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Abstract—Nonautonomous control systems with uncertain nonlinearities subjected to bounded
exogenous disturbances are considered. Based on the method of matrix comparison systems
and the framework of differential linear matrix inequalities, we suggest a solution approach to
the problems of state estimation, stability and boundedness with respect to given sets, as well
as suppression of disturbances and initial deviations using linear state-feedback control.
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1. INTRODUCTION

As a matter of fact, the problems of state estimation and control design are major in control
theory. State estimation for linear nonautonomous systems employs ellipsoid-based methods [1–3]
yielding locally optimal or minimax guaranteed ellipsoidal estimates for the set of induced pro-
cesses of a linear system taking into account uncertain initial deviations, exogenous disturbances,
and parametric changes. There exist control design methods belonging to the suppression of ar-
bitrary bounded exogenous disturbances and involving the framework of linear matrix inequalities
(LMIs) [4, 5] and the method of invariant ellipsoids [1, 6–10]. Here optimal (or suboptimal) con-
troller design is reduced to searching for the smallest invariant ellipsoid of a closed-loop system.
These methods demonstrate highest efficiency for linear stationary control systems. In [11, 12] LMIs
were used for the robust stabilization of systems with uncertain nonlinearities, but without consid-
eration of exogenous disturbances. The paper [13] applied this approach to find invariant ellipsoids
and construct state-feedback controllers for a class of nonlinear autonomous systems subjected to
uncertain bounded exogenous disturbances.

In a series of works [14–20], the method of matrix comparison systems (MCSs) proposed in [21]
for stability analysis of Lourier-type controlled systems was further developed for the dynamic anal-
ysis and state estimation of nonlinear controlled systems with uncertain disturbances, parametric
and structural changes.

Stabilization of nonautonomous systems often uses control laws with time-varying coefficients.
Scientific literature also describes stabilization based on control laws with time-dependent coeffi-
cients for linear autonomous systems, e.g., a finite-horizon linear-quadratic controller. To evaluate
the controller’s coefficients, it is necessary to solve numerically the differential matrix Riccati equa-
tion backward in time; this procedure causes definite difficulties, particularly, requires information
on the model parameters in future time. Some research efforts were focused on suggesting control
design methods where the controller’s coefficients are defined via numerical solution of a differential
matrix equation forward in time. On the other hand, for linear nonautonomous systems, the recent
years yielded the methods of stability analysis, finite-horizon boundedness and control design using
the framework of differential linear matrix equations and inequalities, see [22–26].
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The present paper adopts the method of matrix comparison systems [14–20] and the framework
of differential linear matrix inequalities (DLMIs) [26] for proposing the ways of state estimation,
analysis of stability and boundedness with respect to given sets (both on finite and infinite hori-
zons), evaluation of invariant ellipsoids and design of state-feedback control (with time-dependent
coefficients) for a class of nonautonomous nonlinear systems. It is demonstrated that the partial
solutions of a MCS or DLMI define time-evolving invariant ellipsoids for the solutions of an initial
system with any nonlinearities satisfying a given constraint and with any exogenous disturbances
having a bounded norm. The conditions of stability and boundedness with respect to given sets
(actually predetermining the performance of the initial system) are expressed as constraints on the
partial solutions of the MCS or DLMI on the whole horizon considered. The control design problem
is reduced to the numerical solution of the DLMI with optimization for the trace of the matrix of
the invariant or output-bounding ellipsoid at each step of time sampling.

In the autonomous case, the estimates of the limit state in the form of an invariant ellipsoid can
be obtained via numerical solution of the DLMIs, numerical integration of the MCS or numerical
solution of algebraic matrix equations representing the equilibrium equations for the corresponding
MCS. It is possible to pass from the DLMIs to algebraic LMIs appearing similar LMIs obtained
in the autonomous case by the method of invariant ellipsoids [10, 13]. By a simple example, we
illustrate the capabilities and efficiency of the proposed solution approach to the above-mentioned
problems. Numerical simulation is performed in Matlab using CVX and Ellipsoid Toolbox.

2. SYSTEMS WITH UNCERTAIN NONLINEARITIES
AND BOUNDED DISTURBANCES

Consider a dynamic system described by the following state-space model in continuous time:

ẋ = A(t)x+D(t)w +Φ(t)ϕ(t, x), x(t0) = x0,

z = C(t)x,
(1)

where x ∈ Rn denotes the state vector, w(t) ∈ Wr ⊂ Rr is the input disturbance, z ∈ Rl means
the controlled output vector, A(t) ∈ Rn×n, D(t) ∈ Rn×r, Φ(t) ∈ Rn×q, and C(t) ∈ Rq×n are known
matrices with continuous bounded entries for all t ∈ [t0, T ), T > 0 indicates a given constant (in
the finite-horizon setting) or T = ∞ (in the infinite-horizon setting).

A nonlinear vector function ϕ(t, x) satisfies the conical (generalized sectoral) condition of the
form

‖ϕ(t, x)‖2 ≤ μ0 + μ1 ‖Cf (t)x(t)‖2 , ∀t ∈ [t0, T ), x ∈ Rn, (2)

where Cf (t) ∈ Rq×n is a known matrix with continuous bounded entries for all t ∈ [t0, T ). Here
and in the sequel, ‖ · ‖ stands for the Euclidean vector norm, μ0, μ1 ≥ 0 are given parameters.

Note that, under μ0 = 0, the condition (2) covers sectoral nonlinearities and local Lipschitz
nonlinearities defined so that they vanish at the origin.

Assume that the uncertain disturbances represent continuous functions bounded for each time,
i.e.,

‖w(t)‖2 ≤ 1, ∀t ≥ t0. (3)

Introduce the following notation: G+ as the set of symmetric (S = ST) nonnegative definite
(S ≥ 0) matrices S ∈ Rn×n and G+ as the set of symmetric (S = ST) positive definite (S > 0)
matrices S ∈ Rn×n. As is generally known, G+ is a bodily reproducing cone used to define a
partial order on the space of symmetric matrices S ∈ Rn×n.
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3. STATE ESTIMATION PROBLEM

Suppose that at the initial time t0 the system has an uncertain state belonging to an ellipsoid

E(Q0) =
{
x ∈ Rn : xTQ−1

0 x ≤ 1
}
, (4)

where Q0 ∈ G+ is a given positive definite symmetric matrix.

By assumption, the pair (A(t),D(t)) is controllable and the matrix C(t) has full row rank.

The problem consists in obtaining an ellipsoidal estimate for the state set of the induced pro-
cesses of the system (1) on a given time horizon that evolve from the ellipsoid E(Q0) under the
nonlinearities satisfying the condition (2) and the uncertain disturbances of the form (3).

The state vector will be estimated as an evolutionary ellipsoid being invariant for the processes
of the system (1).

Recall that an invariant ellipsoid for a dynamic system is an ellipsoid

E(Q(t)) =
{
x ∈ Rn : xTQ−1(t)x ≤ 1

}
, Q(t) > 0, (5)

with the property that any system trajectory x(t, t0, x0) evolving from a point x(t0) = x0 ∈ E(Q(t0))
belongs to this ellipsoid at any time t, i.e., x(t, t0, x0) ∈ E(Q(t)).

Invariant ellipsoids characterize an external estimate of the attainability domain at the current
time t under the impact of the uncertain exogenous disturbances w(t) and the nonlinearities on
the trajectories of the system (1). In this context, of definite interest are minimal (in some sense)
invariant ellipsoids containing the trajectories or output z(t) of the system.

Theorem 1. An ellipsoid E(Q(t)), where Q(t) = Q(t, t0, Q0) is the solution of the matrix system
of differential equations

dQ(t)/dt = AQ+QAT + αQ+
1

α− μ0

β

DDT + βΦΦT +
μ1

β
QCT

f CfQ, (6)

is invariant for the trajectories of the system (2) that evolve from the initial ellipsoid E(Q0).

Note that, in the autonomous linear system, an invariant ellipsoid with a constant matrix Q∗

defined by solving the algebraic Lyapunov equation (or the corresponding LMIs) is an attractor;
in other words, all solutions of the system with any initial conditions and exogenous disturbances
satisfying (3) converge to this ellipsoid. In the nonlinear autonomous system, an invariant ellipsoid
is an attractor only for the solutions with initial conditions belonging to the domain of attraction
of a certain limiting set. The invariant ellipsoid gives the upper estimate of this limiting set.

We will use the MCS and DLMI to estimate the state set of the initial nonlinear nonautonomous
system at current times for the trajectories evolving from the initial ellipsoid, as well as to estimate
the domain of attraction in the autonomous case.

Theorem 2. An ellipsoid E(Q(t)) is invariant for the solutions of the system (1) if its matrix
Q(t) = Q(t, t0, Q0) > 0 satisfies the differential linear matrix inequalities

⎡
⎢⎢⎢⎢⎢⎣

−dQ(t)/dt+AQ+QAT + αQ+ βΦΦT D QCT
f 0

∗ −αI 0 I

∗ ∗ − β
μ1
I 0

∗ ∗ ∗ − β
μ0
I

⎤
⎥⎥⎥⎥⎥⎦
≤ 0 (7)

for all t ∈ [t0, T ) and some β > 0, α ≥ μ0/β.
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Definition 1. A matrix function F (t, S) is said to be nondecreasing with respect to the cone G+ if
for any S1, S2 ∈ Rn×n such that S2 − S1 ∈ G+ it follows that F (t, S2)− F (t, S1) ∈ G+ (or, similarly,
the condition yT(S2 − S1)y ≥ 0 implies yT[F (t, S2)− F (t, S1)]y ≥ 0 for all y ∈ Rn and t ∈ [t0, T )).

Definition 2. A function F (t, S) is said to be quasimonotonically nondecreasing with respect
to the cone G+ if for any S1, S2 ∈ Rn×n such that S2 − S1 ∈ G+ and for all y ∈ Rn such that
yT(S2 − S1)y = 0 it follows that yT[F (t, S2)− F (t, S1)]y ≥ 0 for all t ∈ [t0, T ).

Lemma 1. The system of differential Eqs. (6) is the matrix comparison system for the initial
system (1).

And the question regarding the existence of positive definite solutions of the comparison sys-
tem (6) arises immediately. The following lemma gives the answer.

Lemma 2. Let the matrices A(t), D(t), Φ(t), and Cf (t) be such that the comparison system (6)
with Q(t0) = Q0 ∈ G+ has a unique solution Q(t) = Q(t, t0, Q0) on some interval [t0, T1) (T1 ≤ T ).
Then Q(t0) ≥ 0 (or Q(t0) > 0) implies Q(t) ≥ 0 (Q(t) > 0, respectively) for all t ∈ [t0, T1).

Theorem 3. Suppose that Q(t) = Q(t, t0, Q0), Q(t0) = Q0 > 0, is a solution of the matrix com-
parison system (6) (of the DLMI (7)) on the interval [t0, T1). Then for all t ∈ [t0, T1) the solutions
of the initial system (1) with the initial conditions x(t0) = x0 ∈ E(Q0), the uncertain disturbances
satisfying (2) and the nonlinearities of the form (3) obey the following estimates:

1) x(t, t0, x0) ∈ E(Q(t));

2) x(t, t0, x0)x
T(t, t0, x0) ≤ Q(t, t0, Q0) (an inequality with respect to the cone G+);

3) xT(t, t0, x0)x(t, t0, x0) ≤ Trace(Q(t, t0, Q0));

4) x2i (t, t0, x0) ≤ Qii(t, t0, Q0), i = 1, . . . , n;

5) zT(t)z(t) ≤ Trace(CTQ(t, t0, Q0)C).

Based on the MCS properties established in [17], it is possible to show the invariance of some
sets for the solutions of the MCS (6).

Denote by F (t,Q) the matrix function in the right-hand side of the MCS (6), Ht = {Q ∈ G+ :
F (t,Q) ≤ 0 ; ∀t ∈ [t0, t0 + T )}.

Lemma 3. For any matrix P ∈Ht, the set S̄(P ) = {S ∈ G+ : S ≤P ∈Ht} in the matrix space G+

is positive invariant for the solutions Q(t, t0, S) of the MCS with Q(t0) = S.

In the autonomous case, designate by F (Q) the right-hand side of the matrix comparison sys-
tem (6). Note that H = {Q ∈ G+ : F (Q) ≤ 0}.

Theorem 4. The set H in the matrix space G+ is positive invariant for the solutions Q(t, t0, Q0)
of the MCS with Q(t0) = Q0 ∈ H. Moreover, there exists a Q∗ ∈ H such that

lim
t→∞Q(t, t0, Q0) = Q∗.

Based on Theorem 4, it is possible to obtain invariant ellipsoid estimates for the initial domain
from which the solutions converge to the limited or minimal invariant ellipsoid.

4. THE PROBLEM OF BOUNDEDNESS (STABILITY)
WITH RESPECT TO GIVEN SETS

Assume that the set of initial states, the set of admissible exogenous disturbances, and the
set of admissible states at times t ∈ [t0, T ) are defined in the form of ellipsoids E(R) = {x ∈ Rn :
xTR−1x ≤ 1}, Ew(I) = {w ∈ Rn : wTw ≤ 1}, and E(S(t)) = {x ∈ Rn : xTS−1(t)x ≤ 1}, respec-
tively, where R and S(t) are known symmetric positive definite matrices.
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Definition 3. We say that the system (1) is bounded with respect to the given sets [E(R),
Ew(I), E(S(t))] (in the absence of uncertain exogenous disturbances, stable with respect to [E(R),
E(S(t))]) on the interval [t0, T ) if for all x0 ∈ E(R) there exist solutions x(t) = x(t, t0, x0) of the
system (1) with the initial conditions x(t0) = x0 on [t0, T ) that satisfy x(t, t0, x0) ∈ E(S(t)) for all
t ∈ [t0, T ), w(t) ∈ Ew(I) and all nonlinearities of the form (2) (x(t, t0, x0) ∈ E(S(t)) for all t ∈ [t0, T )
and all nonlinearities of the form (2) with μ0 = 0, respectively).

In contrast to the generally accepted definitions of absolute stability and boundedness, the above
definitions involve concrete sets of initial conditions and concrete sets for the trajectories of the
system with these initial conditions. In this regard, the definitions are analogous to the ones of
stability and boundedness on finite horizon intensively studied in recent years, see [22–26]. In the
case considered, time horizon can be either finite or infinite.

Theorem 5. For any nonlinear functions of the form (2), the system (1) is bounded with respect
to the given sets [E(R), Ew(I), E(S(t))] (in the absence of exogenous disturbances and μ0 = 0, stable
with respect to [E(R), E(S(t))]) on the interval [t0, T ) if there exists a solution Q(t) = Q(t, t0, Q0)
of the matrix comparison system (6) (or the DLMI (7)) with the initial conditions Q0 ≥ R that
satisfy the inequality Q(t) ≤ S(t) for all t ∈ [t0, T ).

In the absence of exogenous disturbances and μ0 = 0 in (2), the matrix comparison system
acquires the form

dQ(t)/dt = AQ+QAT + βΦΦT +
μ1

β
QCT

f CfQ, β > 0. (8)

If Q(t) = Q(t, t0, Q0) is a solution of the matrix comparison system (8) (or the DLMI (7)) that
satisfies the conditions of Theorem 5, then all conditions of Definition 3 hold and stability with
respect to the given sets [E(R), E(S(t))] takes place accordingly.

5. CONTROL DESIGN PROBLEM

Consider the continuous-time control system

ẋ = A(t)x+B(t)u+D(t)w +Φ(t)ϕ(t, x, u), x(t0) = x0,

z = C(t)x+Bz(t)u,
(9)

where x∈Rn denotes the state vector, w(t)∈Rr is an exogenous disturbance satisfying the con-
straint (2), u∈Rm means the control vector, and z ∈Rl indicates the controlled output. The
nonlinear vector function ϕ(t, x, u) ∈Rq satisfies the inequality

‖ϕ(t, x, u)]‖2 ≤ μ0 + μ1 ‖Cf (t)x(t) +Bf (t)u(t)‖2 ,
∀t ∈ [t0 + T ), x ∈ Rn, u ∈ Rm,

(10)

where A(t) ∈ Rn×n, B(t) ∈ Rn×m, D(t) ∈ Rn×r, Φ(t) ∈ Rn×q, C(t) ∈ Rq×n, Bz(t) ∈ Rq×m,
Cf (t) ∈ Rq×n, and Bf (t) ∈ Rq×m are known matrices with continuous bounded entries for all
t ∈ [t0, T ). By assumption, the pair (A,B) is controllable and the pair (A,C) is observable.

The problem is to find a state-feedback controller

u = K(t)x (11)

that

1) stabilizes the closed-loop system and suppresses the initial deviations and the exogenous
disturbances (in the sense of the minimal bounding ellipsoid for the output z), and

2) ensures the boundedness of the closed-loop system.
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The design problem is reduced to optimization of a performance criterion subject to differential
linear matrix inequalities. A common criterion used is the trace of the matrix defining the size of
the invariant or output-bounding ellipsoid.

Theorem 6. Consider the solution Q∗(t) = Q∗(t, t0, Q0), Y
∗(t), Z∗(t) of the problem

trace
[
CQCT + CY TBT

z +BzY CT +BzZBT
z

]
→ min

subject to the constraints
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−dQ(t)/dt+AQ+QAT+BY+Y TBT+αQ+βΦΦT D QCT
f +Y TBT

f 0

∗ −αI 0 I

∗ ∗ − β

μ1
I 0

∗ ∗ ∗ − β

μ0
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤0, (12)

[
Z Y
Y T Q

]
≥ 0, (13)

where minimization runs with respect to the matrix variables Q(t) = QT(t) ∈ Rn×n, Y (t) ∈ Rn×m

and Z(t) ∈ Rl×l, the scalar variable β > 0, and the scalar parameter α ≥ μ0/β. For each t ∈ [t0, T ),
this solution defines the matrix Q∗(t) of the bounding ellipsoid for the state vector x(t), the
matrix CQ∗CT + CY ∗TBT

z +BzY
∗CT +BzZ

∗BT
z of the bounding ellipsoid for the output z(t)

of the system (9) and the time-dependent gain matrix K∗(t) = Y ∗(t)Q∗−1(t) for the correspond-
ing state-feedback controller. Moreover, if the matrix Q∗(t) satisfies the constraints Q0 ≥ R and
Q(t) ≤ S(t) for all t ∈ [t0, T ) where R and S(t) are given positive definite symmetric matrices,
then the above controller ensures the boundedness of the closed-loop system with respect to the sets
[E(R), Ew(I), E(S(t))] for all nonlinearities of the form (10).

6. EXAMPLE

As an example, consider the disturbed oscillation model of a mathematical pendulum [13] de-
scribed by

ẍ+ ω2
0 sinx = u+w(t).

Here u specifies control and w is a bounded exogenous disturbance (the deviation angles from an
equilibrium are arbitrary). Introducing the new variables

x1 = x, x2 = ẋ1

yields the system

ẋ1 = x2,

ẋ2 = −ω2
0 sinx1 + u+ w(t).

It will be treated as the system (1) with the nonlinearity ϕ(x) = sinx1 satisfying the constraints (2)
with μ0 = 0 and μ1 = 1. To avoid large values of control, choose the vector z = (x1, x2, u)

T as the
system output. In addition, take into account an uncertainty in the initial state of the system that
is defined by the matrix P0. For the given system, set the matrices in (1) by

A =

[
0 1
0 0

]
, Φ =

[
0

−ω2
0

]
, B =

[
0
1

]
, D =

[
0
1

]
, C =

⎡
⎢⎣
1 0
0 1
0 0

⎤
⎥⎦ , Bz =

⎡
⎢⎣
0
0
1

⎤
⎥⎦ .
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Fig. 1. Invariant ellipses for the pendulum.

Actually, this choice leads to Example 1 studied in the paper [13] if Cf =

[
1 0
0 1

]
, Bf = [0].

For ω0 = 3 and P0 = 0.1I, just like in [13], we have calculated the matrix

�

Q =

[
0.1121 −0.0994

−0.0994 0.9192

]

of the minimal invariant ellipse and the corresponding controller with the constant gains
�

K =
[ −12.7112 −12.5433 ] under β = 0.1461, q = 0.4038. For the same parameters β and q, solving
the LMI-based optimization problem has yielded the matrix

�

QP =

[
0.1160 −0.1784

−0.1784 2.4866

]

of the maximal invariant ellipse (in the sense of the trace criterion) lying in the domain of attraction
of the initial nonlinear system.

Figure 1 demonstrates the calculated minimal invariant ellipse (firm line), the minimal invariant
ellipse for the linearized system, i.e., with the controller designed for the linearized system (dashed
line), and the invariant ellipse lying in the domain of attraction of the initial nonlinear system with

the controller u =
�

Kx (dashed-dot line).

Next, Fig. 2 shows the evolving invariant ellipses obtained by solving the optimization problems
with the DLMI (Fig. 2a) and by solving the MCS (Fig. 2b) with the initial matrix

Q0 =

[
0.1140 −0.1389

−0.1389 1.7029

]
.

In the both cases, within T ≤ 10 s the solutions converge to the minimal invariant ellipse with the

matrix
�

Q.

Using Theorem 5, we have constructed a state-feedback controller with time-dependent gain
coefficients. To this end, on the interval [0.10 s] we have solved the DLMI with the initial matrix

Q0 =

[
0.1260 −0.1684

−0.1684 2.4966

]
≥ QP

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 5 2016
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Fig. 2. Evolving invariant ellipses.

Fig. 3. Evolving invariant ellipse for system governed by controller with time-dependent gain coefficients.

and optimization of the output-bounding ellipsoid at each step. Figure 3 illustrates the ellipses
representing the sections of the evolving invariant ellipse at the times tk, k = 1, . . . , 100, t1 = 0,
and tk+1 = tk + 0.1. The initial ellipse (k = 1) is marked by dashed-dot line, whereas the terminal
ellipse (k = 100) is indicated by firm line. It is associated with the matrix

Q100 =

[
0.0089 −0.0076

−0.0076 0.3276

]
<

�

Q.

Figure 4 demonstrates the graph of the parameter β(t) (firm line), whose values decrease mono-
tonically from 0.2298 to 0.0417, and the graph of the gain coefficients K1 and K2 of the controller
(dashed and dashed-dot lines, respectively). If after 10 s we keep the controller with the constant

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 5 2016
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Fig. 4. Variation of parameter β and gain coefficients in time.

Fig. 5. Minimal invariant ellipses for pendulum.

gain coefficients K = [−58.8643 −14.6383] calculated at the last step, then the minimal invariant
ellipse matrix for the nonlinear system with this controller is defined by

�

Q1 =

[
0.0088 −0.0028

−0.0028 0.3029

]
<

�

Q.

Note that a small refinement via incorporating the matrix Cf in formula (2) can be fruitful,
both to improve the resulting estimates (e.g., in the form of the minimal bounding ellipsoids) and
to reduce the dimensions of the constraints in the optimization problems. Particularly, for the
nonlinear function ϕ(x) = sinx1 studied in our example, the constraint (3) is satisfied by choosing

Cf =

[
0
1

]
and Bf = [0]. By solving the optimization problem with the LMI, we have calculated

the matrix
�

Q2 =

[
0.1075 −0.0407

−0.0407 0.3220

]
<

�

Q

of the minimal invariant ellipse and the corresponding controller with the constant gain coefficients
�

K = [−5.4534 −13.8586] under β = 0.0464 and q = 0.4250. Figure 5 shows the minimal invariant

ellipses defined by the matrices
�

Q2 (firm line) and
�

Q (dashed-dot line). Therefore, by refining

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 5 2016
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the nonlinearity estimate, we actually have improved the estimate of the limiting set for the ini-
tial system; this is important in high-accuracy stabilization problems. In addition, note that the
dimension of the constraints matrix (12) has been decreased by 1.

7. CONCLUSIONS

This paper has further developed the method of matrix comparison systems and differential
matrix inequalities with application to the problems of state estimation, analysis of stability and
boundedness with respect to a given set of initial conditions and a given state- or output-bounding
set, as well as to the problems of suppression of initial deviations and arbitrary bounded exogenous
disturbances for a class of nonlinear nonautonomous systems. The problems of state estimation
and boundedness with respect to given sets have been reduced to numerical solution of matrix
comparison systems or differential matrix inequalities and verification of conditions expressed as
linear matrix inequalities. Linear state-feedback controller design has been reduced to solution of
differential linear matrix inequalities or semidefinite programming problems. The suggested ap-
proach extends to nonautonomous systems the method based on the ideology of invariant ellipsoids
and the framework of linear matrix inequalities, with regard to nonlinear systems with bounded
exogenous disturbances. Particularly, we have considered the suppression problem for initial devi-
ations and exogenous disturbances using static (yet, time-dependent) linear state-feedback control
minimizing the size of the invariant (or bounding) ellipsoids of a dynamic system. The presented
example has indicated that, in a series of cases, application of the suggested approach improves the
estimates of the state vector or output in comparison with the method of invariant ellipsoids [13].

The obtained results can be disseminated to discrete-time systems and can be used to solve
other problems connected with state and performance estimation, as well as with the suppression
of uncertain exogenous disturbances and parametric changes.
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APPENDIX

Proof of Theorem 1. Define the function Q(t)=QT(t)>0, v(t, x) = xTQ−1(t)x, Q(t0) = Q0.
For any x0 ∈ E(Q0), we have v(t0, x0) = xT0 Q

−1
0 x0 ≤ 1. For the trajectories x(t) = x(t, t0, x0) of

the system (1) to stay in the ellipsoid E(Q(t)) = {x ∈ Rn : v(t, x) ≤ 1}, it suffices to require that

v̇(1)(t, x, w, ϕ) ≤ 0

holds for v(t, x) = 1 and for all admissible exogenous disturbances of the form (3) and all nonlinear-
ities ϕ(t, x) satisfying inequality (2). Here v̇(1) denotes the derivative of the function v(t, x) along
the trajectories of the system (1). Calculate

v̇(1)(t, x) = xT
{
dQ−1(t)/dt +ATQ−1 +Q−1A

}
x+ wTDTQ−1x

+ xTQ−1Dw + ϕTΦTQ−1x+ xTQ−1Φϕ.

Next, using the obvious inequality

zTy + yTz ≤ εzTz +
1

ε
yTy
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that is true for any vectors y, z ∈ Rn and any scalar or any continuous time-varying function ε > 0,
obtain

v̇(t, x) ≤ xT
{
dQ−1(t)/dt+ATQ−1 +Q−1A

}
x+

1

β
xTQ−1DDTQ−1x

+ βwTw +
1

γ
xTQ−1ΦΦTQ−1x+ γϕTϕ,

where β, γ > 0 mean scalars or continuous time-varying functions. Taking into account the con-
straints imposed on the nonlinearities and the exogenous disturbances (see (2) and (3)) and the
assumption v(t, x) = 1, we immediately have

v̇(t, x) ≤ xT
{
dQ−1(t)/dt+ATQ−1+Q−1A+

1

β
Q−1DDTQ−1+

1

γ
Q−1ΦΦTQ−1

}
x

+ γμ1x
TCT

f Cfx+ β + γμ0 + α
(
xTQ−1x− 1

)

= xT
{
dQ−1(t)/dt+ATQ−1 +Q−1A+

1

β
Q−1DDTQ−1

+
1

γ
Q−1ΦΦTQ−1 + γμ1C

T
f Cf + αQ−1

}
x+ (β + γμ0 − α)

≤ xT
{
dQ−1(t)/dt+ATQ−1 +Q−1A+

1

β
Q−1DDTQ−1

+
1

γ
Q−1ΦΦTQ−1 + γμ1C

T
f Cf + αQ−1

}
x ≤ 0,

provided that α > 0 and β + γμ0 − α ≤ 0. The last inequality takes the form 0 < β ≤ α− γμ0.
Then it is possible to choose 0 < β = βmax = α− γμ0.

Find the matrix Q(t) from the differential matrix equation

dQ−1(t)/dt +ATQ−1 +Q−1A+
1

α− γμ0
Q−1DDTQ−1

+
1

γ
Q−1ΦΦTQ−1 + γμ1C

T
f Cf + αQ−1 = 0,

where γ > 0 and α > γμ0.

Perform pre- and post-multiplication of this equation by the matrix Q(t) > 0, introduce the
notation β = 1/γ and take advantage of the formula Q(t)dQ−1(t)/dtQ(t) = −dQ(t)/dt to obtain
Eq. (6). This concludes the proof of Theorem 1.

Actually, the proof of Theorem 2 is similar to that of Theorem 1, except that the matrix Q(t)
is found not from Eq. (6) but from the differential matrix inequality

−dQ(t)/dt+AQ+QAT+αQ+
1

α− μ0

β

DDT+βΦΦT+
μ1

β
QCT

f CfQ≤ 0, (A.1)

where γ > 0, α > γμ0, and t ∈ [t0, T ). By virtue of the Schur complement lemma, it follows
from (A.1) that

⎡
⎢⎣
−dQ(t)/dt+AQ+QAT + αQ+ βΦΦT +

μ1

β
QCT

f CfQ ≤ 0 D

DT

(
−α+

μ0

β

)
I

⎤
⎥⎦ ≤ 0.

And finally, apply the Schur complement lemma twice more to get the DLMI (7).

Proof of Lemma 1. According to Lemma 10 from [16], the right-hand side of (6) is a quasi-
monotonically nondecreasing matrix function with respect to the cone G+. Therefore, (6) is the
matrix comparison system of the initial system (1). Its partial solution Q(t) = Q(t, t0, Q0) > 0 (if
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any) defines a quadratic Lyapunov function v(t, x) = xTQ−1(t)x whose derivative along the trajec-
tories of the system (1) is smaller or equal to 0, see the proof of Theorem 1. Hence, the ellipsoid
E(Q(t)) = {x ∈ Rn : v(t, x) ≤ 1} evolving in time is invariant for the solutions of the system (1)
with x0 ∈ E(Q0) and gives an upper estimate for the attainability domain at time t ∈ [t0, T ) for
the solutions starting from the initial ellipsoid.

Proof of Lemma 2. Rewrite the comparison system (6) as

dQ(t)/dt =

[
A+

α

2
I

]
Q+Q

[
A+

α

2
I

]T
+

1

α− μ0

β

DDT + βΦΦT +
μ1

β
QCT

f CfQ (A.2)

and consider the system

dS(t)/dt =

[
A+

α

2
I

]
S + S

[
A+

α

2
I

]T
. (A.3)

Denote by Φ(t, τ) the transition matrix of the system dx/dt = [A(t) + α/2I]x. For t and τ ∈
[t0, T1), the matrix Φ(t, τ) satisfies the equations

Φ̇(t, τ) =
∂

∂t
Φ(t, τ) = −

(
A(t) +

α

2
I

)T

Φ(t, τ)

and

Φ̇T(t, τ) = −ΦT(t, τ)

(
A(t) +

α

2
I

)
.

Let P (t, τ) = ΦT(t, τ)S(t)Φ(t, τ). It follows from detΦ(t, τ) �= 0 and S(t0) = Q0 ≥ 0 (or S(t0) =
Q0 > 0) that P (t0, τ) ≥ 0 (P (t0, τ) > 0, respectively) for τ ∈ [t0, T1). Fix τ ∈ [t0, T1), then

Ṗ (t, τ) = ΦT(t, τ)
{
Ṡ −A(t)S − SAT(t)− αS

}
Φ(t, τ) = 0

if S(t) is the solution of Eq. (A.3). This implies 0 ≤ P (t0, τ) = P (t, τ) (0 < P (t0, τ) = P (t, τ),
respectively) for τ, t ∈ [t0, T1), and hence, given τ = t, 0 ≤ P (t, t) = S(t) (0 < P (t, t) = S(t), re-
spectively) for t ∈ [t0, T1).

Now, let Q(t) be the solution of Eq. (A.2) with Q(t0) = Q0 ≥ 0 (Q(t0) = Q0 > 0, respectively).
Since the matrix 1

α−μ0
β

DDT + βΦΦT + μ1

β QCT
f CfQ is nonnegative definite for all t ∈ [t0, T1), the

above solution satisfies the differential inequality

dS/dt = A(t)S + SAT(t) + αS ≤ dQ/dt.

Then Theorem 4 (on differential matrix inequalities) from [16] dictates that Q(t) ≥ S(t) ≥ 0
(Q(t) ≥ S(t) > 0, respectively) for all t ∈ [t0, T1).

Proof of Theorem 3. Suppose that Q0 > 0. By Lemma 2, on the interval [t0, T1) there exists
a unique positive definite solution Q(t) = Q(t, t0, Q0) of the matrix comparison system (6) (or the
DLMI (7)). According to Theorems 1 and 2, at each time this solution defines a nondegenerate
ellipsoid E(Q(t)) being invariant for the solutions of the initial system (1) with the initial data
x(t0) = x0 ∈ E(Q0). Therefore, estimate 1 holds.

Let estimate 1 be true. Then the solutions x(t) = x(t, t0, x0) satisfy 0 ≤ 1− xT(t)Q−1(t)x(t).
By the Schur complement lemma, this inequality is equivalent to the following matrix inequality
for all t ∈ [t0, T1): [

1 xT(t)
x(t) Q(t)

]
≥ 0.

Hence, it appears that Q(t)− x(t)xT(t) ≥ 0 for all t ∈ [t0, T1). And so, estimate 2 holds.
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Clearly, estimates 3–5 directly follow from estimate 2.

Proof of Lemma 3. Choose an arbitrary constant matrix P ∈H. Then, given V (t) ≡ P for
all t∈ [t0, T ), we have dV (t)/dt = 0≥F (t, V (t)). According to the theorem on differential matrix
inequalities, for any matrix 0 ≤ S ≤ P we obtain P = V (t) ≥ Q(t, t0, S) for all t ∈ [t0, T ).

Proof of Theorem 4. Due to the continuity and local Lipschitzness of the right-hand side of
the MCS (6), for any matrix P ∈ Ht there exists a unique solution Y (t, P ) on some interval TY .
If Y (t, P ) ∈ H on a certain interval T1 ⊂ TY , then Y (t, P ) is nonincreasing on T1. Conversely,
if Y (t, P ) is nonincreasing on T1, then F (t, Y (t, P )) = dY (t, P )/dt ≤ 0, i.e., Y (t, P ) ∈ H for all
t ∈ T1. By continuity of F (Q) in Q, the set H is closed. Therefore, Y (t, P ) ∈ H for all t ∈ T1.

Now, suppose that there exists a time τ1 > t0 such that Y (τ1, P ) /∈ H. Set τ0 = inf{τ ∈ (t0, τ1] :
Y (τ, P ) /∈H}. According to the aforesaid, on any interval T2 ⊆ [τ0, τ1] the solution Y (t, P ) is non-
increasing. Consequently, there exists τ ′>τ0 such that Y (τ ′)�Y (τ0). This result contradicts the
conclusion of Lemma 3 on the positive invariance of the set S̄(Y (τ0)) = {S ∈ G+ : S ≤ Y (τ0)∈H}.

And finally, prove the second part of the theorem. Since Y (t, P ) ∈ H on the interval TY and,
by Lemma 2, is bounded below (Y (t, P ) ≥ 0), then the solution can be extended to any time
interval. And so, the solution exists and is unique for all t ∈ [t0,+∞). Thus, the solution Y (t, P )
represents a continuous matrix function that decreases for all t ∈ [t0,+∞) and is bounded below.
This guarantees the existence of limt→∞Q(t, t0, Q0) = Q∗, where Q∗ ∈ H owing to the closedness
of the set H.

Proof of Theorem 5. Let Q(t) = Q(t, t0, Q0) be the solution of the matrix comparison system (6)
(or the DLMI (7)) with the initial conditions Q0. As Q0 ≥ R, we have E(R) ⊆ E(Q0), i.e., the
ellipsoid E(Q0) contains the ellipsoid E(R). Moreover, since Q(t) ≤ S(t), then E(Q(t)) ⊆ E(S(t)),
i.e., the ellipsoid E(Q(t)) belongs to the ellipsoid E(S(t)). By Theorem 1 (by Theorem 2, accord-
ingly), under t ∈ [t0, T ) the ellipsoid E(Q(t)) contains all solutions of the initial system evolving
from the given ellipsoid E(Q0). Hence, all conditions of Definition 3 are satisfied and boundedness
with respect to the given sets [E(R), Ew(I), E(S(t))] takes place.

Proof of Theorem 6. Substitute (11) into (9). Apply Theorem 2 to find an invariant ellipsoid
E(Q(t)) with a matrix Q(t) satisfying the DLMI (7). For the closed-loop system, this inequality
takes the form⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−dQ(t)/dt+(A+BK)Q+Q(A+BK)T+αQ+βΦΦT D Q(Cf+BfK)T 0

∗ −αI 0 I

∗ ∗ − β

μ1
I 0

∗ ∗ ∗ − β

μ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤0 (A.4)

for all t ∈ [t0, T ) and some β > 0, α ≥ μ0/β.

The variables Q and K enter the DLMI (A.4) nonlinearly. Introduce the matrix variable
Y = KQ, Y ∈ Rn×m. Then inequality (A.4) becomes linear with respect to P and Y , see (12). In
terms of the new variable Y , searching for the minimal ellipsoid (in the sense of the trace criterion)
that bounds the output z(t) is reduced to the problem

trace
[
CQCT + CY TBT

z +BzY CT +BzY Q−1Y TBT
z

]
→ min

subject to the constraint (12) for each t ∈ [t0, T ).

According to Lemma 2 from [12], for each t ∈ [t0, T ) the derived problem is equivalent to

trace
[
CQCT + CY TBT

z +BzY CT +BzZBT
z

]
→ min

subject to the constraints (12) and (13), where Z ∈ Rm×m designates an auxiliary matrix variable.
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Let the matrices Q∗(t) and Y ∗(t) be the solution of the considered optimization problem with
the DLMI (12) and the LMI (13) for t ∈ [t0, T ). Then the matrix of the controller’s gain coefficients
is defined by K∗(t) = Y ∗(t)Q∗−1(t). If the matrix Q∗(t) satisfies the additional constraints Q0 ≥ R
and Q(t) ≤ S(t) for all t ∈ [t0, T ) where R and S(t) are given positive definite symmetric matrices,
then by Theorem 4 the resulting controller ensures the boundedness of the closed-loop system with
respect to the sets [E(R), Ew(I), E(S(t))]. This completes the proof of Theorem 6.
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