
ISSN 0005-1179, Automation and Remote Control, 2017, Vol. 78, No. 2, pp. 379–388. c© Pleiades Publishing, Ltd., 2017.
Original Russian Text c© A.V. Tur, 2015, published in Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2015, No. 4, pp. 56–70.

MATHEMATICAL GAME THEORY AND APPLICATIONS

Strategic Stability in Linear-Quadratic Differential Games

with Nontransferable Payoffs

A. V. Tur

St. Petersburg State University, St. Petersburg, Russia
e-mail: a.tur@spbu.ru

Received March 20, 2015

Abstract—We address the problem of strategically supported cooperation for linear-quadratic
differential games with nontransferable payoffs. As an optimality principle, we study Pareto-
optimal solutions. It is assumed that players use a payoff distribution procedure guaranteeing
individual rationality of a cooperative solution over the entire game horizon. We prove that
under these conditions a Pareto-optimal solution can be strategically supported by an ε-Nash
equilibrium. An example is considered.
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1. INTRODUCTION

Situations are often encountered where consideration of games with transferable payoffs imposes
excessive constraints. It may happen that players cannot redistribute (or cannot transfer without
losses) their payoffs obtained in the course of the play. This could be caused by several reasons;
for example, lack of a common medium of exchange, restricted or forbidden transfers. In the
present paper we consider linear-quadratic differential games with nontransferable payoffs. As a
cooperative optimality principle, we suggest to consider a Pareto-optimal solution, which does
not assume payoff distribution among players. Since the game evolves in time, even if at the
beginning of the game a Pareto-optimal solution satisfies the condition of individual rationality,
later on this condition can be violated. To avoid such a situation, we use the time-consistent payoff
distribution procedure proposed by L.A. Petrosyan [8]. It is found that in this case the outcome
of the cooperative agreement is attained at some Nash equilibrium, which guarantees strategic
stability of the cooperative solution [2].

2. PROBLEM SETTING

Consider a linear-quadratic nonantagonistic n-person differential game Γ(t0, x0) whose state at
each time instant is characterized by a vector x(t) changing in time according to the system of
equations

ẋ(t) = Ax(t) +
n∑

i=1

Biui(t), x(t0) = x0, (2.1)

where x ∈ Rm is a column vector; a column vector ui ∈ Rr is the control of player i, i = 1, . . . , n;
A and Bi are matrices of sizes m×m and m× r, respectively; x(t0) = x0 is the initial state.

Denote by N = {1, . . . , n} the set of all players. The payoff of player i ∈ N is denoted by
Ji(t0, x0, u), where u = (u1, . . . , un).
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We assume that the payoff of player i is of the form

Ji(t0, x0, u) =

∞∫

t0

(
xT (t)Pix(t) + uTi (t)Riui(t)

)
dt, (2.2)

where Pi are symmetric positive semidefinite m×mmatrices and Ri are symmetric positive definite
r×r matrices, i = 1, . . . , n. Each player wants to maximize his payoff. Players’ payoffs are assumed
to be nontransferable.

Players choose their strategies in a class of admissible strategies.

Definition 2.1. A set of strategies

{ui(t, x) = Mi(t)x, i = 1, . . . , n} (2.3)

is said to be admissible if

Mi(t) =

{
Mi,1, for t ∈ [t0, ti)

Mi,2, for t ∈ [ti,∞),

are piecewise constant matrix functions with at most one discontinuity point ti and the systems

ẋ(t) =

(
A+

n∑

i=1

BiM i

)
x(t) (2.4)

are asymptotically stable. Here
{
M 1, . . . ,Mn

}
are all collections of constant matrices M i with

values Mi,1 or Mi,2.

By an asymptotically stable system we understand a system all solutions of which are asymptot-
ically Lyapunov stable. According to [1], a homogeneous linear differential system with a constant
matrix is asymptotically stable if and only if all eigenvalues of its matrix have negative real parts.

Note that for a one-player problem, an optimal solution in the class of controls with constant
matrices Mi coincides with an optimal solution in the class of controls with piecewise constant
matrices Mi(t). Likewise, Nash-equilibrium strategies for the considered classes of strategies in
an n-person game also coincide. However, introducing admissible strategies in this way, we allow
the players to deviate from a trajectory chosen at the initial time, which might be actual if the
considered cooperative optimality principle will happen to be time-inconsistent.

As an optimality principle in the cooperative game Γ(t0, x0), we consider Pareto-optimal solu-
tions [9].

Definition 2.2. A collection of strategies u∗ = (u∗1, . . . , u∗n) in the class of admissible strategies
is said to be Pareto-optimal if there is no admissible collection u of strategies for which

Ji(t0, x0, u
∗) ≥ Ji(t0, x0, u), i = 1, . . . , n,

where at least one of the inequalities is strict.

Let the players agree to use a weight vector

(α1, . . . , αn) : 0 < αi < 1,
n∑

i=1

αi = 1,

for finding an optimal solution.
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Then (see [6]) optimal strategies of the players can be obtained as solutions of the following
minimization problem:

min
(u1,...,un)

n∑

i=1

αiJi(t0, x0, u). (2.5)

Let

(uα1 , . . . , u
α
n) = arg min

(u1,...,un)

n∑

i=1

αiJi(t0, x0, u), (2.6)

Jα(t0, x0, u) =
n∑

i=1

αiJi(t0, x0, u),

Pα =
n∑

i=1

αiPi,

Rα =

⎛

⎜⎜⎜⎝

α1R1 O . . . O

O α2R2 . . . O

. . . . . . . . . . . .
O O . . . αnRn

⎞

⎟⎟⎟⎠ .

Then

Jα(t0, x0, u) =

∞∫

t0

(
xT (t)Pαx(t) + uT (t)Rαu(t)

)
dt. (2.7)

Finding a Pareto-optimal solution reduces to the linear-quadratic optimal control problem (2.1)–
(2.5) with a single control u(t).

According to [4], optimal strategies are of the form

{
uαi (t) = Mα

i x, i = 1, . . . , n
}
,

where Mα
i is the ith block of the matrix Mα = − (Rα)−1BTΘα, and Θα is a solution to the matrix

equation

ATΘ+ΘA−ΘB(Rα)−1BTΘ+ Pα = 0, (2.8)

where B = (B1, . . . , Bn).

Then a cooperative trajectory xα(t) can be found by solving the system

ẋ(t) = Ax(t) +
n∑

i=1

Biu
α
i (t), x(t0) = x0. (2.9)

Players’ payoffs under cooperation are

Jα
i (t0, x0, u

α) =

∞∫

t0

(
(xα(t))TPix

α(t) + (uαi (t))
TRiu

α
i (t)

)
dt. (2.10)
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3. INDIVIDUAL RATIONALITY

In games with nontransferable payoffs, time consistency of a cooperative solution reduces to
validity of the following conditions:

1. Distribution remains Pareto-optimal in subgames along a cooperative trajectory;
2. Individual rationality condition is satisfied over the whole game horizon.

If, when finding a Pareto-optimal solution, players choose one and the same weight coefficient
α for the whole game, condition 1 is satisfied. Therefore, analysis of dynamic stability of a Pareto-
optimal solution reduces to checking the individual rationality condition, i.e., condition 2. We
say that a Pareto-optimal solution is individually rational if every player does not lose under this
outcome as compared to his payoff in the Nash-equilibrium situation.

There exists a vector α such that at the beginning of the game Γ(t0, x0), on a cooperative
trajectory xα(t), the individual rationality condition for a Pareto-optimal solution is satisfied [10]:

Jα
i (t0, x0, u

α) ≤ Vi(t0, x0), i = 1, . . . , n. (3.1)

Here Vi(t0, x0) is the payoff of player i in the Nash-equilibrium situation [7] in the game Γ(t0, x0).

However, it may happen in the course of the play that at some time l, l > t0, the individual
rationality condition will not hold for some player i ∈ N :

Jα
i (l, xα(l), uα) > Vi(l, x

α(l)).

Here Vi(l, x
α(l)) is the payoff of player i in the Nash-equilibrium situation in the subgame Γ(l, xα(l))

starting from state xα(l).

To avoid instability of a Pareto-optimal solution, we use the payoff distribution procedure pro-
posed by L.A. Petrosyan [8].

Definition 3.1. A vector function β(t) = (β1(t), . . . , βn(t)) is called a payoff distribution proce-
dure [8] if

Ji(t0, x0, u) =

∞∫

t0

βi(t) dt, i = 1, . . . , n. (3.2)

Definition 3.2. A Pareto-optimal solution is said to be dynamically stable [8] if there exists a
payoff distribution procedure β(t) such that the individual rationality condition

∞∫

l

βi(t) dt ≤ Vi(l, x
α(l)), ∀l ≥ t0, i = 1, . . . , n, (3.3)

is satisfied, where Vi(l, x
α(l)) is the payoff of player i in the Nash-equilibrium situation in the

subgame Γ(l, xα(l)). Such a payoff distribution procedure is said to be time-consistent.

Let condition (3.1) be satisfied for some Pareto-optimal solution. Then there exist functions
ηi(t) ≤ 0 such that

Jα
i (t0, x0, u

α)− Vi(t0, x0) =

∞∫

t0

ηi(t) dt. (3.4)

In [8], a payoff distribution procedure was proposed for differential games with nontransferable
payoffs, which allows to avoid instability of a Pareto-optimal solution.
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Theorem 3.1 [8]. If for some Pareto-optimal solution we have

Jα
i (t0, x0, u

α) ≤ Vi(t0, x0), i = 1, . . . , n,

then the payoff distribution procedure β(t) of the form

βi(t) = ηi(t)− d

dt
Vi(t, x

α(t)), i = 1, . . . , n, (3.5)

guarantees dynamic stability of this Pareto-optimal solution along the whole cooperative trajec-
tory xα(t). Here ηi(t) ≤ 0 are functions satisfying (3.4).

According to [5], a Nash equilibrium in the considered game (2.1), (2.2) is an admissible collection

of strategies
{
uNE
i (t) = MNE

i x, i=1, . . . , n
}
, where

MNE
i = −(Ri)

−1BT
i Θ

NE
i ,

ΘNE
i being a solution of the system of matrix equations

⎛

⎝A−
∑

j �=i

BjR
−1
j BT

j Θj

⎞

⎠
T

Θi +Θi

⎛

⎝A−
∑

j �=i

BjR
−1
j BT

j Θj

⎞

⎠

−ΘiBi(Ri)
−1BT

i Θi + Pi = 0, i = 1, . . . , n.

(3.6)

Then

Vi(t0, x0) = (x0)
TΘNE

i x0,

Vi(t, x
α(t)) = (xα(t))TΘNE

i xα(t).

The payoff distribution procedure constructed according to the rule (3.5) is of the form

βi(t) = ηi(t)− (xα(t))T
((

A+
∑

i∈N
BiM

NE
i

)T

ΘNE
i

+ΘNE
i

(
A+

∑

i∈N
BiM

NE
i

))
xα(t), i = 1, . . . , n.

4. STRATEGIC SUPPORT OF A PARETO-OPTIMAL SOLUTION

Assume that players agree to use a weight vector (α1, . . . , αn) such that the individual rationality
of a Pareto-optimal solution holds at the initial time. We also assume that a time-consistent payoff
distribution procedure

∞∫

l

βi(t) dt ≤ Vi(l, x
α(l)), ∀l ≥ t0, i = 1, . . . , n, (4.1)

is used.

In [2], the problem of strategic support of a cooperative solution was considered. It was proved
that for a special class of differential games a dynamically stable cooperative solution can be
supported by a Nash equilibrium.

Following [2], to punish those who deviate from the cooperative agreement, we consider a special
game Γα(t0, x0), differing from the original one by players’ payoffs on the cooperative trajectory
only.
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Let Ji(t0, x0, u) be the payoff of player i in the game Γα(t0, x0).

Then

Ji(t0, x0, u) =

l∫

t0

βi(t) dt+ Ji(l, x(l), u),

where l is the last time such that x(τ) = xα(τ), for all τ ∈ [t0; t]. This means that at time l a
deviation from the optimal trajectory occurs. Furthermore,

Ji(t0, x0, u) = Ji(t0, x0, u)

if there is no τ > t0 such that x(t) = xα(t) for t0 ≤ t ≤ τ .

If x(t) ≡ xα(t) for t ≥ t0, then

Ji(t0, x0, u
α) =

∞∫

t0

βi(t) dt = Jα
i (t0, x0, u

α).

Definition 4.1 [3]. A collection of strategies uε = (uε1, . . . , u
ε
n) in the class of admissible strategies

is called an ε-equilibrium if for any admissible collection of strategies

uε | ui =
(
uε1, . . . , u

ε
i−1, ui, u

ε
i+1, . . . , u

ε
n

)

and for any player i we have

Ji (t0, x0, u
ε | ui) + ε ≥ Ji(t0, x0, u

ε).

Theorem 4.1. Let the inequalities

Jα
i (k0, x0, u

α) ≤ Vi(k0, x0), i = 1, . . . , n,

be satisfied for some Pareto-optimal solution. Then in the game Γα(t0, x0) for any ε > 0 there exists
an ε-equilibrium situation with players’ payoffs

(Jα
1 (t0, x0, u

α), . . . , Jα
n (t0, x0, u

α)) .

Proof. Consider the following strategy of player i in the game Γα(t0, x0):

u∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uαi (t) = Mα
i x(t), for t ∈ [t0, l + δ), if there exists

l > t0 : x(t) = xα(t), t0 ≤ t ≤ l

ûi(t) = MNE
i x(t), the ith component of the Nash equilibrium

in the subgame Γ(l + δ, x(l + δ)), if at time l

a deviation from the optimal trajectory occurs,

and at time l + δ player i responses to this.

(4.2)

One can show that for each ε > 0 there exists δ(ε) such that the constructed collection of
strategies is an ε-equilibrium in the game Γα(t0, x0).

If player i deviates from the optimal trajectory at time l and after that uses a strategy ũi =
M̃ix(t), and other players response to this at time l + δ, then the payoff of player i is at least

l∫

t0

βi(t) dt+

l+δ∫

l

(
x̃T (t)Pix̃(t) + ũTi (t)Riũi(t)

)
dt+ Vi(l + δ, x̃(l + δ)).
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The second term is nonnegative here, since the matrices Pi are positive semidefinite and Ri are
positive definite. Hence,

l∫

t0

βi(t) dt+

l+δ∫

l

(
x̃T (t)Pix̃(t) + ũTi (t)Riũi(t)

)
dt

+Vi(l + δ, x̃(l + δ)) ≥
l∫

t0

βi(t) dt+ Vi(l + δ, x̃(l + δ)).

Here x̃(t) is a solution of the differential equation

ẋ(t) =

⎛

⎝A+BiM̃i +
∑

j �=i

BjM
α
j

⎞

⎠x(t), x̃(l) = xα(l). (4.3)

Furthermore,

Vi(l + δ, x(l + δ)) = (xα(l))T
(
eÃδ

)T
θNE
i eÃδxα(l),

where Ã = A+BiM̃i +
∑

j �=iBjM
α
j .

Note that the matrix Ã has negative eigenvalues, since players may use admissible strategies
only. Therefore,

lim
δ→0

(
Vi(l, x

α(l)) − Vi(l + δ, x̃(l + δ))
)
= 0,

and for each ε > 0 there exists δ(ε) such that

Vi(l, x
α(l))− Vi(l + δ, x̃(l + δ)) ≤ ε.

Then for such a δ we have

l∫

t0

βi(t) dt+ Vi(l + δ, x̃(l + δ)) ≥
l∫

t0

βi(t) dt+ Vi(l, x
α(l))− ε.

Since the players use a time-consistent payoff distribution procedure, we can choose a vector func-
tion β(t) so that inequalities (4.1) are satisfied. Then

l∫

t0

βi(t) dt+ Vi(l, x
α(l)) − ε ≥

l∫

t0

βi(t) dt+

∞∫

l

βi(t) dt− ε = Jα
i (t0, x0, u

α)− ε.

Hence, if player i deviates from an optimal trajectory, his payoff will be at least Jα
i (t0, x0, u

α)−ε,
and the constructed collection of strategies is an ε-equilibrium with payoff Jα

i (t0, x0, u
α). �

5. EXAMPLE

Consider the two-person game (2.1), (2.2). Let the state of system be described by the equation

ẋ(t) =

(
1 −1
0 −1

)
x(t) +

2∑

i=1

(
−2
0

)
ui(t), x(t0) = x0, (5.1)
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and let players’ payoffs be of the form

J1(t0, x0, u) =

∞∫

t0

(
xT (t)

(
1 2
2 5

)
x(t) +

1

2
uT1 (t)u1(t)

)
dt, (5.2)

J2(t0, x0, u) =

∞∫

t0

(
xT (t)

(
1 2
2 5

)
x(t) +

1

4
uT2 (t)u2(t)

)
dt. (5.3)

Let

θ1 =

(
q1 q2
q2 q3

)
, θ2 =

(
s1 s2
s2 s3

)
. (5.4)

To find the Nash equilibrium, we have to solve system (3.6), which in this case takes the form

−(2(1 − 16s1))q1 − 1 + 8q21 = 0,

−(1− 16s1)q2 − (−1− 16s2)q1 + q2 − 2 + 8q1q2 = 0,

−(2(−1− 16s2))q2 + 2q3 − 5 + 8q22 = 0,

−(2(1− 8q1))s1 − 1 + 16s21 = 0,

−(1− 8q1)s2 − (−1− 8q2)s1 + s2 − 2 + 16s1s2 = 0,

−(2(−1 − 8q2))s2 + 2s3 − 5 + 16s22 = 0.

By solving the system, we obtain

θNE
1 =

(
0.1463 0.2509
0.2509 0.9709

)
,

θNE
2 =

(
0.2396 0.2557
0.2557 1.2079

)
,

MNE
1 =

(
0.5852 1.0036

)
,

MNE
2 =

(
1.9168 2.0456

)
,

V1(t, x(t)) = xT (t)θNE
1 x(t),

V2(t, x(t)) = xT (t)θNE
2 x(t).

If θ =

(
x1 x2
x2 x3

)
, then, to find a Pareto-optimal solution, we have to solve system (2.8), which

in this case takes the form

2x1 + 1− x21(8/α + 16/(1 − α)) = 0,

−x1 + 2− x1(8/α + 16/(1 − α))x2 = 0,

−2x2 − 2x3 + 5− x22(8/α + 16/(1 − α)) = 0.

Then

θα =

⎛

⎜⎜⎜⎝

1

8

−α2 + r + α

1 + α

α(−α3 + rα− 14α2 − r − α+ 16)

8(−α3 + rα+ r + α)

α(−α3 + rα− 14α2 − r−α+16)

8(−α3 + rα+ r + α)

(−α4+ rα2+46α3 − 41rα− 33α2 − 40r− 108α− 32)

16(α3 − rα− 4α2 − r − 9α− 4)

⎞

⎟⎟⎟⎠,
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where r =
√
α4 − 10α3 + α2 + 8α.

For α = 0.6, we obtain

θα =

(
0.1569 0.2202
0.2202 0.9872

)
,

Mα
1 =

(
1.046 1.468

)
,

Mα
2 =

(
3.138 4.404

)
.

By substituting the obtained values of optimal controls into the system dynamic equation, we
find an optimal trajectory. One can find the payoff of each player along the optimal trajectory:

J1(t0, x0, u
α) = (xα(t))T

(
0.1049 0.1709
0.1709 0.8612

)
xα(t),

J2(t0, x0, u
α) = (xα(t))T

(
0.2349 0.29415
0.29415 1.1762

)
xα(t).

If x0 =

(
1
−2

)
, then

J1(t0, x0, u
α)− V1(t0, x0) = −0.1602 < 0,

J2(t0, x0, u
α)− V2(t0, x0) = −0.2853 < 0.

However, at time t = 0.08

J1(t, x
α(t), uα)− V1(t, x

α(t)) = 0.055 > 0.

We chose the functions ηi(t) according to the following rule:

η1(t) = −0.0207(xα(t))Txα(t),

η2(t) = −0.0368(xα(t))Txα(t).

Then

β1(t) = (xα(t))T
(
2.1352 3.964
3.964 8.316

)
xα(t),

β2(t) = (xα(t))T
(
3.4939 5.1932
5.1932 8.8963

)
xα(t).

Using the constructed payoff distribution procedure, the players obtain a strategically stable
cooperative solution.

6. CONCLUSION

In the paper we have considered the problem of strategic support of a Pareto-optimal solution
in linear-quadratic differential games. We have shown that in a game of a special type, which is
constructed with the help of a time-consistent payoff distribution procedure and differs from the
original game in payoffs on the cooperative trajectory only, no individual deviation from cooperation
is profitable for the deviating player. The outcome of the cooperative solution is attained at some
ε-Nash equilibrium in this game.
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