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Abstract—This paper establishes the uniform Tauberian theorem for differential zero-sum
games. Under rather mild conditions imposed on the dynamics and running cost, two pa-
rameterized families of games are considered, i.e., the ones with the payoff functions defined
as the Cesaro mean and Abel mean of the running cost. The asymptotic behavior of value in
these games is investigated as the game horizon tends to infinity and the discounting parameter
tends to zero, respectively. It is demonstrated that the uniform convergence of value on an in-
variant subset of the phase space in one family implies the uniform convergence of value in the
other family and that the limit values in the both families coincide. The dynamic programming
principle acts as the cornerstone of proof.
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1. INTRODUCTION

In [29] Hardy established that a bounded sequence satisfies the condition

lim
n→∞

1

n

n∑

i=1

ai = lim
λ↓0

∞∑

i=1

(1− λ)i−1ai

if at least one of these limits exists. Such theorems yield good approximations for the sums of
series using faster summation methods. Owing to Hardy, these theorems were termed “Tauberian”
in honor of A. Tauber who proved a similar result for convergent series in 1897. For any bounded
continuous scalar function g, an analogous Tauberian theorem [28] states the following: the limit
of its Cesaro mean

1

T

T∫

0

g(t)dt

as T → ∞ and the limit of its Abel mean

λ

∞∫

0

e−λtg(t)dt

as λ → +0 coincide if at least one of the limits exists.

Instead of the limits of such means, the limits of their optimal values in a given dynamics can be
investigated. Let us clarify the aforesaid. Under known dynamics and running cost, it is possible
to introduce two parameterized families of control problems (in the general case, games). In one
family, the payoff function is the Cesaro mean of the running cost with the game horizon (the
number of steps in the discrete setting) as a parameter. In the other family, the payoff function
is the Abel mean of the running cost with the discounting factor as a parameter. For a given
parameter value, each family of games yields its own value; for brevity, such values are further
called the optimal means.
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Apparently, the asymptotic behavior of optimal means was pioneered in [19] within the stochastic
framework. Mertens and Neyman [34] proved the Tauberian theorem for a stochastic two-player
game with a finite number of states and actions: the optimal Cesaro means and Abel means have
a same limit value. Such limits were considered in other stochastic problems; e.g., see [21, 41] for
a modern bibliography on the subject.

The existence of limits for optimal means was repeatedly investigated in control theory; at least,
note the papers [1, 15] and the book [23]. In contrast to [19, 34], the initial state is known for sure
in the deterministic case. Particularly, an optimal mean is a certain function of this state. As a
result, while studying the convergence of optimal means for a certain family of games, one should
specify an appropriate topology.

In the ergodic case (or even in the nonexpansive-like case), optimal means converge on a com-
pactly open topology to constants and the limit functions are independent of the initial state, see
[13, 16] for details. This fails in the general case, e.g., in [27, 36]. Such limits arise for solutions of
Hamilton–Jacobi equations [7, 8, 33].

In control problems, the paper [14] was the first to show the equality of uniform limits for
optimal means when at least one of the limits is a constant. The general statement of the Tauberian
theorem for controlled systems (actually, for a dynamic controlled system in a very general setting)
was proved in [35]. Oliu-Barton and Vigeral demonstrated that the uniform convergence of one
optimal mean on a strongly invariant set of initial positions implies the uniform convergence of
the other optimal mean and that the both limits coincide. The cited work also provides many
references to Tauberian theorems in control problems.

There exist a few publications on optimal mean limits in differential games. In the first place,
take notice of [12, 17, 22]; a good survey in this field of research can be found in [20, Section 3.4].
According to a remark in [35], for differential antagonistic games the Tauberian theorem was
obtained only in the ergodic case. The present paper fills this gap.

2. STATEMENT OF DIFFERENTIAL GAME

Consider a conflict-controlled system

ẋ(t) = f(x(t), a(t), b(t)), x(t) ∈ X, a(t) ∈ A, b(t) ∈ B, t ≥ 0, (2.1)

operating in a certain finite-dimensional Euclidean space X. Here A and B are finite-dimensional
compact sets.

Denote by A and B the sets of all possible Borel measurable selectors R>0 � t �→ a(t) ∈ A and
R>0 � t �→ b(t) ∈ B, respectively.

Let the functions f : X×A×B → X and g : X×A×B → [0, 1] meet the following assumptions:

(C) f and g are continuous;

(L) f and g satisfy the Lipschitz condition in the phase variable, i.e., for some L > 0 we have

||f(x′, a, b)− f(x′′, a, b)||2 ≤ L||x′ − x′′||2 ∀x′, x′′ ∈ X, a ∈ A, b ∈ B.

Due to the condition (L), the function f enjoys the sublinear growth condition. Hence, for
any pair a ∈ A, b ∈ B and each initial condition ω = x(0) ∈ X, the system (2.1) has a unique local
solution that can be uniquely extended to R≥0; designate this solution by y[ω, a, b] ∈ C (R≥0,X).
Moreover, the identity y[ω, a, b](0) = ω holds. For all ω ∈ Ω and all a ∈ A, b ∈ B, collect solutions
y[ω, a, b] into the set Y [ω].

Suppose that some (not necessarily closed) set Ω ⊂ X has the following property:

(Ω) Ω is strongly invariant with respect to the system (2.1), i.e., x(t) ∈ Ω holds for all ω ∈ Ω,
x ∈ Y [ω], t ∈ R≥0.
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Denote by Y [Ω] the set of all possible solutions y[ω, a, b] for all a ∈ A, b ∈ B, ω ∈ Ω.

Further exposition also needs the Isaacs condition (the saddle point condition in a small game,
see [5, p. 56]):

(S) ∀x, s ∈ X : max
a∈A

min
b∈B

[〈s, f(x, a, b)〉 + g(x, a, b)] = min
b∈B

max
a∈A

[〈s, f(x, a, b)〉 + g(x, a, b)
]
.

Note that this condition remains in force as the function g is multiplied by an arbitrary positive
expression independent of (x, a, b), e.g., by a positive time-varying function.

It was demonstrated in classical theory of differential games [2, 5, 6, 32, 39] that this condition
guarantees game value existence. Although there are many different ways for defining a game and
the strategy sets of each player, the above condition guarantees the equivalence of a considerable
number of such formalizations in the sense of game values. Particularly, this allows choice of several
settings, constructive strategy design and correct handling of errors and random disturbances [3–5].
An excellent survey covering an appreciable number of formalizations can be found in [39, Ch. III].
The present paper uses a formalization based on the notion of nonanticipating strategies (single-
valued quasi-strategies). The underlying reasons include the following:

1) this formalization has the well-proven existence of ε-optimal universal strategy;

2) this formalization does not need a constructive (particularly, numerical) design method for
such a strategy;

3) this formalization suits both finite and infinite horizons.

Let us define the notion of a nonanticipating strategy. In the context of dynamic games, it was
first suggested in the paper [38] and further developed in [25, 37, 40]. A modification of this notion
adopted below was borrowed from [18].

A rule α : B �→ A is said to be a nonanticipating strategy of player 1 if, for all b, b′ ∈ B, t > 0,
the identity b|]0,t] = b′|]0,t] implies the identity α(b′)|]0,t] = α(b)|]0,t]. Denote by A the set of all
possible nonanticipating strategies of player 1. Similarly, introduce the set B of the nonanticipating
strategies of player 2 as all possible mappings β : A �→ B with the following property: for all
a, a′ ∈ A, t > 0, the identity a|]0,t] = a′|]0,t] implies the identity β(a′)|]0,t] = β(a)|]0,t].

Each nonanticipating strategy α ∈ A associates each initial value x(0) = ω with a funnel Y [ω,α]
of all possible paths y[ω,α(b), b] induced by this strategy (with respect to all b ∈ B); naturally
enough, Y [ω,α] ⊂ Y [ω]. Moreover, for each nonanticipating strategy α ∈ A and each initial value
x(0) = ω, determine a funnel Z(ω,α) ⊂ C (R≥0,Ω)×A×B of all possible processes induced from ω
by the nonanticipating strategy α, i.e., triplets of the form

(
y[ω,α(b), b], α(b), b

)
(with respect to

all b ∈ B). Also introduce the set Z(Ω) ⊂ C (R≥0,Ω)×A×B of all possible processes, i.e., triplets
of the form

(
y[ω, a, b], a, b

)
(with respect to all ω ∈ Ω, a ∈ A, b ∈ B).

Similarly, define Z(ω, β) ⊂ C (R≥0,Ω)×A× B for ω ∈ Ω, β ∈ B.

Define a parameterized family of games with vT , where T is a positive parameter. For each
T > 0, choose the payoff function as the Cesaro mean of the function g on the horizon [0, T ]:

vT (x, a, b)
�
=

1

T

T∫

0

g(x(t), a(t), b(t)) dt ∀z ∈ (x, a, b) ∈ Z(Ω).

Players 1 and 2 seek to maximize and minimize, respectively, the function vT . Then, for any ω ∈ Ω,
it is possible to define the numbers

sup
α∈A

inf
(x,a,b)∈Z(ω,α)

vT (x, a, b), inf
β∈B

sup
(x,a,b)∈Z(ω,β)

vT (x, a, b). (2.2)

As it is demonstrated, e.g., in [6, 25, 31], the condition (S) guarantees that the value of the game
exists for all T > 0. Particularly, the numbers from (2.2) coincide for each ω ∈ Ω. Therefore, for
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each T > 0, it is correct to define the value function (the optimal mean on the horizon [0, T ]):

VT (ω)
�
= sup

α∈A
inf

z∈Z(ω,α)
vT (z) = inf

β∈B
sup

z∈Z(ω,β)
vT (z) ∀ω ∈ Ω.

Define a parameterized family of games with wλ, where λ is a positive parameter. For each
λ > 0, choose the payoff function as the Abel mean of the function g with the discounting factor λ:

wλ(x, a, b)
�
= λ

∞∫

0

e−λtg(x(t), a(t), b(t)) dt.

Players 1 and 2 seek to maximize and minimize, respectively, the function wλ. Then, for any
ω ∈ Ω, it is possible to define the numbers

sup
α∈A

inf
(x,a,b)∈Z(ω,α)

wλ(x, a, b), inf
β∈B

sup
(x,a,b)∈Z(ω,β)

wλ(x, a, b). (2.3)

As it was demonstrated, e.g., in [18, Corollary VIII.2.2], the condition (S) guarantees that the
value of the game exists for all λ > 0. Particularly, the numbers from (2.3) coincide for each ω ∈ Ω.
Therefore, for each λ > 0, it is correct to define the value function (the optimal mean with the
discounting factor λ):

Wλ(ω)
�
= sup

α∈A
inf

z∈Z(ω,α)
wλ(z) = inf

β∈B
sup

z∈Z(ω,β)
wλ(z) ∀ω ∈ Ω.

Since g takes values from [0, 1], the mappings wλ,Wλ, vT , VT also have the same property.

The following statement is the main result of the paper.

Theorem. Assume that the conditions (C), (L), (Ω), (S) hold.

The uniform convergence of VT (ω) in ω ∈ Ω to the limit

V∗(ω)
�
= lim

T→+∞
VT (ω)

implies the uniform convergence of Wλ(ω) in ω ∈ Ω to the limit

W∗(ω) = lim
λ→+0

Wλ(ω);

moreover, these two limits coincide.

Conversely, the uniform convergence of Wλ(ω) in ω ∈ Ω to the limit

W∗(ω) = lim
λ→+0

Wλ(ω),

implies the uniform convergence of VT (ω) in ω ∈ Ω to the limit

V∗(ω)
�
= lim

T→+∞
VT (ω);

moreover, these two limits coincide.

A preliminary background required for the proof of this theorem will be given in the next section.
For the time being, note several corollaries.

Elimination of a player (e.g., by making either A or B a singleton) leads to the uniform Tauberian
theorem for controlled systems. This theorem was established in [35] for a rather general dynamic
system with one player. Oliu-Barton and Vigeral also demonstrated that the uniform convergence
condition is essential even for controlled systems.

For theorem, the values VT , Wλ have been defined via nonanticipating strategies (quasi-
strategies). However and obviously, one can adopt any formalization equivalent in the sense of
values; details were discussed in [39, Ch. III].

The conflict-controlled system (2.1) does not explicitly incorporate the parameter t. But the
above theorem is naturally extended to systems of the form

ẋ(t) = f(t, x(t), a(t), b(t)), x(t) ∈ X, a(t) ∈ A, b(t) ∈ B, t ≥ 0
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provided that the right-hand side enjoys Lipschitzness in t. In this case, it can be rewritten as

ẇ(t) = 1, ẋ(t) = f(w(t), x(t), a(t), b(t)),

(w(t), x(t)) ∈ R× X, a(t) ∈ A, b(t) ∈ B, t ≥ 0.

Moreover, the uniform convergence of VT ,Wλ is required on an invariant subset Ω of the set R×X

instead of the set X, as for the system (2.1).

Let us formulate another corollary of theorem. The value of the differential game can be
described using Hamilton–Jacobi–Bellman equations. To this end, following [39, Section 11.1;
18, (VIII.1.16)], define the Hamiltonians

H(x, s)
�
= max

a∈A
min
v∈Q

[〈s, f(x, a, b)〉 + g(x, a, b)] ∀x, s ∈ X;

H̄(x, s)
�
= min

a∈A
max
b∈B

[− 〈s, f(x, a, b)〉 − g(x, a, b)] ∀x, s ∈ X.

Now, the terminal problem

∂u(t, x)

∂t
+H(x,Dxu(t, x)) = 0 ∀t ≤ 0, x ∈ X, (2.4)

u(0, x) ≡ 0 ∀x ∈ X (2.5)

has a unique minimax (viscosity) solution u ∈ C (R≤0 × X), see [39]. Then, for all (T, x) ∈ R>0×Ω,

VT (x) =
u(−T, x)

T
.

Similarly, as shown in [18], for all λ > 0 the Hamilton–Jacobi equation

λū(x) + H̄(x,Dxū(x)) = 0 ∀x ∈ X (2.6)

has a unique viscosity solution ūλ in BC(X) (in the class of bounded continuous functions); fur-
thermore, for all x ∈ Ω,

Wλ(x) = λūλ(x).

Then theorem directly brings to the following.

Corollary. Assume that the conditions (C), (L), (Ω), (S) hold.

Let u ∈ C (R≤0 × X) be the minimax (viscosity) solution of the problem (2.4), (2.5). For each
λ > 0, let the function ūλ ∈ BC(X) be the viscosity solution of Eq. (2.6).

Then the following conditions are equivalent:

(1) there exists lim
λ↓0

λūλ(x) that is uniform in x ∈ Ω;

(2) there exists lim
λ↓0

λu(−1/λ, x) that is uniform in x ∈ Ω;

(3) each of lim
λ↓0

λūλ(x), lim
λ↓0

λu(−1/λ, x) exists for any x ∈ Ω and is uniform in x ∈ Ω; moreover,

these limits coincide.

Generally speaking, under given λ > 0, it is easier to find the viscosity solution of Eq. (2.6) than
the viscosity solution of the problem (2.4), (2.5) (applicable numerical methods can be found in
[39, 18]). The presented corollary strengthens the corresponding results in [12, 17, 22].

3. PRELIMINARY BACKGROUND

First of all, a wider class of strategies is necessary due to some circumstances. In the games
considered, for all ε > 0 and any initial position ω of each player, the above formalization guar-
antees the existence of strategies (αω ∈ A and βω ∈ B, respectively) that are ε-optimal for this
position. However, we will need more than that, i.e., in this game, for each player, the existence of
strategies that are ε-optimal for all initial positions ω ∈ Ω. This can be achieved by passing from
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UNIFORM TAUBERIAN THEOREM IN DIFFERENTIAL GAMES 739

nonanticipating strategies to nonanticipating operators. Such operators were introduced, e.g., in
[6, p. 180; 10]; see the papers [11, 24] for examples of their usage.

A nonanticipating operator of player 1 (player 2) is an arbitrary mapping from Ω to A (to B,
respectively); denote them by A (by B, respectively). By analogy with Z(ω,α) and Z(ω, β) intro-
duced earlier, for each nonanticipating operator ζ in A or B, define

Z(Gr ζ)
�
=

⋃

ω∈Ω
Z(ω, ζ(ω)).

Note that, for any bounded payoff function c (particularly, vT or wλ) and for all ω ∈ Ω, we have

sup
α∈A

inf
z∈Z(ω,α)

c(z) = sup
ζ∈A

inf
z∈Z(ω,ζ(ω))

c(z), (3.1)

inf
β∈B

sup
z∈Z(ω,β)

c(z) = inf
ξ∈B

sup
z∈Z(ω,ξ(ω))

c(z).

Then, for all λ, T > 0, it is possible to write

VT (ω) = sup
ζ∈A

inf
z∈Z(ω,ζ(ω))

vT (z) = inf
ξ∈B

sup
z∈Z(ω,ξ(ω))

wλ(z) ∀ω ∈ Ω, (3.2)

Wλ(ω) = sup
ζ∈A

inf
z∈Z(ω,ζ(ω))

wλ(z) = inf
ξ∈B

sup
z∈Z(ω,ξ(ω))

wλ(z) ∀ω ∈ Ω. (3.3)

Furthermore, suppose that, in a certain game with a bounded payoff function (e.g., vT or wλ),
for any ε > 0 and any initial position ω, each player has an ε-optimal strategy for this point (αω ∈ A
and βω ∈ B, respectively). Determine nonanticipating operators ζ ∈ A and ξ ∈ B according to the
following rule: ζ(ω) = αω, ξ(ω) = βω. Now, they are ε-optimal nonanticipating operators for the
players.

Note 3.1. The games with a bounded payoff function for each player have ε-optimal nonantici-
pating operators on the whole set Ω for any accuracy parameter ε > 0.

It is also needed to introduce operations for nonanticipating operators. First, for each time
τ > 0 and a pair of functions a′, a′′ ∈ A, define their concatenation, i.e., a function a′ �τ a′′ ∈ A, by
the rule

(a′ �τ a′′)(t) �
=

{
a′(t), 0 ≤ t ≤ τ

a′′(t− τ), t > τ.

Note that a′ �τ a′′ ∈ A; moreover, for all τ > 0, each element a ∈ A can be expressed as a = a′ �τ a′′
for some a′, a′′ ∈ A. The concatenation b′ �τ b′′ ∈ B for all b′, b′′ ∈ B is defined by analogy.

Let us introduce the operation �τ for nonanticipating operators. Fix some τ > 0, ζ ′, ζ ′′ ∈ A. It
suffices to define ζ ′ �τ ζ ′′ at each point ω ∈ Ω. Fix ω ∈ Ω and first define a mapping η = ηζ′,ζ′′,ω :
B × B → A by the rule

ηζ′,ζ′′,ω(b
′, b′′) �

= ζ ′′
(
y
[
ω, ζ ′(ω)(b′), b′

]
(τ)

)
(b′′) ∀b′, b′′ ∈ B.

Actually, it is independent of b′|]τ,∞[; particularly, for all b
′′ ∈ B, we have

ηζ′,ζ′′,ω(b
′ �τ b′′, b′′) = ζ ′′

(
y
[
ω, ζ ′(ω)(b′), b′

]
(τ)

)
(b′′). (3.4)

Since the image of ζ ′′ belongs to A, for all b′ �τ b′′, b̄′ �τ b̄′′ ∈ B, δ > 0, we obtain
(
b′|[0,τ ] = b̄′|[0,τ ], b′′|]0,δ] = b̄′′|]0,δ]

)

⇒
(
ηζ′,ζ′′,ω(b

′ �τ b′′, b′′)|[0,δ] = ηζ′,ζ′′,ω(b̄
′ �τ b̄′′, b̄′′)|[0,δ]

)
.

(3.5)

For any ω ∈ Ω, determine the value of (ζ ′ �τ ζ ′′) (ω); this is a mapping from B to A defined by the
rule

(ζ ′ �τ ζ ′′)(ω)(b) �
= ζ ′(ω)(b) �τ ηζ′,ζ′′,ω(b, b′′) ∀b = b′ �τ b′′ ∈ B. (3.6)
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Due to (3.4) and the nonanticipativity of ζ ′(ω), it is correct to write

(ζ ′ �τ ζ ′′)(ω)(b) = ζ ′(ω)(b′) �τ ηζ′,ζ′′,ω(b′, b′′) ∀b = b′ �τ b′′ ∈ B.
Remember that the mapping (ζ ′ �τ ζ ′′)(ω) becomes nonanticipating if, for any t > τ and any

b, b̄ ∈ B, the identity b|[0,t] = b̄|[0,t] implies the identity α(b)|]τ,t] = α(b̄)|]τ,t]. This is the case by
virtue of (3.5). Therefore, (ζ ′ �τ ζ ′′)(ω) forms a nonanticipating strategy. Owing to arbitrary
choice of ω ∈ Ω, the operator ζ ′ �τ ζ ′′ is nonanticipating, i.e., an element from A. Consequently, the
operation �τ is well-defined on the set A.

Now, for all τ > 0, x′, x′′ ∈ C (R≥0,Ω) such that x′(τ) = x′′(0), introduce the function x′ �τ x′′
by the rule

(x′ �τ x′′)(t) �
=

{
x′(t), t < τ

x′′(t− τ), t ≥ τ.

For all z′ �
= (x′, a′, b′), z′′ �

= (x′′, a′′, b′′) having the property x′(τ) = x′′(τ) (and only for such z′, z′′),
define their concatenation

z′ �τ z′′ �
=

(
x′ �τ x′′, a′ �τ a′′, b′ �τ b′′

)
.

Moreover, for all ω ∈ Ω, a′, a′′ ∈ A, b′, b′′ ∈ B, x′, x′′ ∈ Y [Ω], we have
(
x′|[0,τ ] = y

[
ω, a′, b′

] |[0,τ ], x′′ = y[x′(τ), a′′, b′′]
)

⇔
(
x′ �τ x′′ = y[ω, a′ �τ a′′, b′ �τ b′′]

)
.

Then, for all α′, α′′ ∈ A and a′ = α′(b′), a′′ = α′(b′′), we obtain
(
x′|[0,τ ] = y[ω,α′(b′), b′]|[0,τ ], x′′ = y

[
x′(τ), α′′(b′′), b′′

])

⇔
(
x′ �τ x′′ = y

[
ω,α′(b′) �τ α′′(b′′), b′ �τ b′′

])
.

For all ζ ′, ζ ′′ ∈ A, substitution α′ = ζ ′(ω), α′′ = ζ ′′(x′(τ)) yields
(
x′
∣∣
[0,τ ]

= y
[
ω, ζ ′(ω)(b′), b′

]∣∣
[0,τ ]

, x′′ = y
[
x′(τ), ζ ′′(x′(τ))(b′′), b′′

])

⇔
(
x′ �τ x′′ = y

[
ω, ζ ′(ω)(b′) �τ ζ ′′(x′(τ))(b′′), b′ �τ b′′

])
.

It appears from (3.6) and the nonanticipativity of ζ ′(ω) that
(ζ ′ �τ ζ ′′)(ω)(b′ �τ b′′) = ζ ′(ω)(b′) �τ ηζ′,ζ′′,ω(b′ �τ b′′, b′′).

On the other hand, the expression (3.4) gives ζ ′′(x′(τ))(b′′) = ηζ′,ζ′′,ω(b
′ �τ b′′, b′′). Hence,(

x′|[0,τ ] = y[ω, ζ ′(ω)(b′), b′]|[0,τ ], x′′ = y[x′(τ), ζ ′′(x′(τ))(b′′), b′′]
)

⇔
(
x′ �τ x′′ = y[ω, (ζ ′ �τ ζ ′′)(ω), b′ �τ b′′]

)
.

Actually, the following result has been established.

Note 3.2. For all ω ∈ Ω, ζ ′, ζ ′′ ∈ A, τ > 0, we have

Z
(
ω, (ζ ′ �τ ζ ′′)(ω)

)
=

{
z′ �τ z′′ | z′ �

=
(
x′, ζ ′(ω)(b′), b′

) ∈ Z
(
ω, ζ ′(ω)

)
,

z′′ �
=

(
x′′, ζ ′′(x′(τ))(b′′), b′′

) ∈ Z
(
x′(τ), ζ ′(x′(τ))

)}
,

Z(Gr ζ ′ �τ ζ ′′) =
{
z′ �τ z′′ | z′ = (x′, a′, b′) ∈ Z(Gr ζ ′),

z′′ ∈ Z
(
x′(τ), ζ ′′(x′(τ))

)}
.

Note that all considerations above can be repeated for player 2 (although, this is not required
for further exposition).
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In the sequel, for definiteness, for all τ ′, τ ′′ > 0, ζ, ζ ′, ζ ′′ ∈ A set ζ �τ ′ ζ ′ �τ ′′ ζ ′′ �
= (ζ �τ ′ ζ ′) �τ ′′ ζ ′′.

Consider an arbitrary process z ∈ Z(Ω) and an arbitrary number T ≥ 0. Define a process zT

by the rule zT (t)
�
= z(t+ T ). Naturally, if z = (x′ = y[ω, a, b], a, b), then zT = (x′T , aT , bT ) satisfies

x′T = y[x′(τ), aT , bT ]. And so, zT is also a process.

Such a compact form seems convenient while arguing that, for all T > 0, λ > 0, 0 < T ′ < T ,
z ∈ Z(Ω), we have

wλ(z)− e−λTwλ(zT ) = λ

∞∫

0

e−λtg(z(t)) dt − λ

∞∫

0

e−λ(t+T )g(z(t + T )) dt

= λ

∞∫

0

e−λtg(z(t)) dt − λ

∞∫

T

e−λtg(z(t)) dt

= λ

T∫

0

e−λtg(z(t)) dt; (3.7)

vT (z) − T ′

T
vT ′(zT−T ′) =

1

T

T∫

0

g(z(t)) dt − T ′

TT ′

T ′∫

0

g(zT−T ′(t+ T )) dt

=
1

T

T∫

0

g(z(t)) dt − 1

T

T∫

T−T ′

g(z(t)) dt

=
1

T

T−T ′∫

0

g(z(t)) dt. (3.8)

The constructed games obey the dynamic programming principle in a formulation given below.

Note 3.3. For any ω ∈ Ω, λ > 0, T > 0, we have

Wλ(ω) = sup
ζ∈A

inf
z∈Z(ω,ζ(ω))

[
wλ(z)− e−λTwλ(zT ) + e−λTWλ(z(T ))

]

(3.7)
= sup

ζ∈A
inf

z∈Z(ω,ζ(ω))

⎡

⎣
T∫

0

λe−λtg(z(t)) dt + e−λTWλ(z(T ))

⎤

⎦ . (3.9)

Note 3.4. For all ω ∈ Ω, T ′ > 0, T > T ′, we have

VT (ω) = sup
ζ∈A

inf
z∈Z(ω,ζ(ω))

[
vT (z)− T ′

T
vT ′(zT−T ′) +

T ′

T
VT ′(z(T − T ′))

]

(3.8)
= sup

ζ∈A
inf

z∈Z(ω,ζ(ω))

⎡

⎢⎣
1

T

T−T ′∫

0

g(z(t)) dt +
T ′

T
VT ′(z(T − T ′))

⎤

⎥⎦ . (3.10)

In terms of nonanticipating strategies, the dynamic programming principle for finite-horizon
games (particularly, for the payoff function vT ) is well-known, see [26]. Such a principle for the
payoff function wλ follows from [18, Theorem VIII.1.9]. By (3.1), if the principle holds for nonan-
ticipating strategies, it also remains in force for nonanticipating operators. Therefore, Notes 3.3
and 3.4 have been shown.

4. ESTIMATE V∗ ≤ W

This section demonstrates that, if the functions VT uniformly converge to the limit V∗, then
player 1 can guarantee the value of the payoff function wλ not less than V∗ for any given accuracy
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for sufficiently small λ. Prior to formulating a rigorous statement, let us describe the general idea
of proof.

For given λ > 0, choose an interval [0, τk[ and its partition into subintervals [τi, τi−1[. Using
them, then construct a piecewise constant function h approximating the function e−λt with a
required accuracy. Subsequently, the payoff function wλ will be replaced by a new functional c.
This functional depends only on the integral of h along the path until the time τk and on the position
at this time. It suffices to find a nonanticipating operator guaranteeing that this functional is not
smaller than V∗ with a required accuracy.

Such an operator is obtained by dynamic programming, i.e., the concatenation of almost-optimal
operators in specially designed problems on smaller horizons. To this end, decompose the func-
tional c into the sum (4.10). The last row in this sum has the form of the bracketed expression
from (3.10). Now, Note 3.4 allows choosing on the interval [τk−1, τk[ an nonanticipating operator
such that its processes in the last row of (4.10) can be estimated by a function of the position
at τk−1. Now, for this interval, by the uniform convergence of VT , this estimate (see (4.11)) obeys
Note 3.4. Repetition of this procedure k − 1 times yields the desired estimate.

Proposition 4.1. Suppose the uniform convergence of vT in ω ∈ Ω to the limit

V∗(ω)
�
= lim

T→+∞
sup
ζ∈A

inf
z∈Z(ω,ζ(ω))

vT (z).

Then,
V∗(ω) ≤ lim inf

λ→+0
sup
ζ∈A

inf
z∈Z(ω,ζ(ω))

wλ(z).

Moreover, for all ε > 0 there exists λ̄ > 0 such that, if 0 < λ ≤ λ̄, then, for some nonanticipating
operator ζ ∈ A, all z ∈ Z(Gr ζ) satisfy wλ(z) > V∗(ω)− ε.

Proof. Step 1. Choice of constants and auxiliary estimates. Fix a certain integer

k > 2. (4.1)

On the one hand, by condition, there is T0 > k such that
∣∣VT ′(ω)− VT ′′(ω)

∣∣ <
1

k2
, T ′, T ′′ > T0/2 ∀ω ∈ Ω. (4.2)

On the other hand, it suffices to show that, under λ < 2/T0, some nonanticipating operator
ζ = ζλ ∈ A satisfies

wλ(z) ≥ V∗(z(0)) − 2 + 3 ln k

k
∀z ∈ Z(Gr ζλ). (4.3)

Fix arbitrary λ < 2/T0 and set

p =
1

1− ln k
k

, δ =
ln p

λ
, T =

δp

p− 1
, τi = iδ ∀i ∈ 0, k.

Then the inequalities 1 < p ln p
p−1 < p

(4.1)
< 1 + 2 ln k

k

(4.1)
< 2 give

1 < λT =
λδp

p− 1
=

p ln p

p− 1
< p, T−1 < λ < pT−1 < 2T−1, (4.4)

p−k =

(
1− ln k

k

)k

<
1

k
,

T − δ

T
= p−1, eλδ = p < 1 +

2 ln k

k
. (4.5)

By using (4.4) and λ < 2/T0, it follows that p−1T > λ−1 > T0/2; therefore, the condition (4.2)
holds for T ′ = p−1T , T ′′ = T .

Step 2. Construction of a functional c approximating the payoff function wλ. Now, define
on [0, τk[ a piecewise constant function h by the rule

h(t) = e−λτi (4.5)
= p−i ∀t ∈ [τi, τi+1[, i ∈ 0, k − 1.
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Then, h(t)eλt ≥ 1; and, for all t ∈ [0, τk],

1 ≤ h(t)eλt = h(τi)e
λt ≤ h(τi)e

λτi+1 = p−ipi+1 = p. (4.6)

Consider the game with the payoff function

c(z)
�
=

1

T

τk∫

0

h(t)g(z(t))dt + p−kVp−1T (z(τk)).

Note that, for all x ∈ X, a ∈ A, b ∈ B, we have 0 ≤ g(x, a, b) ≤ 1, whence it appears that

0 ≤ p−kVp−1T (z(τk)) ≤ p−k
(4.5)
≤ 1

k

(4.1)
≤ ln k

k
.

Inequality (4.4) implies that 1 < λT < p and, for any process z,

wλ(z)
(4.6)
≤ λ

τk∫

0

h(t)g(z(t))dt + e−λτkwλ(zτk)

≤ λT c(z) +
ln k

k

(4.4)

≤ p c(z) +
ln k

k
;

c(z)
(4.6)
≤ 1

T

τk∫

0

pe−λtg(z(t))dt +
ln k

k

≤ p

Tλ
wλ(z) +

ln k

k

(4.4)

≤ pwλ(z) +
ln k

k
.

Particularly, any process z ∈ z(Ω) satisfies

|wλ(z)− c(z)| < ln k

k
+ p− 1

(4.5)

≤ 3 ln k

k
. (4.7)

Step 3. Design of nonanticipating operator ζ∗. According to Note 3.1, there exists a nonan-
ticipating operator ζ ∈ A that is 1/k2-optimal on the whole set Ω in the game with the payoff
function

vT (z)− p−1vp−1T (zδ) + p−1Vp−1T (z(δ)).

By Note 3.4, the value of this game coincides with VT . Hence, for all z ∈ Z(Gr ζ), we have

vT (z)− p−1vp−1T (zδ) + p−1Vp−1T (z(δ)) ≥ VT (z(0)) − 1

k2
. (4.8)

Moreover, the value of this game is independent of the process after δ and inequality (4.8) takes
place for any concatenation of the form z�δz′ if z ∈ Z(Gr ζ). Then (4.8) holds for all z ∈ Z(ω, ζ�τ ζ ′)
with any operator ζ ′ ∈ A.

Let us demonstrate that the operator

ζ∗ �
= ζ �τ1 ζ �τ2 · · · �τi−1 ζ �τi · · · �τk−1

ζ ∈ A

guarantees that all its processes z ∈ Z(Gr ζ∗) satisfy

c(z) > VT (z(0)) − 2

k
. (4.9)

In combination with (4.7), this would give the required estimate (4.3).
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Step 4. Iterative procedure. Recall that τi+1 = τi + δ, h(τi) = p−i, p−1T = T − δ. Now,

1

T

τi+1∫

τi

h(t)g(z(t))dt =
1

T

δ∫

0

h(τi)g(z(t + τi))dt

=
h(τi)

T

δ∫

0

g(z(t + τi))dt

(3.8)
= p−i

[
vT (zτi)− p−1vp−1T (zτi+δ)

]

= p−ivT (zτi)− p−i−1vp−1T (zτi+1).

Then

c(z) = vT (z) − p−1vp−1T (zτ1)

+ p−1vT (zτ1)− p−2vp−1T (zτ2) + . . .

+ p−ivT (zτi)− p−i−1vp−1T (zτi+1) + . . .

+ p−k+2vT (zτk−2
)− p−k+1vp−1T (zτk−1

)

+ p−k+1vT (zτk−1
)− p−kvp−1T (zτk) + p−kVp−1T (z(τk)). (4.10)

Note that zτk−1
∈ Z(Gr ζ) for any z ∈ Z(Gr ζ∗). Hence, zτk−1

satisfies inequality (4.8), i.e.,

vT (zτk−1
)− p−1vp−1T (zτk ) + p−1Vp−1T (z(τk)) ≥ VT (z(τk−1))− 1/k2.

Due to (4.2), the value of the last row in (4.10) is not smaller than p−k+1Vp−1T (z(τk−1))−2p−k+1/k2.
Thus and so, for any its process z ∈ Z(Gr ζ∗), the operator ζ∗ guarantees that

c(z) ≥ vT (z) − p−1vp−1T (zτ1)

+ p−1vT (zτ1)− p−2vp−1T (zτ2) + . . .

+ p−ivT (zτi)− p−i−1vp−1T (zτi+1) + . . .

+ p−k+2vT (zτk−2
)− p−k+1vp−1T (zτk−1

) + p−k+1Vp−1T (z(τk−1))− 2

k2
. (4.11)

Note that zτk−2
∈ Z(Gr ζ �δ ζ); hence, zτk−2

satisfies inequality (4.8), i.e.,

vT (zτk−2
)− p−1vp−1T (zτk−1

) + p−1Vp−1T (z(τk−1)) ≥ VT (z(τk−2))− 1/k2.

Taking into account (4.2), for z ∈ Z(Gr ζ∗), it follows that
c(z) ≥ vT (z) − p−1vp−1T (zτ1)

+ p−1vT (zτ1)− p−2vp−1T (zτ2) + . . .

+ p−ivT (zτi)− p−i−1vp−1T (zτi+1) + . . .

+ p−k+3vT (zτk−3
)− p−k+2vp−1T (zτk−2

) + p−k−2Vp−1T (z(τk−2))− 4

k2
.

Similarly, for all l ∈ 1, k − 3, by zτl ∈ Z(Gr ζ�δζ ′), for some operator ζ ′, zτl satisfies inequality (4.8).
Hence, the condition (4.2) implies that

vT (zτl)− p−1vp−1T (zτl+1
) + p−1Vp−1T (z(τl+1)) ≥ VT (z(τl))− 2/k2.

Now, for all z ∈ Z(Gr ζ∗), for each l ∈ 1, k − 3, we have

c(z) ≥ vT (z) − p−1vp−1T (zτ1)

+ p−1vT (zτ1)− p−2vp−1T (zτ2) + . . .

+ p−lvT (zτl)− p−l−1vp−1T (zτl+1
) + p−l−1Vp−1T (z(τl+1))− 2(k − l)

k2
.

Particularly, for τ1, we obtain

c(z) ≥ vT (z)− p−1vp−1T (zτ1) + p−1Vp−1T (z(τ1))−
2(k − 1)

k2
.
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Now, the choice of the operator ζ∗ guarantees that, for z ∈ Z(Gr ζ∗),

c(z) ≥ VT (z(0)) − 2

k
,

i.e., the condition (4.9) holds. This completes the proof. �

5. ESTIMATE W∗ ≤ V

Show that, if the functions Wλ uniformly converge to W∗, then player 1 can guarantee that the
value of the payoff function vT is not less than W∗ for any given accuracy for sufficiently large T.
Prior to formulating a rigorous statement, let us describe the general idea of proof.

For given T > 0, choose λ > 0 and partition the interval [0, T [ into some k subintervals [τi, τi+1[
whose lengths form a geometric progression. Using them, construct a close to 1 function h in
the form of the product of the piecewise constant function and the function e−λt. Subsequently,
the payoff function vT is replaced by a new functional c. This functional depends only on the
integral of h along the path until the time τk and on the position at this time. It suffices to find a
nonanticipating operator guaranteeing that this functional is not smaller than W∗ with a required
accuracy.

Such an operator is obtained by dynamic programming, i.e., the concatenation of almost-optimal
operators in specially designed problems on smaller horizons. To this end, decompose the func-
tional c into the sum (5.10). The last row in this sum has the form of the bracketed expression
from (3.9). Now, for the interval [τk−1, τk[, Note 3.3 allows choosing a nonanticipating operator
such that its processes in the last row of (5.10) can be estimated by a function of the position
at τk−1. Now, for this interval, by the uniform convergence of Wλ, this estimate (see (5.11)) obeys
Note 3.3. Repetition of this procedure k − 1 times yields the desired estimate.

Proposition 5.1. Suppose the uniform convergence of wλ in ω ∈ Ω to the limit

W∗(ω)
�
= lim

λ→+0
sup
ζ∈A

inf
z∈Z(ω,ζ(ω))

wλ(z).

Then,

W∗(ω) ≤ lim inf
T→+∞

sup
ζ∈A

inf
z∈Z(ω,ζ(ω))

vT (z).

Moreover, for any ε > 0 there exists T̄ > 0 such that, if T > T̄ , then, for some nonanticipating
operator ζ ∈ A, all z ∈ Z(Gr ζ) satisfy vT (z) > W∗(z(0)) − ε.

Proof. Step 1. Choice of constants and auxiliary estimates. Consider an arbitrary integer k > 1.
Then there exists a number M > 1 such that k = M lnM. By condition, it is possible to choose
such Tk > 1 that, for all λ′, λ′′ < M

Tk
, we have

∣∣Wλ′(ω)−Wλ′′(ω)
∣∣ <

1

k2
∀ω ∈ Ω. (5.1)

Now, it suffices to argue the following. For each T > Tk, any realization z ∈ Z(Gr ζT ) of some
nonanticipating operator ζT ∈ A meets the condition

vT (z) > W∗(z(0)) − 2

M
− 2

k
. (5.2)

Fix arbitrary T > Tk and set

p = e1/M , t0 =
T
(
1− e−1/M

)

1− 1
M

, λ =
1

Mt0
, τ0 = 0,

ti = t0p
−i, τi = τi−1 + ti ∀i ∈ 1, k.

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 4 2016



746 KHLOPIN

Note that t0 > 0 due to M > 1. Observe that the sequence of ti forms a monotonically decreasing
geometric progression with partial sums defined by τi, moreover,

pk = elnM = M, τk = t0
1− p−k

1− p
=

T
(
1− e−1/M

)

1− 1
M

× 1− 1
M

1− e−1/M
= T.

The inequality 1− 1
M < e−1/M < 1− 1

M + 1
2M2 and its corollary 1− 1

2M < M(1− e−1/M ) < 1 imply

1− 1

M
< λT =

T

Mt0
=

1− 1

M
M

(
1− e−1/M

) < 1, (5.3)

p−k = e− lnM =
1

M
, λpk = λM =

1

t0

(5.3)

≤ M

T
. (5.4)

By (5.4), all pairs of λpi, instead of λ′, λ′′, satisfy the condition (5.1).

Step 2. Construction of a functional c close to the payoff function vT . Now, define on ]0, τk] =
]0, T ] a scalar function s by the rule

s(t) = e−λpi(t−τi−1)

for all t ∈]τi−1, τi].

Note that, on each such interval, s(t) ≤ 1,

s(t) ≥ s(τi) = e−λpi(τi+1−τi) = e−λpiti = e−λt0 = p−1 > 1− 1

M
, (5.5)

and, by virtue of (5.3), it appears that

1 ≥ λTs(t) ≥
(
1− 1

M

)2

≥ 1− 2

M
∀t ∈ [0, T ]. (5.6)

Consider the game with the payoff function

c(z)
�
= λ

T∫

0

s(t)g(z(t))dt + p−kWλpk−1(z(T )).

Note that any process z ∈ Z(Ω) satisfies

vT (z) =
1

T

T∫

0

g(z(t))dt
(5.6)

≥
T∫

0

λs(t)g(z(t))dt
(5.4)

≥ c(z)− 1

M
;

vT (z)− 2

M
≤

(
1− 2

M

)
1

T

T∫

0

g(z(t))dt
(5.6)

≥
T∫

0

λs(t)g(z(t))dt ≤ c(z).

Particularly, for any process z ∈ Z(Ω), we obtain

|vT (z) − c(z)| < 2

M
. (5.7)

Step 3. Design of nonanticipating operator ζ∗. For each i ∈ 0, k − 1, there exists a nonantici-
pating operator ζi ∈ A that is 1/k2-optimal in the game with the payoff function

wλpi(z)− p−1wλpi(zti+1) + p−1Wλpi(z(ti+1)).

Since p = eλt0 = eλp
iti+1 and the value of this game coincides with Wλpi , for all z ∈ Z(Gr ζi), we

have

wλpi(z)− p−1wλpi(zti+1) + p−1Wλpi(z(ti+1)) ≥ Wλpi(z(0)) −
1

k2
. (5.8)

Moreover, the value of this game is independent of the process after the time ti+1, and hence
inequality (5.8) takes place for all processes of the form z �ti+1 z

′ if z ∈ Z(Grζ). Then, for each
operator ζ ′ ∈ A, (5.8) holds for all z ∈ Z(Grζi �ti+1 ζ

′).
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Let us demonstrate that the operator

ζ∗ �
= ζ0 �τ1 ζ1 �τ2 · · · �τi−1 ζi−1 �τi · · · �τk−1

ζk−1 ∈ A

guarantees for all its processes z ∈ Z(Gr ζ∗) that

c(z) > W∗(z(0)) − 2

k
. (5.9)

In combination with (5.7), this would give the required estimate (5.2).

Step 4. Iterative procedure. Note that e−λpi(τi+1−τi) = p−1 for any i ∈ 0, k − 1 due to (5.5). And
so,

λ

τi+1∫

τi

s(t)g(zt)dt = λ

τi+1∫

τi

e−λpi(t−τi)g(z(t)) dt

(3.7)
= p−iwλpi(zτi)− p−i−1wλpi(zτi+1).

Summation over all intervals [τi, τi+1] yields

c(z) = wλ(z) − p−1wλ(zτ1)

+ p−1wλp(zτ1)− p−2wλp(zτ2) + . . .

+ p−iwλpi(zτi)− p−i−1wλpi(zτi+1) + . . .

+ p−k+1wλpk−1(zT−tk−1
)− p−kwλpk−1(zT ) + p−kWλpk−1(z(T )). (5.10)

Observe that zτk ∈ Z(Gr ζk−1); hence, zτk satisfies inequality (5.8), i.e.,

wλpk−1(zτk−1
)− p−1wλpk−1(zτk) + p−1Wλpk−1(z(τk)) ≥ Wλpk−1(z(τk−1)) − 1

k2
.

Then the row (5.10) is not smaller than p−k+1Wλpk−1(z(τk−1))− p−k+1/k2; by virtue of (5.1), it is
not less than

p−k+1Wλpk−2(z(τk−1))− 2

k2
.

Now, for any process z ∈ Z(Gr ζ∗), we have

c(z) ≥ wλ(z) − p−1wλ(zτ1)

+ p−1wλp(zτ1)− p−2wλp(zτ2) + . . .

+ p−iwλpi(zτi)− p−i−1wλpi(zτi+1) + . . . (5.11)

+ p−k+2wλpk−2(ztk−2
)− p−k+1wλpk−2(ztk−1

) + p−k+1Wλpk−2(z(τk−1))− 2

k2
.

Note that zτk−2
∈ Z(Gr ζk−2 �tk−1

ζk−1), and it meets the condition (5.8), i.e.,

wλpk−2(zτk−2
)− p−1wλpk−2(zτk−1

) + p−1Wλpk−2(z(τk)) ≥ Wλpk−2(z(τk−2)) − 1

k2
.

Next, the last row in (5.11) is not smaller than p−k+2Wλpk−2(τk−2)− p−k+2/k2 − 2/k2, i.e., not less

than p−k+2Wλpk−3(τk−2)− 4/k2. Therefore, for any process z ∈ Z(Gr ζ∗), we obtain

c(z) ≥ wλ(z) − p−1wλ(zτ1)

+ p−1wλp(zτ1)− p−2wλp(zτ2) + . . .

+ p−iwλpi(zτi)− p−i−1wλpi(zτi+1) + . . .

+ p−k+3wλpk−3(ztk−3
)− p−k+2wλpk−3(ztk−2

) + p−k−2Wλpk−3(z(τk−2))− 4

k2
.
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Similarly, for all l ∈ i, k − 3 and some ζ ′ ∈ A, we have zτl ∈ Z(Gr ζl�tl+1
ζ ′). And so, zτl meets (5.8),

and (5.1) yields

c(z) ≥ wλ(z) − p−1wλ(zτ1)

+ p−1wλp(zτ1)− p−2wλp(zτ2) + . . .

+ p−lwλpl(zτl)− p−l−1wλpl(zτl+1
) + p−l−1Wλpl−1(z(τl+1))− 2(k − l)

k2
.

Particularly, for the time τ1 and any z ∈ Z(Gr ζ∗), we have

c(z) ≥ wλ(z)− p−1wλ(zτ1) + p−1W∗(z(τ1))− 2(k − 1)

k2
.

It appears from (5.8) that

c(z) ≥ W∗(z(0)) − 2

k
,

i.e., inequality (5.9) holds for all T > Tk. �

6. PROOF OF THE MAIN THEOREM

Introduce the function g− = 1− g and the corresponding functions v−T , w
−
λ . Also, define the

sets B
− �
= A, A− �

= B and operations over them. Clearly, it follows from g + g− ≡ 1 that, for all
T, λ > 0, ω ∈ Ω, we have

vT (z) + v−T (z) ≡ 1, wλ(z) + w−
λ (z) ≡ 1,

sup
ζ−∈A−

inf
z∈Z(ω,ζ−(ω))

v−T (z) ≡ 1− inf
ξ∈B

sup
z∈Z(ω,ξ(ω))

vT (z),

sup
ζ−∈A−

inf
z∈Z(ω,ζ−(ω))

w−
λ (z) ≡ 1− inf

ξ∈B
sup

z∈Z(ω,ξ(ω))
wλ(z).

Direct application of Propositions 4.1, 5.1 to the game with the running cost 1− g− brings to the
following results.

Proposition 6.1. Assume the uniform convergence of vT in ω ∈ Ω to the limit

V∗(ω)
�
= lim

T→+∞
inf
ξ∈B

sup
z∈Z(ω,ξ(ω))

vT (z).

Then V∗(ω) ≥ lim sup
λ→+0

inf
ξ∈B

sup
z∈Z(ω,ξ(ω))

wλ(z).

Proposition 6.2. Assume the uniform convergence of wλ in ω ∈ Ω to the limit

W∗(ω)
�
= lim

λ→+0
inf
ξ∈B

sup
z∈Z(ω,ξ(ω))

wλ(z).

Then W∗(ω) ≥ lim sup
T→+∞

inf
ξ∈B

sup
z∈Z(ω,ξ(ω))

vT (z).

The one part of the proof is immediate from Propositions 4.1, 6.1, whereas the other follows
from Propositions 5.1, 6.2.

Observe that the result of this theorem was announced in [9, 30].
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