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Abstract—We consider a two-person nonantagonistic positional differential game (NPDG)
whose dynamics is described by an ordinary nonlinear vector differential equation. Constraints
on values of players’ controls are geometric. Final time of the game is fixed. Payoff functionals
of both players are terminal. The formalization of positional strategies in an NPDG is based
on the formalization and results of the general theory of antagonistic positional differential
games (APDGs) (see monographs by N.N. Krasovskii and A.I. Subbotin [3, 4]). Additionally,
in the present paper we assume that each player, together with the usual, normal (nor), type
of behavior aimed at maximizing his own functional, can use other behavior types introduced
in [2, 5]. In particular, these may be altruistic (alt), aggressive (agg), and paradoxical (par)
types. It is assumed that in the course of the game players can switch their behavior from
one type to another. Using the possibility of such switches in a repeated bimatrix 2 × 2 game
in [5, 6] allowed to obtain new solutions of this game. In the present paper, extension of this
approach to NPDGs leads to a new formulation of the problem. In particular, of interest is
the question of how players’ outcomes at Nash solutions are transformed. An urgent problem
is minimizing the time of “abnormal” behavior while achieving a good result. The paper pro-
poses a formalization of an NPDG with behavior types (NPDGwBT). It is assumed that in an
NPDGwBT each player, simultaneously with choosing a positional strategy, chooses also his
own indicator function defined on the whole game horizon and taking values in the set {normal,
altruistic, aggressive, paradoxical}. The indicator function of a player shows the dynamics of
changes in the behavior type demonstrated by the player. Thus, in this NPDGwBT each player
controls the choice of a pair {positional strategy, indicator function}. We define the notion of a
BT-solution of such a game. It is expected that using behavior types in the NPDGwBT which
differ from the normal one (so-called abnormal types) in some cases may lead to more favorable
outcomes for the players than in the NPDG. We consider two examples of an NPDGwBT with
simple dynamics in the plane in each of which one player keeps to altruistic behavior type
over some time period. It is shown that in the first example payoffs of both players increase
on a BT-solution as compared to the game with the normal behavior type, and in the second
example, the sum of players’ payoffs is increased.

DOI: 10.1134/S0005117917040178

1. MOTION EQUATIONS, FUNCTIONALS, STRATEGIES, AND MOTIONS

The dynamics of a nonantagonistic positional differential game (NPDG) is described by the
equation

ẋ = f (t, x, u, v) , t ∈ [t0, ϑ] , x(t0) = x0, (1.1)

where x ∈ R
n is a phase vector; controls of the first and second player, u and v, are constrained by

the conditions u ∈ P ∈ compRp and v ∈ Q ∈ compRq. In the space of variables t, x there is given
a compact set G whose projection onto the t axis is an interval [t0, ϑ], where ϑ is a fixed final time

762



ALTRUISTIC BEHAVIOR IN A DIFFERENTIAL GAME 763

of the game. The function f : G × P × Q → R
n is assumed to be continuous, Lipschitz in x, and

sublinearly growing with x. Moreover, we assume that the saddle point condition in a small game
[4, p. 56] is satisfied.

The players’ payoff functionals are of the form

Ii = σi(x(ϑ)), i = 1, 2, (1.2)

where σi(·) are continuous functions.

Both players are assumed to have complete information on the current game position (t, x).
The NPDG formalization used in the paper, which includes a description of the players’ positional
strategies as well as constructive and limiting motions generated by these strategies, is based on
the formalization and results given in [3, 4] and is described in detail in [1]. Let us briefly recall
basic elements of this formalization.

The positional strategy of player 1 is identified with a pair U = {u(t, x, ε), β1(ε)} where u(·) is
an arbitrary function of the position (t, x) and of a positive precision parameter ε taking values in
a set P . The function β1 : (0,∞) → (0,∞) is continuous, monotonic, and satisfies the condition
β1(ε) → 0 as ε → 0. For a fixed ε, β1(ε) specifies an upper limit for the partition step used by
player 1 to partition the interval [t0, ϑ] when constructing approximated motions. The positional
strategy of player 2 is defined similarly: V = {v(t, x, ε), β2(ε)}.

We consider two types of motions generated by a pair of strategies (U, V ) from the initial position
(t0, x0): approximated (Euler polygons) and ideal (limiting) motions. An approximated motion

xεΔ[t] = x [t, t0, x0, U, ε1,Δ1, V, ε2,Δ2]

is defined for precision parameter values ε1 and ε2 and partitions Δ1 = {t(1)i } and Δ2 = {t(2)k } of
the interval [t0, ϑ] that are chosen by players 1 and 2. Player i, i = 1, 2, uses as his control a
piecewise-constant function with values computed at nodes of his partition with a partition step

satisfying the conditions δ(Δi) ≤ βi(εi), where δ(Δi) = max
j

(t
(i)
j+1 − t

(i)
j ). An ideal (limiting) motion

x(t) = x(t, t0, x0, U, V ) is defined as a uniform limit of the sequence of approximated motions

{
xε

s

Δs [t, ts0, x
s
0, U, ε

s
1,Δ

s
1, V, ε

s
2,Δ

s
2]
}

as s → ∞, εsi → 0, ts0 → t0, x
s
0 → x0, and δ(Δs

i ) ≤ βi(ε
s
i ), i = 1, 2.

The set of limiting motions X(t0, x0, U, V ) is compact in the metric of the space C[t0, ϑ].

2. SOME RESULTS OF NPDG THEORY

Below we need some results of NPDG theory [1].

Definition 2.1. A pair of strategies (UN , V N ) forms a Nash-equilibrium solution (NE solution) in
NPDG (1.1), (1.2) if for any motion x(·) ∈ X(t0, x0, U

N , V N ), any τ ∈ [t0, ϑ], and any strategies U
and V we have the inequalities

max
x(·)

σ1
(
x
[
ϑ, τ, x(τ), U, V N

])
≤ min

x(·)
σ1

(
x
[
ϑ, τ, x(τ), UN , V N

])
, (2.1)

max
x(·)

σ2
(
x
[
ϑ, τ, x(τ), UN , V

])
≤ min

x(·)
σ2

(
x
[
ϑ, τ, x(τ), UN , V N

])
, (2.2)

where the max and min operations are over the corresponding sets of limiting motions.

Definition 2.2. An NE -solution (UP , V P ) which is Pareto-unimprovable with respect to (I1, I2)
(1.2) is called a P ∗-solution.
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764 KLEIMENOV

Consider auxiliary antagonistic positional differential games Γ1 and Γ2. The dynamics of both
games are described by Eqs. (1.1). In game Γi player i maximizes the functional σi(x(ϑ)) (1.2),
and player (3− i) opposes. It follows from [3] that both games Γ1 and Γ2 have universal saddle
points

u(i)(t, x, ε), v(i)(t, x, ε), i = 1, 2 (2.3)

and continuous cost functions γ1(t, x) and γ2(t, x). The universality property of strategies (2.3)
means that they are optimal not only for a fixed initial positional (t0, x0) but also for any position
(t∗, x∗) ∈ G considered as initial. Clearly, for a position (t, x) ∈ G of the NPDG game, the quantity
γi(t, x) is the guaranteed payoff of player i in this position.

In [1] it is shown that all NE - and P ∗-solutions of the game can be found in the class of pairs of
strategies (U, V ) generating a unique limiting motion (trajectory). Decisive strategies composing a
pair that generates a trajectory x∗(·) are of the following form:

U0 ÷
{
u0(t, x, ε), β0

1(ε)
}
, V 0 ÷

{
v0(t, x, ε), β0

2(ε)
}
, (2.4)

u0(t, x, ε) =

{
u∗(t, ε) if ‖x− x∗(t)‖ < εϕ(t)

u(2)(t, x, ε) if ‖x− x∗(t)‖ ≥ εϕ(t),

v0(t, x, ε) =

{
u∗(t, ε) if ‖x− x∗(t)‖ < εϕ(t)

v(1)(t, x, ε) if ‖x− x∗(t)‖ ≥ εϕ(t),

(2.5)

for all t ∈ [t0, ϑ], ε > 0. In (2.4), (2.5) by u∗(t, ε) and v∗(t, ε) we denote families of program controls
generating the trajectory x∗(t). The function ϕ(·) and the functions β0

1(·) and β0
2(·) are chosen in

such a way that the Euler polygons generated by the pair (U0, V 0) from the initial position (t0, x0)
do not leave the εϕ(t)-neighborhood of the trajectory x∗(t). The functions u(2)(· , · , ·) and v(1)(· , · , ·)
are defined in (2.3).

Further, for each NE - and P ∗-trajectory x∗(t), the following property is satisfied: the point
t = ϑ is the maximum point of the guaranteed payoff function of player i computed along this
trajectory, i.e.,

max
t∈[t0,ϑ]

γi(t, x
∗(t)) = γi(ϑ, x

∗(ϑ)), i = 1, 2. (2.6)

3. PLAYERS’ BEHAVIOR TYPES

We additionally assume that along with the usual, normal (nor), behavior type, aimed at
maximizing their own payoff functionals (1.2), players may use other behavior types, e.g., those
introduced in [2, 5], namely altruistic (“the better for my rival, the better for me”), aggressive (“the
worse for my rival, the better for me”), and paradoxical (“the worse for me, the better for me”).

These three behavior types can be formalized as follows.

Definition 3.1. We say that player 1 demonstrates altruistic (alt) behavior type towards player 2
in an interval [t∗, t∗] if actions of player 1 in this interval are aimed at maximizing the functional I2
of player 2.

Definition 3.2. We say that player 1 demonstrates aggressive (agg) behavior type towards
player 2 in an interval [t∗, t∗] if actions of player 1 in this interval are aimed at minimizing the
functional I2 of player 2.

Definition 3.3. We say that player 1 demonstrates paradoxical (par) behavior type in an interval
[t∗, t∗] if actions of player 1 in this interval are aimed at minimizing his own functional I1.

AUTOMATION AND REMOTE CONTROL Vol. 78 No. 4 2017



ALTRUISTIC BEHAVIOR IN A DIFFERENTIAL GAME 765

Table

nor alt agg par

nor (I1,I2) (I1,I1) (I1,−I1) (I1,−I2)
alt (I2,I2) (I2,I1) (I2,−I1) (I2,−I2)
agg (−I2,I2) (−I2,I1) (−I2,−I1) (−I2,−I2)
par (−I1,I2) (−I1,I1) (−I1,−I1) (−I1,−I2)

Altruistic and aggressive behavior types of player 2 towards player 1 and the paradoxical behavior
type of player 2 are defined similarly. Note that the aggressive behavior type is actually used in an
NPDG in the form of penalty strategies involved in the structure of game solutions (see, e.g., [1]).

The above definitions characterize extremal behavior types of the players. In real life, as a rule,
individuals behave partly normally, partly altruistically, partly aggressively, and partly paradoxi-
cally. In other words, apparently, mixed behavior types better agree with reality.

If each player is restricted to “pure” behavior types, then in the considered two-player game (1.1)
with functionals I1 and I2 (1.2) there are 16 possible combinations, which are shown in table.
In four of the combinations, interests of the players coincide, and the players solve team control
problems. In other four combinations, the players have opposite interests, and therefore antagonistic
differential games are played. The remaining 8 pairs define nonantagonistic differential games.

The idea that players may use the possibility of switching their behavior from one behavior type
to another in the course of the play was applied in [5] for a game with cooperative dynamics and
in [6] for a repeated bimatrix 2× 2 game, which made it possible to obtain new solutions in those
games.

Extending this approach to nonantagonistic positional differential games leads to new problem
settings. In particular, of interest is the question of how players’ payoffs obtained on Nash solutions
are transformed. The problem of minimizing the time of “abnormal” behavior while achieving a
better result than under the normal behavior of the players becomes actual.

In what follows we assume that, simultaneously with choosing a positional strategy, each player
also chooses his indicator function defined on the interval t ∈ [t0, ϑ] and taking values in the set
{nor, alt, agg, par}. Denote the indicator function of player i by αi : [t0, ϑ] → {nor, alt, agg, par},
i = 1, 2. If the indicator function of some player takes the value, say, alt in some time interval,
then this player behaves as an altruist towards his rival within this interval.

Thus, in the considered game with various behavior types, player 1 controls the choice of a pair
of actions {positional strategy, indicator function}: (U, α1(·)), and player 2 controls the choice
of a pair of actions (V, α2(·)). Below such an NPDG with behavior types will be denoted by
NPDGwBT.

Note that if the indicator functions of both players are identically equal to nor on the whole
game horizon, then we have a classical NPDG.

4. BT -SOLUTION OF AN NPDGWBT

Now consider an NPDGwBT with classes of actions of players 1 and 2

(U, α1(·)), (V, α2(·)). (4.1)

Clearly, the set of motions generated by a pair of actions (4.1) coincides with the set of actions
generated by the pair (U, V ) in the corresponding NPDG.

Definition 4.1. A pair
{
(U0, α0

1(·)), (V 0, α0
2(·))

}
forms a strong BT -solution of an NPDGwBT

if there exist a trajectory xBT (·) generated by the pair and a P ∗-solution in the corresponding
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NPDG, generating a trajectory xP (·), such that

σi
(
xBT (ϑ)

)
> σi

(
xP (ϑ)

)
, i = 1, 2. (4.2)

Definition 4.2. A pair {(U0, α0
1(·)), (V 0, α0

2(·))} forms a weak BT -solution of an NPDGwBT if
there exist a trajectory xBT (·) generated by the pair and a P ∗-solution in the corresponding NPDG,
generating a trajectory xP (·), such that

∑
σi

(
xBT (ϑ)

)
>

∑
σi

(
xP (ϑ)

)
. (4.3)

Clearly, a strong BT -solution is a weak BT -solution; the converse is not true in general.

Problem 4.1. Find the set of (strong and weak) BT -solutions.

Problem 4.2. Find the set of BT -solutions minimizing the time during which the players use
abnormal behavior types.

It is quite probable that using behavior types other than normal in an NPDGwBT can in a
number of cases lead to outcomes more favorable for the players than those in the NPDG with the
normal behavior type only.

Below we present two examples of a game with dynamics of simple plane motion, in each of
which one of the players keeps to altruistic behavior type during some time period. We show that,
as compared to the game with normal behavior of both players, in the first example payoffs of both
players grow, whereas in the second example the altruistic player considerably increases the payoff
of the other player, his own payoff being slightly reduced, but the aggregate payoff of the players
grows. In both examples we solve the problem of finding BT -solutions minimizing the abnormal
behavior duration.

5. EXAMPLE 1

Let the dynamics (1.1) be

ẋ = u+ v, x, u, v ∈ R
2, ‖u‖ ≤ 1, ‖v‖ ≤ 1, 0 ≤ t ≤ ϑ, x(0) = x0, (5.1)

and let the payoff functionals (1.2) be

Ii = 10−
∥∥∥(x(ϑ)− a(i)

∥∥∥ , i = 1, 2, (5.2)

i.e., player i wants to bring the point x(ϑ) as close to his target point a(i) as possible. We set the fol-
lowing values of the game parameters: ϑ = 2.5, x0 = (0, 0), a(1) = (7.0, 5.0), and a(2) = (−7.0, 5.0).

We also specify an additional condition. In the plane (x1, x2), a circle S of radius 2 centered at
m = (0, 2.5) depicts the following phase constraint in the problem: trajectories of system (5.1) are
forbidden to enter the interior of S.

In Fig. 1, the curves da and ad together with the arc acca of the boundary of S and the arc dqd
of the circumference of a circle of radius 5 bound the reachability set of system (5.1) with the
introduced phase constraints constructed for time ϑ = 2.5. The line Oc is tangent to the circle S.
The point b is a point of S nearest to a(1). Computation results are as follows (hereinafter, we give
approximate numerical values): a = (1.36, 3.96), c = (1.20, 0.90), and b = (1.88, 3.17). Figure 1 is
symmetric about the ordinate axis. The notation for a symmetric point differs in a circumflex mark
only. Further description is mainly given for the right-hand half of the figure.

In the NPDG with the normal behavior type, the Nash trajectory (and at the same time
the P ∗-trajectory) is x(t) ≡ 0, t ∈ [0, 2.5] (stationary point O), on which the players’ payoffs are
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Fig. 1. To Example 1.

I1 = I2 = 10−√
74 ≈ 1.40. The trajectory given by the Ocba line is not a Nash trajectory, since at

point b player 1 acquires the maximum payoff (equal to 4.57) and is not interested in further tracing
the trajectory up to point a. The trajectory given by the Ocb line is neither a Nash trajectory: now
player 2 does not agree to trace the trajectory, since at point b he gets the payoff of 0.53, which is
less than that at point O.

Now we pass to the NPDGwBT and consider the case where player 1 demonstrates altruism
towards player 2 during some time interval.

On the circumference S, find a point k equidistant from a(2) when walking around S both
clockwise and counterclockwise. We obtain k = (1.88, 1.83). Next, on the circumference S, find a
point e the distance from which to a(2) computed along the ega(2) line (a(2)g is a tangent to S) is
equal to the length of the segment Oa(2). We get e = (1.43, 3.90). The time of hitting the point k
when moving with the maximum velocity is t = 1.34, and that of hitting e is t = 2.45. If at time
t = 2.45 we continue moving along the arc ea counterclockwise, then the distance to a(2) becomes
less than the length of Oa(2). Therefore, it is profitable to player 2 to terminate his movement at
some point of the arc ea.

Let h be some fixed point of the arc ea, and let t∗ be the time of hitting the point h when
moving with the maximum velocity. Obviously, t∗ ∈ [2.45, 2.5].

Consider a pair of strategies (U∗, V ∗) generating a unique limiting motion shown by the Oceh
line for t ∈ [0, t∗) and remaining stationary at h for t ∈ [t∗, 2.5]. Next, consider the following
indicator functions of the players: α∗

1(t) = {nor, t ∈ [0, 2.01); alt, t ∈ [2.01, t∗); nor, t ∈ [t∗, 2.5]}
and α∗

2(t) = {alt, t ∈ [0, 1.34); nor, t ∈ [1.34, 2.5]}. Here t = 2.01 is the time of hitting b when
moving with the maximum velocity.

It is easily seen that both players are interested in realizing the strategies (U∗, V ∗) and indicator
function programs α∗

1(·), α∗
2(·).

Thus, we obtain a one-parametric family of collections of players’ actions

{(U∗, α∗
1(·)), (V ∗, α∗

2(·))} (5.3)

depending on the parameter t∗ ∈ [2.45, 2.5], each of which is a BT -solution.

If the parameter value is t∗ = 2.45, we have a weak BT -solution; for other values of
t∗ ∈ (2.45, 2.5], each of the collections (5.3) is a strong BT -solution.

If a BT -trajectory thus constructed terminates at point a (this is the case for t∗ = 2.5), the
players’ payoffs will be I1 = 4.2 and I2 = 1.50; i.e., both players gain as compared to the game with
the normal behavior type.

The solution of problem 4.2 is attained at the collection (5.3) for t∗ = 2.45.
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6. EXAMPLE 2

Let the dynamics (1.1) be of the form

ẋ = u+ v, x, u, v ∈ R
2, ‖u‖ ≤ 1, ‖v‖ ≤ 1, 0 ≤ t ≤ ϑ, x(0) = x0, (6.1)

and let the payoff functionals (1.2) be

I1 = σ1(x(ϑ)) = 9−
∥∥∥x(ϑ)− a(1)

∥∥∥ , (6.2)

I2 = σ2(x(ϑ)) = 5 +
√
3|x1(ϑ)| − x2(ϑ), (6.3)

i.e., the goal of player 1 is to bring the vector x(ϑ) as close to the target point a(1) as possible.

We specify the following values of the game parameters: ϑ = 1.5, x0 = (−2, 2
√
3), and a(1) =

(5, 7.5). In Fig. 2, on the plane (x1, x2), a circle of radius 3 centered at the initial point A(−2, 2
√
3)

depicts the reachability set of system (6.1) constructed for the time ϑ = 1.5. The initial point A
lies on a level line of the function σ2(x1, x2) = 5 +

√
3|x1| − x2 = 5.

Since AO⊥Aa(1), in the NPDG with the normal behavior type of the players, a unique Nash
trajectory, and hence a unique trajectory generated by a P ∗-solution, is the trajectory x(t) = 0,
t ∈ [0, 1.5], which coincides with the stationary point A. Computations show that the players’
payoffs on this P ∗-solution are I1 = 0.920 and I2 = 5.000; the aggregate payoff of the players is
I1 + I2 = 5.920 (hereinafter, we give approximate values).

Passing to the NPDGwBT, we note first of all that existence of strong BT -solutions in the
considered example is definitely impossible, since in the reachability set there are no points where
both players obtain payoffs greater than those on the P ∗-solution. Indeed, the intersection of the
two subsets of the reachability set, each consisting of the points where the payoff of one of the
players is greater than at point A, is empty.

We will look for weak BT -solutions and consider the case where player 2 demonstrates altruism
towards player 1 during some time period. In the reachability set, we find all points where the
sum I1 + I2 of the players’ payoffs is greater than or equal to the sum of the payoffs on the
P ∗-solution. Computations show that the set T of such points is nonempty, and its intersection

Fig. 2. To Example 2.
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with the boundary of the reachability set is the arc BD with B(0.86, 4.37) and D(0.56, 1.90).
Points of the arc BD dominate the other points of T in the aggregate payoff. Next, find a point
C(0.984, 3.155) maximizing the sum of the players’ payoffs on the arc BD. The level line of the
function σ2(x1, x2) = 5+

√
3|x1| − x2 = 3.549 passing through C intersects the segment AC in one

more point, M(−1.109, 3.371).

It is easily seen that the segment AC is a trajectory generated by a weak BT -solution of the
game if, when moving with the maximum velocity from the initial point A to M (on this part of the
trajectory, player 2 reduces his guaranteed payoff from 5 to 3.083), player 2 demonstrates altruism
towards player 1, and after passing the point M player 2 returns to the normal behavior type.
Since the distance between A and M is 0.896, the duration of the altruistic behavior of player 2 is
0.5 × 0.896 = 0.448.

Consider the pair of strategies (U∗, V ∗) generating for t ∈ [0, 1.5] the unique limiting mo-
tion depicted by the segment AC, and consider the following indicator functions of the players:
α∗
1(t) = {nor, t ∈ [0, 1.5]} and α∗

2(t) = {alt, t ∈ [0, 0.448); nor, t ∈ [0.448, 1.5]}. It is easily seen
that both players are interested in realizing the strategies (U∗, V ∗) and indicator function pro-
grams α∗

1(·), α∗
2(·).

Thus, the collection of players’ actions (U∗, α∗
1(·)), (V ∗, α∗

2(·)) generating the unique trajectory
AC is a weak BT -solution. On this BT -solution, the players’ payoffs are I1 = 3.083 and I2 = 3.549;
the aggregate payoff is I1 + I2 = 6.632. Thus, as compared to the game with the normal behavior
type, player 2 has lost a little and player 1 has gained considerably, so that the aggregate payoff of
the players has increased.

One can also construct other weak BT -solutions which generate unique limiting motions coin-
ciding with segments joining the point A with point of the arc BD except for its endpoints. The
corresponding collections of the players’ actions are constructed in the way described above.
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