
ISSN 0005-1179, Automation and Remote Control, 2017, Vol. 78, No. 1, pp. 29–49. c© Pleiades Publishing, Ltd., 2017.
Original Russian Text c© D.V. Balandin, M.M. Kogan, 2017, published in Avtomatika i Telemekhanika, 2017, No. 1, pp. 35–58.

STOCHASTIC SYSTEMS, QUEUEING SYSTEMS

On Pareto Set in Control and Filtering Problems

under Stochastic and Deterministic Disturbances

D. V. Balandin∗,a and M. M. Kogan∗∗,b

∗Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
∗∗Nizhny Novgorod State University of Architecture and Civil Engineering,

Nizhny Novgorod, Russia
e-mail: adbalandin@yandex.ru, bmkogan@nngasu.ru

Received August 31, 2015

Abstract—We consider two-criteria control or filtering problems for linear systems, where one
criterion is the level of suppression for Gaussian white noise with unknown covariance, and
another is the level of suppression for a deterministic signal of bounded power. We define a new
criterion, the level of suppression for stochastic and deterministic disturbances that act jointly
in the general case on different inputs. This criterion is characterized in terms of solutions
of Riccati equations or linear matrix inequalities. We establish that for the choice of optimal
controller or filter with respect to this criterion relative losses with respect to each of the original
criteria compared to Pareto optimal solutions do not exceed the value 1 − √

2/2. We extend
these results to dual control and filtering problems for systems with one input and two outputs,
generalize them to the case of N criteria with loss estimate 1 − √

N/N , and also apply them
for systems with external and initial disturbances. We show a numerical example.
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1. INTRODUCTION

Mathematical models of processes in control or filtering problems can be divided into stochastic
and deterministic. In models of the first type, disturbances and measurement noise are described
as random, and criteria are usually established variances of errors. If statistical characteristics of
input random processes are known, then in the linear–quadratic case this leads to the so-called
H2-optimal controllers or filters [1] (optimal Gaussian control, or Wiener–Kalman filter), where the
H2-norm of the transfer matrix of the system of disturbances to the error is an integral parameter
of system reaction to harmonic disturbances on all frequencies. In deterministic problems with
unknown disturbances, the criterion is usually the so-called H∞-norm of this transfer matrix that
characterized the maximal possible ratio of error energy to disturbance energy. This theory leads to
H∞-optimal controllers and filters. Another important and developing direction combines stochas-
tic H2- and H∞-theories in the concept of anisotropic norm; see, e.g., [2, 3]. Optimal solutions with
respect to each of the above criteria differ from each other and in many cases are conflicting.

At the same time, the division between stochastic and deterministic processes is quite relative,
it is often more natural to assume that some disturbances (e.g., the external disturbance) are
deterministic, and some (e.g., measurement noise) are stochastic in the same problem. Besides, if
one of the disturbances is absent, and control or filtering quality is evaluated with the corresponding
criterion, then the same controller or filter must operate in the best possible way under each of
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the disturbances. Similar considerations have led to problems with the so-called H2/H∞-criterion
[4–11]. In particular, the works [12, 13] assume that one input is subject to a deterministic
disturbance of bounded power, another is subject to random white noise with unit covariance
matrix, and the quality criterion is the maximal power of the output among all deterministic
signals. The authors of these works were able to design filters and controllers that minimize an
upper bound on the output power, but at the same time it remained unknown how well the resulting
systems perform compared to the optimal with respect to individual criteria for deterministic and
stochastic disturbances.

A development of this approach is the concept of the so-called multi-criteria control [14–16],
where the objective is formulated in terms of the general Lyapunov function, although optimal
solutions with respect to each criterion correspond to different Lyapunov functions. This has led
to certain conservatism, but has allowed to design a controller that in some sense combines the
properties of optimal solutions with respect to individual criteria. The problem of how conservative
the resulting solutions are or, in other words, to what extent values of individual quality criteria in
the resulting systems differ from their optimal values, also remains open.

A multi-criteria optimization problem with H2-criteria has been considered in [17, 18]; with
H2- and H∞-criteria, in [19], where the authors used the so-called Q-parametrization of controllers
and suboptimal solutions were found with finite-dimensional controllers. As far as we know, there
has been no significant progress in solving multi-criteria control problems since then, and publica-
tions of the last decade on this topic are chiefly related to computational aspects (see, e.g., [20]) or
specific applications.

In the present work (see also [21]), the central problem is to characterize Pareto sets in con-
trol and filtering problems with deterministic and stochastic disturbances. Unlike the problems
described above, we model stochastic signals as stationary Gaussian white noises with unknown
covariance, and as the quality criterion we introduce the level of suppression for random distur-
bances as a maximal value of the ratio of limit variances (powers) of output and input signals,
averaged over time, over all nonzero input covariances (control and filtering problems with this
criterion were considered in [22–24]). This lets us construct, under jointly acting stochastic and
deterministic disturbances, a parameterized “ideal” criterion that possesses the following property:
the set of points on the plane of criteria corresponding to values of individual criteria under the
optimal solution with respect to the ideal criterion includes the Pareto set.

Further, since it appears impossible to find optimal solutions with respect to the ideal criterion,
we introduce instead a different criterion that lets us obtain lower and upper bounds on the Pareto
set. This criterion represents the level of suppression for jointly acting stochastic and deterministic
disturbances equal to the maximal ratio of output power to the square root of the weighted sum
of squares of powers of input signals over all admissible deterministic and stochastic disturbances.
Note that a counterpart of this criterion in the suppression problem for deterministic disturbances
of bounded energy and disturbances generated by a nonzero initial state is the generalized H∞-
norm [25–29]. In this work we show (see also [24]) that the level of suppression for stochastic
disturbances and level of suppression for jointly acting stochastic and deterministic disturbances
can be expressed in terms of solutions of Riccati equations or linear matrix inequalities [30, 31].
This lets us design optimal filters and controllers with respect to different parameters in a unified
context and evaluate losses with the ratio to the Pareto optimal solutions.

Using the duality idea, we have been able to establish that this approach can be extended to
multi-criteria problems in systems with one input and two target outputs, criteria for which are
the generalized H2-norm and H∞-norm corresponding to the channels. We show how the proposed
approach can be extended to problems with N criteria, and also to control and filtering problems
with external and initial disturbances. We show examples that illustrate our results.
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2. PROBLEM SETTING

2.1. Control

Consider a controllable system

x(t+ 1) = Ax(t) +Bww(t) +Bvv(t) +Buu(t), x(0) = x0,

z(t) = C1x(t) +Dww(t) +Dvv(t) +Duu(t),
(2.1)

where x(t)∈Rnx is the state, u(t)∈Rnu is the control, z(t)∈Rnz is the controllable output, and x0
is a random initial system state with zero expectation and unknown covariance matrix. We assume
that the disturbance w(t)∈Rnw is an input stationary Gaussian random sequence of vectors with
zero expectation and covariance matrix Ew(t)wT(t) ≡ Kw, and that w(t) for all t is uncorrelated
with x0. The disturbance v(t)∈Rnv is assumed to be deterministic with bounded power, which is
defined by the value

‖s‖2P = lim
N→∞

(1/N)
N−1∑

t=0

|s(t)|2.

We denote the set of sequences with bounded power by P = {s : ‖s‖2P < ∞}. Note that all signals
from l2 with ‖s‖22 =

∑∞
t=0 |s(t)|2 < ∞ have zero power, so the power is a seminorm.

Suppose that the control law has the form of linear state feedback

u(t) = Θx(t), (2.2)

under which the closed system

x(t+ 1) = Acx(t) +Bww(t) +Bvv(t), x(0) = x0,

z(t) = Czx(t) +Dww(t) +Dvv(t),
(2.3)

where

Ac = A+BuΘ, Cz = C1 +DuΘ, (2.4)

is asymptotically stable with no disturbances.

If system (2.3) is subject only to a stochastic disturbance with unknown covariance matrix Kw,
we will characterize the control quality by the level of suppression for stochastic disturbances whose
square is the largest value of the ratio of established variances, averaged over time, for the output z
and input w with nonzero covariance matrix Kw that belongs to the set Gnw of vector Gaussian
white noises of dimension nw, i.e.,

γ0(Θ) = sup
w∈Gnw ,v≡0

√
Jz√
Jw

, (2.5)

where

Jz = lim
N→∞

(1/N)
N−1∑

t=0

E|z(t)|2, Jw = lim
N→∞

(1/N)
N−1∑

t=0

E|w(t)|2 = trKw.

In this case, the output will be a stationary Gaussian sequence, i.e., it will be ergodic, so individual
trajectories z have (with probability one) finite power and, consequently,

γ0(Θ) = ess sup
w∈Gnw ,v≡0

‖z‖P
‖w‖P , (2.6)
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where ess denotes essential supremum, i.e., the smallest upper bound with probability one. This
value will be the induced norm of a linear operator generated by system (2.3) for v ≡ 0 and zero
initial conditions and mapping w(t) ∈ Gnw to z(t) ∈ Gnz . Below we will show how the level of
suppression for stochastic disturbances can be expressed in terms of solutions of Lyapunov equations
or linear matrix inequalities and also via the transfer matrix Hw of this system from w to z.

If only deterministic disturbances are present, the control quality is characterized by the level
of suppression for deterministic disturbances which is equal to the maximal value of the ratio of
powers of target output and disturbances, i.e., induced norm of a linear operator mapping v(t)∈P
to z(t)∈P. It has been shown in [4] that this norm equals the H∞-norm of the transfer matrix Hv

of this system from v to z, i.e.,

γ∞(Θ) = sup
v∈P,w≡0

‖z‖P
‖v‖P = ‖Hv‖∞.

For each of the above criteria, there exists its own optimal matrix of feedback parameters. The
Pareto optimal solutions in the considered two-criteria problem is the set of parameters

ΘP = argmin
Θ

{γ0(Θ), γ∞(Θ)},

i.e., such that there exists no other linear feedback under which the level of suppression for one of
the disturbances would be smaller without increasing another. This set does exist hypothetically,
but it is extremely hard to find. In general, the problem is to characterize this set in some way.
Namely, we define a family of control laws under which the relative quality deterioration with
respect to each of the criteria compared to a Pareto optimal control does not exceed a certain
value. This family of control laws is also interesting by itself since it includes control laws that
are optimal with respect to the level of suppression for jointly acting stochastic and deterministic
disturbances.

2.2. Filtering

Consider a system defined by equations

x(t+ 1) = Ax(t) +B1w(t) +B2v(t), x(0) = x0,

y(t) = C2x(t) +D21w(t) +D22v(t),

z(t) = Czx(t),

(2.7)

where x(t)∈Rnx is the state, y(t)∈Rny is the measured output, z(t)∈Rnz is the target output,
w(t)∈Rnv is a stationary Gaussian white noise with zero expectation and unknown covariance
Ew(t)wT(t) ≡ Kw, v(t)∈P is a deterministic disturbance, x0 is a random initial system state with
zero expectation and unknown covariance matrix. We assume that the initial state is not correlated
with w(t) for all t.

To get an estimate of the target output, we choose a filter of the form

xf (t+ 1) = Axf (t) + Θ[y(t)− C2xf (t)], xf (0) = 0,

zf (t) = Czxf (t),
(2.8)

where xf (t)∈Rnx is the filter state, and Θ is its matrix of parameters. Then errors in the estimates
of the state e(t) = x(t)− xf (t) and target output ez(t) = z(t)− zf (t) satisfy equations

e(t+ 1) = Ace(t) +Bww(t) +Bvv(t), e(0) = x0,

ez(t) = Cze(t),
(2.9)
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where

Ac = A−ΘC2, Bw = B1 −ΘD21, Bv = B2 −ΘD22. (2.10)

We define for system (2.9) levels of suppression for stochastic and deterministic disturbances as

γ0(Θ) = sup
w∈Gnw ,v≡0

√
Jez√
Jw

, γ∞(Θ) = sup
v∈P,w≡0

‖ez‖P
‖v‖P

and pose the problem of characterizing Pareto optimal filters whose parameters satisfy condition

ΘP = argmin
L

{γ0(Θ), γ∞(Θ)}.

In the following section we will show that in each of the problems we can define an “ideal”
criterion, depending on a scalar parameter, such that the Pareto set on the plane of criteria is
contained in the set of points corresponding to the criteria’s values under optimal solutions with
this ideal criterion.

3. THE PARETO SET

Let us consider both problems formulated above in a single unified scheme. Namely, on system
trajectories

x(t+ 1) = Ac(Θ)x(t) +Bw(Θ)w(t) +Bv(Θ)v(t), x(0) = x0,

z(t) = Cz(Θ)x(t) +Dw(Θ)w(t) +Dv(Θ)v(t),
(3.1)

whose matrices depend on the matrix of parameters Θ, and where all eigenvalues of matrix A(Θ) are
strictly less than one in absolute values, we define two criteria, γ0(Θ) and γ∞(Θ), similar to above,
that characterize levels of suppression for stochastic and deterministic disturbances separately.
Suppose that ΘP belongs to the Pareto set P0 and γ0(ΘP ) = γ1, γ∞(ΘP ) = γ2. Due to the definition
of a level of suppression for stochastic disturbances, for v ≡ 0 we have

√
Jz � γ1

√
Jw ∀w ∈ G.

In this case individual trajectories zw have (with probability one) finite power and, consequently,

‖zw‖P � γ1‖w‖P ∀w ∈ G. (3.2)

By definition of a level of suppression for deterministic disturbances, we have that

‖zv‖P � γ2‖v‖P ∀v ∈ P, (3.3)

where zv is the output of the closed system (3.1) for w ≡ 0.

We define on the trajectories of system (3.1), under jointly acting stochastic and deterministic
disturbances, the criterion

Jρ(Θ) = ess sup
w∈G,v∈P

‖z‖P
‖w‖P + ρ‖v‖P , (3.4)

where ρ > 0 is the weight coefficient. Using the obvious inequality that follows from (3.2), (3.3),

‖z‖P = ‖zw + zv‖P � γ1(‖w‖P + ρ‖v‖P ) ∀w ∈ G,∀ v ∈ P,
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where ρ = γ2/γ1, we get that Jρ(ΘP ) � γ1. Let Θρ be a matrix of parameters minimizing Jρ(Θ)
for a given ρ. Then Jρ(Θρ) = γρ � γ1 and, consequently, for Θ = Θρ we have

‖z‖P � γρ(‖w‖P + ρ‖v‖P ) ∀w ∈ G,∀ v ∈ P.

This inequality implies that

‖z‖P � γρ‖w‖P , v ≡ 0 ∀w ∈ G,
‖z‖P � γρ ρ‖v‖P , w ≡ 0 ∀v ∈ P.

Thus, we have that

γρ � γ1, γρ ρ = γρ γ2/γ1 � γ2.

This means that γ0(Θρ) � γ1 and γ∞(Θρ) � γ2, i.e., γ0(Θρ) � γ0(ΘP ) and γ∞(Θρ)� γ∞(ΘP ). Since
ΘP belongs to the Pareto set, γ0(Θρ) =γ0(ΘP ), γ∞(Θρ) = γ∞(ΘP ) and, consequently, Θρ also
belongs to P0. Summarizing, we formulate necessary Pareto optimality conditions for the problem
at hand.

Theorem 3.1. If (γ1, γ2) is a Pareto optimal point on the plane of criteria γ0(Θ) and γ∞(Θ)
for system (3.1), then there exists a matrix of parameters Θρ ∈ P0 minimizing criterion (3.4) for
ρ = γ2/γ1 such that γ0(Θρ) = γ1, γ∞(Θρ) = γ2.

Thus, we should be looking for the Pareto set only among optimal solutions with respect to
criterion Jρ(Θ). However, since solving this one-criterion problem presents many obstacles, in the
next section we will consider another one-criterion problem whose solution can be found efficiently
and that lets us estimate the boundaries of the Pareto set.

4. ESTIMATING THE PARETO SET ON THE PLANE OF CRITERIA

We denote

γ−1 = min
Θ

γ0(Θ) = γ0(Θ0), γ−2 = min
Θ

γ∞(Θ) = γ∞(Θ∞),

where Θ0 and Θ∞ are the optimal matrices of parameters with respect to criteria γ0 and γ∞
respectively. Besides, we denote

γ+1 = γ0(Θ∞), γ+2 = γ∞(Θ0).

Obviously, the Pareto set belongs to the set

D =
{
(γ1, γ2) : γ

−
1 � γ1 � γ+1 , γ−2 � γ2 � γ+2

}
.

Let us refine these estimates. To do that, we introduce on trajectories of system (3.1) a new
criterion

γ0,∞(Θ) = ess sup
w∈G,v∈P

‖z‖P√
‖w‖2P + ρ2‖v‖2P

, (4.1)

which we call the level of suppression for (jointly acting) stochastic and deterministic disturbances.
Now (4.1) immediately implies that

γ0,∞(Θ) � max
{
γ0(Θ), ρ−1γ∞(Θ)

}
. (4.2)
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We compare the corresponding values of original criteria γ0(Θ) and γ∞(Θ) on the optimal
solutions with respect to criteria Jρ(Θ) and γ0,∞(Θ). Since

‖z‖P
‖w‖P + ρ‖v‖P � ‖z‖P√

2
√
‖w‖2P + ρ2‖v‖2P

,

we get that Jρ(Θ)� (1/
√
2)γ0,∞(Θ). Let ΘP belong to the Pareto set and γ0(ΘP )=γ1, γ∞(ΘP )=γ2.

For the matrix Θρ, which is optimal with respect to criterion Jρ(Θ) for ρ = γ2/γ1, it holds that
Jρ(Θρ) = γρ � γ1. Consequently, it holds that

γ1 � Jρ(Θρ) � (1/
√
2)γ0,∞(Θρ) � (1/

√
2)γ0,∞(Θ∗

ρ),

where Θ∗
ρ is the optimal solution with respect to criterion (4.1). Taking into account (4.2), we

derive from this conditions

(1/
√
2)γ0(Θ

∗
ρ) � γ1, (1/

√
2)γ∞(Θ∗

ρ) � γ1ρ = γ2. (4.3)

Since Θρ ∈ P0, one of the following three cases is possible:

γ0(Θ
∗
ρ) � γ1, γ∞(Θ∗

ρ) � γ2;

γ0(Θ
∗
ρ) > γ1, γ∞(Θ∗

ρ) � γ2;

γ0(Θ
∗
ρ) � γ1, γ∞(Θ∗

ρ) > γ2.

In the first case, due to (4.3) we get that

γ0(Θ
∗
ρ)− γ1

γ0(Θ∗
ρ)

� 1−
√
2

2
,

γ∞(Θ∗
ρ)− γ2

γ∞(Θ∗
ρ)

� 1−
√
2

2
, (4.4)

i.e., when choosing optimal solutions Θ∗
ρ with respect to criterion γ0,∞(Θ) for a given ρ, relative

losses with respect to each of the criteria γ0(Θ) and γ∞(Θ) compared to the corresponding Pareto
optimal solution, if it exists, do not exceed 1−√

2/2. In the other two cases, with respect to one
of the criteria relative losses will also not exceed the value 1−√

2/2, and the value of the other
criterion does not exceed its value at the Pareto optimal solution.

Let us finally show that loss estimates shown in (4.4) can be, generally speaking, refined with
the properties of criterion γ0,∞(Θ). Namely, suppose that for a given ρ there exists a solution of
problem

min
Θ

max
w∈G,v∈P

‖z‖P√
‖w‖2P + ρ2‖v‖2P

, (4.5)

which will be studied in detail in the next section. We denote by Θ∗
ρ, w∗, and v∗ its optimal solution

with respect to parameters Θ and the worst possible disturbances. Then

γ0,∞(Θ∗
ρ) =

‖z(Θ∗
ρ, w∗, v∗)‖P√

‖w∗‖2P + ρ2‖v∗‖2P
� ‖z(Θρ, w∗, v∗)‖P√

‖w∗‖2P + ρ2‖v∗‖2P
� ‖z(Θρ, w∗, v∗)‖P

μ(ρ)(‖w∗‖P + ρ‖v∗‖P) ,

where z(Θ, w, v) is the target output of system (3.1) for the corresponding arguments, Θρ ∈P0,
γ0(Θρ) = γ1, γ∞(Θρ) = γ2, ρ = γ2/γ1, and

μ(ρ) =

√
‖w∗‖2P + ρ2‖v∗‖2P
‖w∗‖P + ρ‖v∗‖P . (4.6)
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We further have that

μ(ρ)γ0,∞(Θ∗
ρ) � max

w∈G,v∈P
‖z(Θρ, w, v)‖P
‖w‖P + ρ‖v‖P = Jρ(Θρ) � γ1.

This implies that

μ(ρ)γ0(Θ
∗
ρ) � γ1, μ(ρ)γ∞(Θ∗

ρ) � ρ γ1 = γ2. (4.7)

Since 1/
√
2 � μ(ρ) � 1, instead of estimates (4.3) we have obtained more exact estimates (4.7),

which similarly lead to the following result.

Theorem 4.1. Relative losses under the optimal solution with respect to the level of suppres-
sion for stochastic and deterministic disturbances for a given ρ compared to the Pareto optimal
solution ΘP for which γ0(ΘP ) = γ1, γ∞(ΘP ) = γ2 and γ2/γ1 = ρ, do not exceed for each criterion
1− μ(ρ), i.e., it holds that

γ0(Θ
∗
ρ)− γ1

γ0(Θ∗
ρ)

� 1− μ(ρ),
γ∞(Θ∗

ρ)− γ2

γ∞(Θ∗
ρ)

� 1− μ(ρ), (4.8)

where 1/
√
2 � μ(ρ) � 1 has been defined in (4.6).

5. COMPUTING LEVELS OF SUPPRESSION FOR THE DISTURBANCES

Before we characterize the level of suppression for stochastic and deterministic disturbances,
let us show how the level of suppression for stochastic disturbances can be expressed in terms of
matrices of system Eqs. (3.1) or via its transfer matrix. In cases where it does not lead to confusion
we will omit the arguments of matrix functions. Let H(s) = (Hw(s) Hv(s)) be the transfer matrix
of this system, where

Hw(s) = Cz(sI −Ac)
−1Bw +Dw, Hv(s) = Cz(sI −Ac)

−1Bv +Dv.

Theorem 5.1. The level of suppression for stochastic disturbances in system (3.1) for v ≡ 0 can
be found as

γ20(Θ)= λmax(B
T
wP0Bw+DT

wDw) = λmax

⎧
⎨

⎩
1

2π

2π∫

0

HT
w (e

−jϕ)Hw(e
jϕ) dϕ

⎫
⎬

⎭ , (5.1)

where P0 = PT
0 � 0 is the solution of Lyapunov equation

AT
c PAc − P + CT

z Cz = 0. (5.2)

Here the covariance matrix of the worst possible disturbance equals K∗= emaxe
T
max, where emax is

the eigenvector of matrix BT
wP0Bw +DT

wDw corresponding to the maximal eigenvalue γ20(Θ).

Note that, by substituting into (5.2) the corresponding expressions for matrices Ac(Θ) and Cz(Θ)
and extracting the full square with respect to Θ, we can find for each of the control and filtering
problems the optimal matrix of parameters Θ0 under which the level of suppression for stochastic
disturbances γ20(Θ) is minimal. For instance, for the control problem we get

Θ0 = −
(
BT

u P∗Bu +DT
uDu

)−1 (
BT

u P∗A+DT
uCz

)
, (5.3)
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where P∗ is the stabilizing solution of Riccati equations

ATPA− P + CT
z Cz −ΘT

0

(
BT

u P∗Bu +DT
uDu

)
Θ0 = 0.

We now return to considering the level of suppression for stochastic and deterministic distur-
bances (4.1) for system (3.1), whose square is the largest value of the ratio of the square of output
power to the weighted sum of squares of powers of deterministic and stochastic disturbances over
all admissible disturbances. This definition immediately implies that

γ0,∞ � max
{
γ0, ρ

−1γ∞
}
.

This value represents the induced norm of a linear operator that maps, due to system (3.1), a pair
(w(t), v(t)), where w(t) ∈ Gnw and v(t) ∈ P , to z(t) ∈ P; it can be called the H∞/γ0-norm of this
system.

Theorem 5.2. For system (3.1), condition γ0,∞ < γ holds if and only if

λmax

(
BT

wXγBw +DT
wDw

)
< γ2, (5.4)

where Xγ = XT
γ > 0 is the stabilizing solution of Riccati equations

AT
c XAc −X + CT

z Cz

+
(
BT

v XAc +DT
v Cz

)T (
ρ2γ2I −BT

v XBv −DT
v Dv

)−1 (
BT

v XAc +DT
v Cz

)
= 0 (5.5)

such that ρ2γ2I −BT
v XγBv −DT

v Dv > 0 and

Av = Ac +Bv

(
ρ2γ2I −BT

v XγBv −DT
v Dv

)−1 (
BT

v XγAc +DT
v Cz

)
(5.6)

is an asymptotically stable matrix.

Corollary. For system (3.1), condition γ0,∞ < γ holds if and only if there exists a matrix X =
XT > 0 satisfying linear matrix inequalities

⎛

⎜⎜⎜⎜⎝

−X XAc XBv 0

� −X 0 CT
z

� � −ρ2γ2I DT
v

� � � −I

⎞

⎟⎟⎟⎟⎠
< 0,

⎛

⎜⎜⎝

−X XBw 0

� −γ2I DT
w

� � −I

⎞

⎟⎟⎠ < 0. (5.7)

Note that it follows from (5.7) that γ20,∞ > ρ−2λmax(D
T
v Dv). Besides, inequality γ∞ < γ holds

if and only if the first inequality in (5.7) is feasible for ρ = 1, and γ0 < γ when the first inequality
in (5.7), where we exclude the third block row and column, and the second inequality holds.

Remark. It follows from the first inequality in (5.7) that for sufficiently large ρ inequality (5.7)
becomes an inequality that defines γ20 , i.e., for ρ → ∞ we have γ0,∞ → γ0. For sufficiently small
ρ > 0 the value γ0,∞ will coincide with ρ−1γ∞. Indeed, let X∞ > 0 satisfy the first inequality
in (5.7) for the minimal value of ρ2γ2 = γ2∞ + ε for sufficiently small ε > 0. If at the same time
BT

wX∞Bw +DT
wDw < (γ2∞/ρ2)I, then X∞ > 0 will satisfy the second inequality in (5.7), and then

γ0,∞ = ρ−1γ∞. Thus, in order for the value γ0,∞ to actually reach a compromise between γ0 and
ρ−1γ∞, it is necessary for the weight coefficient to satisfy condition

ρ2 � ρ2∗ = γ2∞λ−1
max

(
BT

wX∞Bw +DT
wDw

)
. (5.8)
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Let us now consider the problem of the worst jointly acting stochastic and deterministic distur-
bances and show, in particular, that under a certain condition the supremum in (4.1) is reached.

Theorem 5.3. Under (5.8) the maximal value of γ0,∞ is achieved when w∗(t) is a white noise
with covariance K∗ = emaxe

T
max, where emax is the eigenvector of matrix BT

wX∗Bw +DT
wDw corre-

sponding to the maximal eigenvalue γ20,∞, and

v∗(t) =
(
ρ2γ20,∞I −BT

v X∗Bv −DT
v Dv

)−1 (
BT

v X∗Ac +DT
v Cz

)
x(t), (5.9)

where X∗ is the stabilizing solution of Eqs. (5.5) for γ = γ0,∞, x(t) is a solution of system

x(t+ 1) = Avx(t) +Bww∗(t), x(0) = x0,

where matrix Av is defined in (5.6) for γ = γ0,∞.

In case when both criteria are H∞-norms, the level of suppression for two jointly acting deter-
ministic disturbances takes the form

γ∞,∞(Θ) = sup
w∈P,v∈P

‖z‖P√
‖w‖2P + ρ2‖v‖2P

= sup
ζ∈P

‖z‖P
‖ξ‖P , (5.10)

where ξ = col (w, ρ−1v). This is the H∞-norm of the system’s transfer matrix from ξ to z, which
is characterized by the corresponding linear matrix inequality.

In case when there are two stochastic disturbances, and both criteria are γ0-norms, the level of
suppression for these jointly acting disturbances takes the form

γ0,0(Θ) = ess sup
w∈G,v∈G

‖z‖P√
‖w‖2P + ρ2‖v‖2P

= sup
ξ∈G

‖z‖P
‖ξ‖P , (5.11)

where ξ = col (w, ρ−1v). This level equals the γ0-norm of the corresponding transfer matrix of the
system.

6. γ0,∞-OPTIMAL CONTROLLER AND FILTER

We now return to the controllable system

x(t+ 1) = Ax(t) +Bww(t) +Bvv(t) +Buu(t), x(0) = x0,

z(t) = C1x(t) +Dww(t) +Dvv(t) +Duu(t).
(6.1)

We define the γ0,∞-optimal control in the class of linear feedbacks u(t) = Θx(t) for which the closed
system will be asymptotically stable, and the level of suppression for stochastic and deterministic
disturbances for a given ρ will be minimal, i.e.,

min
Θ

γ0,∞(Θ) = γ0,∞(Θ∗
ρ).

Substituting matrices of the closed system into inequality (5.7), multiplying the first and second
inequality from the left and from the right by blockdiag (X−1,X−1, I, I) and blockdiag (X−1, I, I)
respectively, introducing new variables Y = X−1 and Z = ΘY , due to corollary we arrive at the
following.
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Theorem 6.1. The matrix of parameters for a γ0,∞-optimal controller can be computed as Θ∗
ρ =

ZY −1, where (Y,Z) is the solution of problem min γ2 under constraints

⎛

⎜⎜⎜⎜⎝

−Y AY +BuZ Bv 0

� −Y 0 Y CT
1 + ZTDT

u

� � −ρ2γ2I 0

� � � −I

⎞

⎟⎟⎟⎟⎠
< 0,

⎛

⎜⎜⎝

−Y Bw 0

� −γ2I DT
w

� � −I

⎞

⎟⎟⎠ < 0.

(6.2)

Let γ0,∞(Θ) denote the level of suppression for stochastic and deterministic disturbances in
system

e(t+ 1) = (A−ΘC2)e(t) + (B1 −ΘD21)w(t) + (B2 −ΘD22)v(t), e(0) = x0,

ez(t) = Cze(t),
(6.3)

which describes the dynamics of error filtering with output ez. We define a γ0,∞-optimal filter for
which γ0,∞(Θ) is minimal, i.e.,

min
Θ

γ0,∞(Θ) = γ0,∞(Θ∗
ρ).

Substituting matrices of this system into inequality (5.7) and introducing auxiliary variables Z =
XΘ, we immediately get the following result.

Theorem 6.2. The matrix of parameters for a γ0,∞-optimal filter can be found as Θ∗
ρ = X−1Z,

where (X,Z) is the solution of problem min γ2 under constraints

⎛

⎜⎜⎜⎜⎝

−X XA− ZC2 XB2 − ZD22 0

� −X 0 CT
z

� � −ρ2γ2I 0

� � � −I

⎞

⎟⎟⎟⎟⎠
< 0,

( −X XB1 − ZD21

� −γ2I

)
< 0.

(6.4)

According to Theorem 4.1, the relative losses of a γ0,∞-optimal filter do not exceed the value
1− μ(ρ), where

μ(ρ) =

√
‖w∗‖2P + ρ2‖v∗‖2P
‖w∗‖P + ρ‖v∗‖P , (6.5)

v∗(t) = Lx(t) and w∗(t) with ‖w∗‖2P = trK∗ = 1 have been defined in Theorem 5.3. Note that
‖v∗‖2P = tr (LTLX0), where X0 = XT

0 � 0 is the solution of Lyapunov equations

AvXAT
v −X +BwK∗BT

w = 0 (6.6)

for matrices Av and Bw that corresponds to the γ0,∞-optimal filter.
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7. RELATION TO THE H2/H∞-OPTIMIZATION PROBLEM

Let us point out a difference in this context between criterion γ0,∞ and quality criterion H2/H∞.
Suppose that in system (3.1) with deterministic and stochastic disturbances the white noise covari-
ance matrix is known and is the unit matrix. Consider the value

sup
v∈P

(
‖z‖2P − ρ2γ2‖v‖2P

)
,

assuming that constraint ‖Hv‖∞ < ργ holds. By the proof of Theorem 5.2, we get that it is equal
to tr (BT

wXγBw +DT
wDw), where Xγ is the stabilizing solution of Eqs. (5.5). It is well known

that ‖Hw‖22 = tr (BT
wP0Bw +DT

wDw), where P0 is the solution of Lyapunov equations (5.2). By
the monotonicity property of the solutions of Lyapunov equations we have that 0 � P0 � Xγ � X ,
whereX=XT>0 satisfy the first inequality in (5.7). Consequently, ‖Hw‖22� tr (BT

wXBw+DT
wDw).

Therefore, the ratio H2/H∞ can be found as

γ22,∞(Θ) = inf
{
μ2 : tr

(
BT

wXBw +DT
wDw

)
� μ2

}
, (7.1)

where X = XT > 0 satisfies the first inequality in (5.7). This definition implies that γ2,∞ depends
on γ and that ‖Hw‖2 � γ2,∞ and limγ→∞ γ2,∞ =‖Hw‖2.

Thus, while γ0,∞ serves as a criterion characterizing the worst possible system reaction to ran-
dom disturbance with unknown covariance in one channel and deterministic disturbance in the
other channel, γ2,∞ characterizes the worst possible system reaction to white noise with unit co-
variance matrix in one channel under a given constraint on the level of suppression for deterministic
disturbances in the other channel. This means that in situations when statistical characteristics of
random disturbances are unknown, as a criterion for filter or controller synthesis it makes sense to
choose γ0,∞ rather than γ2,∞.

Besides, the most important point is as follows. It is well known that in the paradigm of multi-
criteria H2/H∞-control, objectives are usually formulated in terms of the general Lyapunov’s func-
tion. This introduces conservatism but allows one to design a controller. However, the problem of
how conservative the resulting solutions are or, in other words, how much the quality criteria of the
resulting systems differ from Pareto optimal values, has remained open. Taking into account (7.1)
and corollary, where we show a procedure for computing γ0,∞, it is easy to see that both these
parameters for a corresponding value of ρ lead to the same optimal solution. This lets us con-
clude that relative losses in replacing an unknown Pareto optimal control with the H2/H∞-optimal
control do not exceed the value 1−√

2/2.

8. DUAL CONTROLS AND FILTERING PROBLEMS

We have already considered two-criteria control and filtering problems that reduce to analyzing
levels of suppression for disturbances in systems with a single objective output and two inputs: one
for stochastic disturbances and another for deterministic disturbances. One can also consider two-
criteria control and filtering problems for a system with one input that receives either stochastic or
deterministic disturbance, and two target outputs so that we evaluate the level of suppression for
stochastic disturbances with respect to one of them and deterministic disturbances with respect to
the other. These considerations lead to a system of the form

x(t+ 1) = A(Θ)x(t) +B(Θ)ζ(t), x(0) = x0,

z1(t) = C1(Θ)x(t) +D1(Θ)ζ(t),

z2(t) = C2(Θ)x(t) +D2(Θ)ζ(t),

(8.1)
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where z1 ∈Rnz1 and z2 ∈Rnz2 are two target outputs. With respect to disturbances ζ(t)∈Rnξ , we
assume that they represent a deterministic sequence with bounded energy, i.e., ζ(t) ∈ l2.

The level of suppression for disturbances with respect to the output z1 can be estimated with

J1(Θ) = sup
ζ(t)∈l2

supt�0 |z1|
‖ζ‖2 = ‖H1‖g2, (8.2)

whereH1(s) = C1(sI −A)−1B +D1, ‖ · ‖g2 is one of the ways to generalize theH2-norm considered
in [32, 33]. We remind that

‖H1‖g2 = λ1/2
max

(
C1Y CT

1 +D1D
T
1

)
, (8.3)

where Y = Y T > 0 is a solution of Lyapunov equations

AY AT − Y +BBT = 0. (8.4)

The level of suppression for disturbances with respect to the output z2 is estimated by

J2(Θ) = sup
ζ(t)∈P

‖z2‖P
‖ζ‖P = ‖H2‖∞, (8.5)

where H2(s) = C2(sI − A)−1B +D2. The problem is to characterize the Pareto set for these two
criteria

ΘP = argmin
Θ

{‖H1(Θ)‖g2, ‖H2(Θ)‖∞}. (8.6)

We write equations of the system dual to system (8.1), with two inputs and one output:

x(t+ 1) = AT(Θ)x(t) + CT
1 (Θ)w(t) + CT

2 (Θ)v(t), x(0) = x0,

z(t) = BT(Θ)x(t) +DT
1 (Θ)w(t) +DT

2 (Θ)v(t).
(8.7)

In this system, transfer matrices of the two channels are symmetric to transfer matrices corre-
sponding to channels in the system. One can immediately check that γ0(H

T
1 ) = ‖H1‖g2, and since

‖HT
2 ‖∞ = ‖H2‖∞, we arrive at the two-criteria problem considered above.

9. GENERALIZATION FOR N CRITERIA

Consider a system with N vector inputs and one vector objective output

x(t+ 1) = Ac(Θ)x(t) +
r∑

i=1

B(i)
w (Θ)wi(t) +

N∑

j=r+1

B(j)
v (Θ)vj(t), x(0) = x0,

z(t) = Cz(Θ)x(t) +
r∑

i=1

D(i)
w (Θ)wi(t) +

N∑

j=r+1

D(j)
v (Θ)vj(t),

(9.1)

where wi(t)∈Rnwi are stationary Gaussian random sequences of vectors with zero expectation
and unknown covariance matrices that for all t are uncorrelated, where x0 and vj(t)∈Rnvj are
deterministic sequences of vectors with bounded power. If the disturbance acts only on the ith
input, and there are no disturbances on the rest of the inputs, the level of suppression for the ith
stochastic disturbances can be found as

γ
(i)
0 (Θ) = sup

wi∈Gnwi

√
Jz√
Jwi

, i = 1, . . . , r,
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and if the disturbance acts only on the jth input, the level of suppression for the jth deterministic
disturbance can be found as

γ(j)∞ (Θ) = sup
‖vj‖P �=0

‖z‖P
‖vj‖P , j = r + 1, . . . , N.

Under jointly acting stochastic and deterministic disturbances, we define on trajectories of sys-
tem (9.1) the criterion

Jα(Θ) = ess sup
wi∈G,vj∈P,∀ i,j

‖z‖P∑r
i=1 αi‖wi‖P +

∑N
j=r+1 αj‖vj‖P

, (9.2)

where α = (α1, . . . , αN ),
∑N

1 αk = 1, ∀αk > 0.

Similar to Theorem 3.1, we can show that necessary Pareto optimality conditions in the above
multi-criteria problem are as follows: if (γ1, . . . , γN ) is a Pareto optimal point in the space of criteria

γ
(1)
0 , . . . , γ

(r)
0 , γ

(r+1)
∞ , . . . , γ

(N)
∞ for system (9.1), then there exists a matrix of parameters Θα that

minimizes criterion (9.2) for αk = γk/
∑N

1 γk, k = 1, . . . , N such that γ
(i)
0 (Θα) = γi, γ

(j)
∞ (Θα) = γj ,

i = 1, . . . , r, j = r + 1, . . . , N .

We define on trajectories of system (9.1) the level of suppression for stochastic and deterministic
disturbances

γα(Θ) = ess sup
wi∈G,vj∈P,∀ i,j

‖z‖P√∑r
i=1 α

2
i ‖wi‖2P +

∑N
j=r+1 α

2
j‖vj‖2P

. (9.3)

We can establish in a similar way that under the assumption that there exists a solution of the cor-
responding minimax problem (see (4.5)), the relative losses in quality for the choice of Θ∗

α-optimal
solutions with respect to criterion γα(Θ) compared to the corresponding Pareto optimal solutions
do not exceed 1− μ(α) with respect to each of the criteria, where

μ(α) =

√∑r
i=1 α

2
i ‖w∗

i ‖2P +
∑N

j=r+1 α
2
j‖v∗j ‖2P

∑r
i=1 αi‖w∗

i ‖P +
∑N

j=r+1 αj‖v∗j ‖P
,

1√
N

� μ(α) � 1,

and w∗
i , v

∗
j are the worst possible disturbances in (9.3) for Θ = Θ∗

α. The optimal solution and the
worst possible disturbances with respect to the suppression level for joint disturbances can be found
by Theorem 5.2, its corollary, and Theorem 5.3, where ρ = 1, as

Bw =
(
α−1
1 B(1)

w α−1
2 B(2)

w . . . α−1
r B(r)

w

)
, Dw =

(
α−1
1 D(1)

w α−1
2 D(2)

w . . . α−1
r D(r)

w

)
,

Bv =
(
α−1
r+1B

(r+1)
v α−1

r+2B
(r+2)
v . . . α−1

N B(N)
v

)
, Dv =

(
α−1
r+1D

(r+1)
v α−1

r+2D
(r+2)
v . . . α−1

N D(N)
v

)
.

10. CONTROL AND FILTERING FOR EXTERNAL AND INITIAL DISTURBANCES

Consider an internally stable system

x(t+ 1) = Ac(Θ)x(t) +Bw(Θ)w(t) +Bv(Θ)v(t), x(0) = 0,

z(t) = Cz(Θ)x(t) +Dw(Θ)w(t) +Dv(Θ)v(t),
(10.1)

where v(t)∈ l2 is an external deterministic disturbance with bounded norm ‖v‖2 = (
∑∞

t=0 |v(t)|2)1/2,
w(0) = w0, w(t) = 0, t = 1, 2, . . . , and w0 is an unknown initial deterministic disturbance.

If only disturbance v(t) is present, we characterize the system’s quality with the level of sup-
pression for l2-disturbances equal to the maximal value of the ratio of the l2-norms of target output
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and disturbances, or, in other words, the H∞-norm of the transfer matrix of this system from v to
z, i.e.,

γ∞(Θ) = sup
v∈l2,w0=0

‖z‖2
‖v‖2 .

The H∞-optimal controller and filter are optimal with respect to this criterion.

If only the initial disturbance is present, we define the level of suppression for the initial distur-
bance as the maximal value of the ratio of the l2-norm of the target output to the Euclidean norm
of initial disturbances that have caused this output, i.e.,

γ0(Θ) = sup
w0∈Rnw ,v≡0

‖z‖2
|w0| .

Now (10.1) immediately implies that for v(t) ≡ 0 we have that

z(0) = Dww0, z(t) = CzA
t−1
c Bww0, t = 1, 2, . . . ,

so

‖z‖22 = wT
0

{
DT

wDw +BT
w

[ ∞∑

t=1

(AT
c )

t−1CT
z CzA

t−1
c

]
Bw

}
w0.

Consequently, γ20(Θ) = λmax(B
T
wP0Bw +DT

wDw), where P0 = PT
0 � 0 is a solution of Lyapunov

equations (5.2). In particular, as the initial disturbances one can take an unknown initial system
state, and in this case w0 = x(0), Bw = Ac, Dw = Cz. The so-called γ0-optimal controller [34] and
filter are optimal with respect to this criterion. If the initial state plays the role of unknown initial
disturbances, this is a problem about an optimal linear–quadratic controller that ensures the best
transition process under the worst initial conditions.

Thus, two-criteria control or filtering problems under external and initial disturbances can be
reduced to the problems considered in the work, and all our conclusions regarding Pareto optimal
solutions hold for these problems as well. Here the level of suppression for jointly acting external
and initial disturbances can be found as

γ0,∞(Θ) = sup
w0∈Rnw ,v∈l2

‖z‖2√
|w0|2 + ρ2‖v‖22

,

computed according to Theorem 5.2 and its corollary. Parameters of the γ0,∞-optimal controller,
which has been called in [29] a generalized H∞-optimal controller, and a filter that provide a
tradeoff between the quality of the transition process and the level of suppression for an external
disturbance can be found according to Theorems 6.1 and 6.2.

11. EXAMPLE

For an illustration, we consider two bicriterial control problems for system

x(t+ 1) =

(
1 0.1

−1 0.99

)
x(t) +

(
0
0.1

)
ζ(t) +

(
0
0.1

)
u(t),

z1(t) = (1 0)x(t),

z2(t) = u(t)

(11.1)
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Fig. 1. The Pareto set on the plane of Hg2- and H∞-criteria.

in the class of linear feedbacks u = Θx. We compose the following three criteria corresponding to
classes of disturbances:

J1(Θ) = sup
ζ∈P

‖z2‖P
‖ζ‖P = ‖H(2)‖∞,

J2(Θ) = sup
ζ∈P

‖z1‖P
‖ζ‖P = ‖H(1)‖∞,

J3(Θ) = sup
ζ(t)∈l2

sup
t�0

|z2|
‖ζ‖2 = ‖H(2)‖g2,

(11.2)

where H(1) and H(2) are transfer matrices of the closed system from ζ to z1 and z2 respectively.

The first problem is to characterize the Pareto set

ΘP = argmin
Θ

{J3(Θ), J2(Θ)}. (11.3)

Optimal values with respect to each of these criteria are achieved under the following parameters:

Θ0 = (0.826 − 1.643), Θ(2)
∞ = (−90.0 − 19.9),

and they are equal to J3(Θ0) = 0.434 and J2(Θ
(2)
∞ ) = 0.01. Points denoted by Θ0 and Θ

(2)
∞ on the

plane of criteria (J3, J2) correspond to these controllers (see Fig. 1). According to Section 8, we
find the level of suppression for jointly acting disturbances for the dual system. The Pareto set is
located in the shaded area shown on Fig. 1. The boundary of this region consists of two straight
lines corresponding to minimal values of each criterion and two curved lines. Coordinates of the
solid line are (J3(Θ

∗
α), J2(Θ

∗
α)), where Θ

∗
α are γ0,∞-optimal solutions, and coordinates of the dashed

line are defined as (μ(α)J3(Θ
∗
α), μ(α)J2(Θ

∗
α)).

The second problem is to characterize the Pareto set

ΘP = argmin
Θ

{J1(Θ), J2(Θ)}. (11.4)
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Fig. 2. The Pareto set on the plane two H∞-criteria.

The optimal values for each of these criteria are

Θ(1)
∞ = (5.215 − 10.379), Θ(2)

∞ = (−90.0 − 19.9),

for which J1(Θ
(1)
∞ ) = 1.09 and J2(Θ

(2)
∞ ) = 0.01. Points denoted by Θ

(1)
∞ and Θ

(2)
∞ on the plane of

criteria (J1, J2) correspond to these controllers (see Fig. 2). The Pareto set for this problem is
located in the shaded area shown on this figure.

12. CONCLUSION

In this work, we have developed a novel approach that lets one design Pareto suboptimal so-
lutions in multi-criteria control and filtering problems under deterministic and stochastic distur-
bances. We have introduced a scalar objective function that reflects the level of suppression for
jointly acting disturbances whose optimal solutions are characterized in terms of solutions for Ric-
cati equations or linear matrix inequalities. We have shown that relative losses of these solutions
with respect to each of the original criteria compared to the Pareto optimal solutions do not exceed
the value 1−√

N/N for N criteria.
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APPENDIX

We begin by proving a technical lemma.

Lemma A.1. Inequality tr (ΞKw) � 0 holds for all Kw = KT
w � 0 if and only if Ξ � 0.

Proof of Lemma A.1. We represent a symmetric matrix as Ξ =
∑nw

i=1 λieie
T
i , where λi are

its eigenvalues, and eigenvectors ei, i = 1, . . . , nw, form an orthonormal basis. If we assume that
there exist λj � 0, then by choosing Kw = λjeje

T
j we get that tr (KwΞ) = λ2

j � 0. This means that
λj = 0 and, consequently, Ξ � 0.
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Conversely, if Ξ � 0 and the covariance matrix is represented as Kw =
∑

μifif
T
i , where μi � 0

and fi are its eigenvalues and eigenvectors, then tr (ΞKw) =
∑

μif
T
i Ξfi � 0.

Proof of Theorem 5.1. By definition, we have to find a minimal value of γ2 such that

Jz � γ2trKw ∀Kw 	= 0.

For system (3.1), for v ≡ 0 it holds that

Jz = lim
t→∞E|z(t)|2 = tr

[
Kw(B

T
wP0Bw +DT

wDw)
]
,

where P0 = PT
0 � 0 satisfies Eq. (5.2). Therefore, we have

tr
[
Kw(B

T
wP0Bw +DT

wDw − γ2I)
]
� 0 ∀Kw 	= 0.

Applying Lemma A.1, we get that γ20 = λmax(B
T
wP0Bw +DT

wDw). Here for K∗ = emaxe
T
max we have

that

tr
[
K∗(BT

wP0Bw +DT
wDw − γ20I)

]
= 0.

Besides, since

Jz =
1

2π

2π∫

0

tr {Hw(e
jϕ)HT

w (e
−jϕ)} dϕ,

γ20 equals the minimal value of γ2 for which

Jz − γ2Jw = tr

⎧
⎨

⎩

⎡

⎣ 1

2π

2π∫

0

HT
w (e

−jϕ)Hw(e
jϕ) dϕ− γ2I

⎤

⎦Kw

⎫
⎬

⎭ � 0 ∀Kw 	= 0.

Applying Lemma A.1, we arrive at the necessary conclusion.

Proof of Theorem 5.2. The proof is based on the following auxiliary statement.

Lemma A.2. Let V (x) = xTXγx, where Xγ = XT
γ > 0 is a stabilizing solution of Eqs. (5.5).

Then

‖z‖2P − ρ2γ2‖v‖2P = lim
N→∞

(1/N)
N−1∑

t=0

wT(t)(BT
wXγBw +DT

wDw)w(t)

− lim
N→∞

(1/N)
N−1∑

t=0

[v(t) − v∗(t)]T(γ2I −BT
v XγBv −DT

v Dv)[v(t)− v∗(t)]

� tr
[
Kw(B

T
wXγBw +DT

wDw)
]
,

(A.1)

where v∗(t) = (ρ2γ2I −BT
v XγBv −DT

v Dv)
−1(BT

v XγA+DT
v C)x(t).

Lemma A.2 can be proven by immediate computation of the increment ΔV along the trajectory
of system (3.1), using operation ‖ · ‖P and extracting a full square.

We now proceed to proving the theorem. According to Lemma A.1, condition (5.4) means that
tr [Kw(B

T
wXγBw+DT

wDw)] � γ2trKw for every Kw, and, consequently, by Lemma A.2 we get that
γ20,∞ < γ2.
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Suppose now that γ0,∞ < γ. Since ρ−1γ∞ � γ0,∞, we have that ‖Hv‖∞ < ργ. By the frequency
theorem [35] it follows that there exists a stabilizing solution Xγ= XT

γ > 0 for Eqs. (5.5), and it
holds that

‖z‖2P − ρ2γ2‖v∗‖2P = tr
[
Kw(B

T
wXγBw +DT

wDw)
]
. (A.2)

Let us show that matrix Xγ satisfies inequality (5.4). Assume the opposite, i.e., suppose there exists
a a 	= 0 such that aT(BT

wXγBw +DT
wDw)a � γ2|a|2. We take the covariance matrix K̄w = aaT

in such a way that ‖z‖2P − ρ2γ2‖v∗‖2P = aT(BT
wXγBw +DT

wDw)a � γ2tr K̄w. This implies that
γ20,∞ � γ2, which contradicts the assumption. Thus, BT

wXγBw +DT
wDw < γ2I and, consequently,

λmax(B
T
wXγBw +DT

wDw) < γ2.

Proof of Theorem 5.3. Due to remark, in the considered case ρ−1γ∞ < γ0,∞ and, consequently,
for γ = ργ0,∞ there exists a X∗, a stabilizing solution for Eqs. (5.5). Then equality

‖z‖2P − ρ2γ20,∞‖v∗‖2P = tr
[
Kw(B

T
wX∗Bw +DT

wDw)
]

holds under disturbance (5.9). This implies that

‖z‖2P
trKw + ρ2‖v∗‖2P

= γ20,∞ +
tr [Kw(B

T
wX∗Bw +DT

wDw − γ20,∞I)]

trKw + ρ2‖v∗‖2P
.

Note that tr [Kw(B
T
wX∗Bw +DT

wDw − γ20,∞I)] � 0, since

‖z‖2P
trKw + ρ2‖v∗‖2P

� γ20,∞. (A.3)

Let us show that for Kw in the form Kw = aaT it holds that

tr
[
Kw(B

T
wX∗Bw +DT

wDw − γ20,∞I)
]
= aT

(
BT

wX∗Bw +DT
wDw − γ20,∞I

)
a = 0.

Indeed, suppose that aT(BT
wX∗Bw +DT

wDw − γ20,∞I)a < 0 for all a 	= 0. Then by Theorem 5.2 the
level of suppression for joint disturbances will be less than γ0,∞, which contradicts the assumption.
Thus, for Kw = emaxe

T
max, where (BT

wX∗Bw +DT
wDw)emax = γ20,∞emax, and inequality (A.3) turns

into an equality. Note that the signal v∗(t) is not unique since every signal of the form v∗(t) + g(t)
with g(t) ∈ l2 leads to the same value γ0,∞.
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