1,α2(x, t)/∂x.

The stationary distribution for the Markov process that models the system in question, as found
in [6], is defined by limit values

Pα1,α2(0) = lim
t→∞Pα1,α2(0, t),

Pα1,α2(h) = lim
t→∞Pα1,α2(h, t),

fα1,α2(x) = lim
t→∞ fα1,α2(x, t).

Here internal states are mutually related by the system of equations

0 = λ1f10(x) + λ2f01(x)− (μ1 + μ2)f00(x),

−c2
∂f01(x)

∂x
= λ1f11(x) + μ2f00(x)− (μ1 + λ2)f01(x),

c1
∂f10(x)

∂x
= λ2f11(x) + μ1f00(x)− (λ1 + μ2)f10(x),

(c1 − c2)
∂f11(x)

∂x
= μ1f01(x) + μ2f10(x)− (λ1 + λ2)f11(x),

and the systems of equations for boundary states depend on the relation between c1 and c2: c1 < c2,
c1 > c2, or c1 = c2 = c. As an example we show the case when c1 = c2 = c:

P10(0) = P00(0) = P00(h) = P01(h) = 0,

μ2P10(h) = λ2P11(h) + cf10(h) = (λ1 + λ2)P11(h),

μ1P01(h) = λ1P11(0) + cf01(0) = (λ1 + λ2)P11(0),

cf01(h) = λ1P11(h), cf10(0) = λ2P11(0).

A solution of this system of equations yields expressions for fα1,α2(x), Pα1,α2(0), and Pα1,α2(h).

Rule R1. Based on the above model and the resulting probabilities of its states in the steady
state, we can find an “equivalent” EU that has similar characteristics in the steady state and can
replace two EUs and the buffer between them. For this purpose, we introduce the failure state for
a system of two EUs and a buffer between them. We define this state from the side of the less
productive EU since it is idle less often and the computational errors will be smaller. By a failure
we will mean a state when the less productive EU is not in the “operational” state.
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A EU that replaces two consecutive EUs has parameters λ′, μ′, and c′. Intensities λ′ and μ′

are computed based on the transition intensities between “failure” and “operational” states for the
considered two-machine subsystem that accounts for the stationary probability distribution for two
sequential machines and the buffer between them [4]. For example, for c2 > c1 we have

c′ = c1, λ′ := λ1 +
P10(h)μ2

F11(h) + F10(h) + P11(0)
,

μ′ := μ1 +
P10(h)(μ2 − μ1)

P10(h) + P01(0) + F01(h) + F00(h)
.

The average number of parts in a buffer in stationary mode has the form [6]

q =
∑

α1,α2∈{0,1}

⎛

⎝
h∫

0

xfα1α2(x)dx+ hPα1α2(h)

⎞

⎠ .

Rule R2. Parameters of an EU that replaces two parallel EUs [18] are

λ′ := λ1
μ2

μ2 + λ2
+ λ2

μ1

μ1 + λ1
, c′ := c1 + c2,

μ′ :=
λ∗

(c1 + c2)/v′ − 1
, where v′ =

c1
1 + λ1/μ1

+
c2

1 + λ2/μ2
.

APPENDIX C

Let us show the description of lines constructed based on examples from [18]. In problems AS1,
AS2 and AS6 the lines have a serial structure. Their parameters are shown in Tables 2 and 3.

In problems AS7, AS8 the lines contain 10 EUs and have a series-parallel structure. Their
schemata are shown in Fig. 4. Parameters for the AS7 and AS8 problems are shown in Table 4.

Fig. 4. Graphs of the lines in examples AS7 (top) and AS8 (bottom).
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Table 2. Parameters of problem AS1

Buffers EU

i di j TF
j TR

j Ui

1 20 1 244.2 150 10
2 17 2 255.3 300 10
3 38 3 176 75 10
4 48 4 184 600 10

5 192 450 10

Table 3. Parameters of problems AS2 and AS6

AS2 AS6

Buffers EU Buffers EU

i di j TF
j TR

j Ui i di j TF
j TR

j Ui

1 0 1 10 000 440 22 1 60 1 29 880 22 000 385
2 50 2 20 000 440 23 2 60 2 29 880 22 000 426
3 20 3 5000 430 22 3 50 3 876 000 22 300 330
4 50 4 40 000 520 23 4 70 4 29 880 22 000 372
5 0 5 30 000 430 24 5 60 5 33 250 27 500 316
6 80 6 2442 440 22 6 80 6 144 000 8500 340
7 20 7 1840 520 23 7 45 7 102 300 74 000 340
8 100 8 1680 430 21 8 25 8 113 300 7200 340
9 100 9 2208 920 24 9 35 9 540 000 60 000 380

10 2464 780 22 10 80 10 538 800 349 000 350
11 40 11 5 064 000 73 700 400
12 45 12 468 000 306 000 400
13 65 13 1 032 000 54 000 319

14 45 600 31 120 319

Table 4. Parameters of problems AS7 and AS8

AS7 AS8

Buffers EU Buffers EU

i di j TF
j TR

j Ui i di j TF
j TR

j Ui

1 15 1 50 000 12 000 1000 1 1300 1 87 000 27 000 23
2 10 2 48 000 2000 3450 2 200 2 77 000 22 000 27
3 15 3 55 000 9000 2780 3 0 3 580 000 18 000 38
4 10 4 39 000 6000 3030 4 0 4 410 000 12 500 30
5 25 5 75 000 10 000 3333 5 0 5 580 000 18 000 38
6 10 6 59 000 11 000 2560 6 2000 6 410 000 12 500 30
7 10 7 28 000 8000 3030 7 0 7 725 000 21 000 20

8 35 000 8000 3125 8 550 000 14 000 40
9 65 000 35 000 2174 9 430 000 24 000 43
10 20 000 4000 800 10 270 000 22 000 33
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par une zone de stockage, RAIRO Automat., 1982, vol. 16, no. 2, pp. 105–132.

7. Li, J. and Meerkov, S.M., Production Systems Engineering, New York: Springer, 2009.

8. Altiparmak, A., Bugak, A., and Dengiz, B., Optimization of Buffer Sizes in Assembly Systems Using
Intelligent Techniques, Proc. 2002 Winter Simulat. Conf., 2002, pp. 1157–1162.

9. D’Souza, K. and Khator, S., System Reconfiguration to Avoid Deadlocks in Automated Manufacturing
Systems, Comput. Indust. Eng., 1997, vol. 32, pp. 445–465.

10. Hamada, M., Martz, H., Berg, E., and Koehler, A., Optimizing the Product-Based Avaibility of a
Buffered Industrial Process, Reliab. Eng. Syst. Safety, 2006, vol. 91, pp. 1039–1048.

11. Abdul-Kader, W., Capacity Improvement of an Unreliable Production Line—An Analytical Approach,
Comput. Oper. Res., 2006, vol. 33, pp. 1695–1712.

12. Dolgui, A., Eremeev, A., Kolokolov, A., and Sigaev, V., A Genetic Algorithm for the Allocation of Buffer
Storage Capacities in a Production Line with Unreliable Machines, J. Math. Modeling Algorithms, 2002,
vol. 1, pp. 89–104.

13. Chehade, H., Yalaoui, F., Amodeo, L., and De Guglielmo, P., Optimisation multiobjectif pour le
problème de dimensionnement de buffers, J. Decision Syst., 2009, vol. 18, pp. 257–287.

14. Zitzler, E., Laumanns, M., and Thiele, L., SPEA2: Improving the Strength Pareto Evolutionary Algo-
rithm, Technic. Report 103, Comput. Eng. Commun. Networks Lab, Swiss Federal Institute Technol.,
Zurich, 2001.

15. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., A Fast and Elitist Multiobjective Genetic Algo-
rithm: NSGA-II, IEEE Trans. Evolut. Comput., 2002, vol. 6, no. 2, pp. 182–197.

16. Cruz, F.R.B., Van Woensel, T., and Smith, J.M., Buffer and Throughput Trade-Offs in M/G/1/K
queuing networks: A Bicriteria Approach, Int. J. Product. Econom., 2010, vol. 125, pp. 224–234.

17. Sevast’yanov, B.A., The Problem of How Bunker Capacity Influences Averages Idle Time for an Auto-
mated Line of Machines, Teor. Veroyat. Primen., 1962, vol. 7, no. 4, pp. 438–447.

18. Ancelin, B. and Semery, A., Calcul de la productivité d’une ligne integrée de fabrication, RAIRO Autom.,
Productiq. Inform. Industrielle, 1987, vol. 21, pp. 209–238.

19. Terracol, C. and David, R., Performance d’une ligne composée de machines et de stocks intermédiaires,
RAIRO Automatiq., Productiq. Informatiq. Industrielle, 1987, vol. 21, pp. 239–262.

20. Dolgui, A., Eremeev, A., Kovalyov, M.Y., and Sigaev, V., Complexity of Buffer Capacity Allocation
Problems for Production Lines with Unreliable Machines, J. Math. Modell. Algorithms, 2013, vol. 12,
pp. 155–165.

21. Brockhoff, D., Friedrich, T., and Neumann, F., Analyzing Hypervolume Indicator Based Algorithms,
Proc. Parallel Probl. Solving from Nature—PPSN X: 10th Int. Conf. 2008, Berlin: Springer, 2008, vol.
5199, pp. 651–660.

22. Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., and Deb, K., Running Time Analysis of a Multi-
Objective Evolutionary Algorithm on a Simple Discrete Optimization Problem, Parallel Probl. Solving
from Nature, 2002, Berlin: Springer, 2002, vol. 2439, pp. 44–53.

23. Belous, V.V., Groshev, S.V., Karpenko, A.P., and Shibitov, I.A., Software Systems for Evaluating
the Quality of Pareto Approximations in Multicriterial Optimization Problems. A Survey, Nauka i
Obrazovanie: FGBOU VPO “MGTU im. N.E. Baumana,” 2014, El. no. FS 77–48211, pp. 300–320.

AUTOMATION AND REMOTE CONTROL Vol. 78 No. 7 2017



ANALYSIS OF A MULTICRITERIAL BUFFER CAPACITY OPTIMIZATION PROBLEM 1289

24. Zitzler, E., Brockhoff, D., and Thiele, L., The Hypervolume Indicator Revisited: On the Design of
Pareto-Compliant Indicators via Weighted Integration, Proc. Conf. Evolut. Multi-Criter. Optim. (EMO
2007), LNCS, Berlin: Springer, 2007, vol. 4403, pp. 862–876.

25. Doob, J.L., Stochastic Processes, New York: Wiley, 1953. Translated under the title Veroyatnostnye
protsessy, Moscow: Inostrannaya Literatura, 1956.

26. Gershwin, S.B. and Schick, I.C., Continuous Model of an Unreliable Two-Stage Material Flow System
with a Finite Interstage Buffer, Report LIDS-R-1039, Massachusetts Inst. of Technology, Cambridge,
1980.

This paper was recommended for publication by O.N. Granichin, a member of the Editorial
Board

AUTOMATION AND REMOTE CONTROL Vol. 78 No. 7 2017


		2017-07-07T10:55:29+0300
	Preflight Ticket Signature




