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Abstract—We consider approximate controllability of semilinear non-autonomous evolutionary
systems with nonlocal conditions. In this study, we use the theory of fractional powers and
α-norms, so our results can be applied to systems where nonlinear terms include derivatives of
spatial variables. We formulate and prove sufficient conditions for approximate controllability.
We also give a sample application of our results.
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1. INTRODUCTION

Controllability theory for abstract linear control systems in infinite-dimensional spaces is well
developed; see, e.g., [1–3] and references therein. Most results deal with the so-called semilinear
control system that consists of linear and nonlinear parts. The work [2] studied approximate
controllability of an abstract semilinear system under certain conditions of inequality type that
depend on the properties of system components. The work [1] considered the same system and
showed that it is approximately controllable under a certain condition on the set of values of the
controlling influence operator. In [4, 5], this result has been extended to systems with finite delay.

It has been shown in [6] that under a suitable condition on the resolvent operator, approximate
controllability of a semilinear system follows from approximate controllability of its linear part.
This resolvent condition has been used by many authors to study approximate controllability for
nonlinear (functional) differential equations (see, e.g., [7–9]). In [7], this condition and Schauder
fixed point theorem were used to study approximate and full controllability of an abstract system

⎧
⎪⎨

⎪⎩

d

dt
x(t) = Ax(t) +Bu(t) + F (t, xt, u), t ∈ [0, T ]

x0 = φ.

The works [9–13] also used the resolvent condition to study approximate controllability for semi-
linear impulse (stochastic) systems and differential systems of fractional order with delay.

It is known that there exist many practical models where coefficients of partial derivative op-
erators depend on the time t, and some of them are often written as semilinear non-autonomous
evolutionary equations. Previously, many authors have studied the existence and asymptotic be-
havior of solutions for such equations without a control [14–16]. The approximate controllability
problem for such systems is certainly important, but it has not been studied too much so far due
to its complexity [17, 18].
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APPROXIMATE CONTROLLABILITY 429

The purpose of this work is to study approximate controllability of non-autonomous evolutionary
systems with nonlocal conditions of the form

⎧
⎪⎨

⎪⎩

d

dt
x(t) = −A(t)x(t) +Bu(t) + F (t, x(r(t))), t ∈ [0, T ]

x(0) + g(x) = x0.
(1)

Here the state variable x(·) takes values in a Hilbert space X, and the control function u(·) is
defined in the Banach space L2([0, T ];U), where U is also a Hilbert space, and B is a bounded
linear operator from U toX; {A(t) : 0 � t � T} is a family of linear closed (not necessarily bounded)
operators from X to X that generate an evolutionary system of linear operators, F (·, ·), and r(·)
and g(·) are the corresponding functions that will be defined below.

This goal is motivated by the approximate controllability problem for system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
z(t, x) = a(t, x)

∂2z

∂x2
(t, x) +Bu(t) + f

(

t, z(·, x), ∂z
∂x

(·, x)
)

z(t, 0) = z(t, π) = 0, t � 0

z(0, x) +
p∑

i=1

ki(x)z(ti, x) = z0(x), 0 � x � π,

(2)

which serves as a model for nonlinear heat flow in materials with memory, where z(t, x) is the
temperature at point x at time moment t and f(·, ·, ·) is the heat intake. In particular, the third
equation represents nonlocal initial conditions, when initial data depend on the entire state, so we
call (2) a nonlocal Cauchy problem. Nonlocal Cauchy conditions were first introduced and studied
in [19]. Their practical value for various applications has been discussed in [20].

There have been plenty of works on the existence and regularity of solutions for evolutionary
systems with nonlocal conditions [21, 22]. Approximate controllability for A(t) = A has been
studied in [23, 24].

The controllability problem for system (1) is studied under a resolvent assumption similar to
the one shown in [7, 9, 23]. We should note that system (2) can be considered as an abstract
Eq. (1), but the results established in [7] become invalid in this situation even when A(t) ≡ A,
since function f in Eq. (2) includes spatial derivatives.

In Section 4 we show that if we let X = L2([0, π]), then the third variable of function f is defined
on X 1

2
(t0) rather than X, so solutions cannot be considered on X as they are in [7]. Therefore, we

use the theory of operators with fractional powers and α-norms [25, 26], i.e., Eq. (1) is bounded by
the Banach space Xα(t0)(⊂ X), and we study the existence of soft solutions for it. We assume that
function g(x) is continuous, and its value is fully defined on the interval [τ∗, T ] for a sufficiently
small τ∗ > 0 rather than on [0, T ].

The paper is organized as follows. In Section 2 we give some preliminary information on linear
evolutionary systems and approximate controllability. In Section 3 we study the approximate
controllability of system (1). In Section 4 we give an sample application for our results.

2. PRELIMINARY INFORMATION

Let X be a Hilbert space with norm ‖ · ‖. Suppose that a family of linear operators {A(t) : 0 �
t � T} satisfies the following assumptions.

B1. The domain D(A) of the family {A(t) : 0 � t � T} is dense in X and does not depend on t,
A(t) is a closed linear operator.
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B2. At every time moment t∈[0,T ], the resolvent R(λ,A(t))=(λ−A(t))−1 of linear operator A(t)
exists for all λ such that Re λ � 0, and there also exists K > 0 such that ‖R(λ,A(t))‖ � K/(|λ|+1).

B3. There exist 0 < δ � 1 and K > 0 such that ‖(A(t) −A(s))A−1(τ)‖ � K|t− s|δ for all t, s
and τ ∈ [0, T ].

B4. For each t ∈ [0, T ] and some λ ∈ ρ(A(t)), the resolvent set R(λ,A(t)) of linear operator A(t)
is a compact.

Under these assumptions, family {A(t) : 0 � t � T} generates a unique linear evolutionary sys-
tem which is also called a linear evolutionary operator {W (t, s) : 0 � s � t � T}, and there exists a
family of bounded linear operators {Φ(t, τ)|0 � τ � t � T} with norm ‖Φ(t, τ)‖ � C|t− τ |δ−1 such
that W (t, s) can be represented as

W (t, s) = e−(t−s)A(t) +

t∫

s

e−(t−τ)A(τ)Φ(τ, s)dτ, (3)

where e−τA(t) denotes the analytic semigroup with infinitesimal generator (−A(t)). The family of
linear operators {W (t, s) : 0 � s � t � T} satisfies the following conditions:

(a) W (t, s) belongs to L (X), the set of bounded linear transformations on X for every 0 � s �
t � T , and for every x ∈ X the mapping (t, s) → W (t, s)x is continuous;

(b) W (t, s)W (s, τ) = W (t, τ) for 0 � τ � s � t � T ;
(c) W (t, t) = I, where I is the unit linear operator;
(d) W (t, s) is a compact operator for t− s > 0, and there exists a constant M � 1 such that

‖W (t, s)‖ � M for each (t, s) ∈ [0, T ] × [0, T ];
(e) ∂

∂tW (t, s) = −A(t)W (t, s) for s < t.

Condition B4 guarantees that the generated evolutionary operator W (t, s) satisfies property (d)
(see [14, Proposition 2.1]). Assumptions B1–B3 mean that for every t ∈ [0, T ] the integral

A−α(t) =
1

Γ(α)

+∞∫

0

sα−1e−sA(t)ds

exists for every α ∈ (0, 1], A−α(t) is a bounded linear operator, and A−α(t)A−β(t) = A−(α+β)(t).
Thus, we can define the fractional power as a closed linear operator Aα(t) = [A−α(t)]−1 such that
D(Aα(t)) is dense in X and D(Aα(t)) ⊂ D(Aβ(t)) for α � β. D(Aα(t)) becomes a Banach space
with norm ‖x‖α,t = ‖Aα(t)x‖, denoted by Xα(t). The following estimates hold [27]:

‖Aα(t)A−β(s)‖ � Cα,β, (4)

where Cα,β is a constant related to T , δ, t and s ∈ [0, T ], 0 � α < β � 1;

‖Aβ(t)e−sA(t)‖ � Cβ

sβ
e−ωs, t > 0, β � 0; ω > 0; (5)

‖Aβ(t)W (t, s)‖ � Cβ

|t− s|β , 0 < β < δ + 1; (6)

‖Aβ(t)W (t, s)A−β(s)‖ � C ′
β , 0 < β < δ + 1, (7)

for t > 0, where Cβ and C ′
β mean that these constants depend on the constant β. For conve-

nience we require further that operators Aα(t) and W (t, s) commute for every 0 < α � 1, i.e.,
Aα(t)W (t, s) = W (t, s)Aα(t). Note that this property does hold in many cases (see an example in
Section 4). More detailed information can be found in [27–29].

Further, we will consider the problem on the subspace Xα(t0) with norm ‖ · ‖α, α ∈ (0, 1),
t0 ∈ [0, T ].
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APPROXIMATE CONTROLLABILITY 431

Definition 1. Function x( · ;x0, u) ∈ C([0, T ],Xα(t0)) is called a soft solution of Eq. (1) (with
control u(t)) if

x(t) = W (t, 0)[x0 − g(x)] +

t∫

0

W (t, s) [Bu(s) + F (s, x(r(s)))] ds, t ∈ [0, T ].

Definition 2. System (1) is called approximately controllable on the interval [0, T ] if for every
x0 ∈ X the set R(T, x0) :={x(T ;x0, u), u(·) ∈ L2([0, T ], U)} is dense in X, i.e.,

R(T, x0) = X,

where R(T, x0) :=
{
x(T ;x0, u), u(·) ∈ L2([0, T ], U)

}
.

To use the resolvent condition [6], we introduce the operator

ΓT =

T∫

0

W (T, s)BB∗W ∗(T, s)ds,

R(λ, (−ΓT )) = (λI + ΓT )
−1, for λ > 0,

where B∗ is the operator conjugate to B, and W ∗(t, s) is the evolutionary operator conjugate
to W (t, s). Since, obviously, operator ΓT is positive, we see that R(λ, (−ΓT )) is well defined for
all λ > 0. We will assume that

H0. λR(λ, (−ΓT )) → 0 for λ → 0+ in the strong operator topology.

Condition H0 relates to approximate controllability of a non-autonomous linear system
⎧
⎪⎨

⎪⎩

dy(t)

dt
= −A(t)y(t) +Bu(t), t ∈ [0, T ]

y(0) = 0.
(8)

More precisely, the following theorem holds.

Theorem 1. The following statements are equivalent.

i. Controllable system (8) is approximately controllable on [0, T ].

ii. If B∗W ∗(t, 0)y = 0 for all t ∈ [0, T ] then y = 0.

iii. Condition H0 holds.

Proof of Theorem 1 is similar to the proof of Theorem 4.4.17 from [3] and Theorem 2 from [6], and
we do not show it here.

3. APPROXIMATE CONTROLLABILITY OF SYSTEM (1)

We will show that for every xT ∈ X for a suitable control uλ (and any given λ ∈ (0, 1)) there
exists a soft solution xλ∗( · ;x0, u) : [0, T ] →D(Aα(t0)) of Eq. (1). Then we show that xλ∗(T )→xT

in X, which precisely means the approximate controllability.

The existence of soft solutions is guaranteed by the following assumptions on system (1).

H1. B ∈ L (U,X), i.e., B is a bounded linear operator from U to X, ‖B‖ = N, where N > 0 is
a constant.

H2. Function F : [0, T ]×Xα(t0) → X is continuous, and there exist constants L1 > 0 and
0 < γ < 1 such that

‖F (t, x)‖ � L1(‖x‖γα + 1)

for every (t, x) ∈ [0, T ]×Xα(t0).
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H3. Function g : C
(
[0, T ];Xα(t0)

) → X1(t0) is continuous, and there exists a constant L2 > 0
such that1

‖g(x)‖1 = ‖A(t0)g(x)‖ � L2‖x(·)‖γCα

for every x ∈ C([0, T ],Xα(t0)), where ‖x(·)‖Cα is the supremum norm in the space C
(
[0, T ];Xα(t0)

)
.

There also exists τ∗ = τ∗(k)∈ (0, T ) such that g(p) = g(q) for every p, q ∈Bk, p(s) = q(s), s∈ [τ∗, T ],
where

Bk :=
{
x ∈ C

(
[0, T ];Xα(t0)

)
, ‖x(·)‖Cα � k

}
.

H4. Function r(·) ∈ C([0, T ]; [0, T ]).

For every xT ∈ X and λ ∈ (0, 1) we define the control function uλ(t) (we denote it simply as u(t))
as follows:

u(t) := B∗W ∗(T, t)R(λ, (−ΓT ))

×
⎡

⎣xT −W (T, 0)[x0 − g(x)]−
T∫

0

W (T, τ)F (τ, x(r(τ)))dτ

⎤

⎦ .
(9)

For this control, the following theorem holds.

Theorem 2. If assumptions H1–H4 are satisfied, then for every 0 <λ < 1 Eq. (1) admits a soft
solution on [0, T ].

We begin by proving two lemmas.

Lemma 1. If conditions of Theorem 2 hold then for every natural number n and every 0 < λ < 1
system

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
x(t) = −A(t)x(t) +Bu(t) + F (t, x(r(t))), t ∈ [0, T ]

x(0) +W

(
1

n
, 0

)

g(x) = x0 ∈ Xα(t0)
(10)

admits a soft solution on [0, T ].

We define sets of solutions:

D =
{
xλn ∈ C([0, T ],Xα(t0)) : x

λ
n = Qλ

nx
λ
n, n � 1

}
,

D(t) =
{
xλn(t) : x

λ
n ∈ D, n � 1

}
, t ∈ [0, T ].

Lemma 2. Suppose that conditions of Theorem 2 hold for every t ∈ (0, T ]. Then the set D is
compact in Xα(t0), and D(t) is uniformly continuous on (0, T ].

Proofs of the lemmas and Theorem 2 are given in the Appendix.

Theorem 3. Suppose that assumptions H1–H4 of Theorem 2 are verified by function F (·, ·), g(·)
is uniformly bounded; then system (1) is approximately controllable in [0, T ].

1 ‖ · ‖1 is the norm in the space of measurable functions L1.
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4. EXAMPLE

To demonstrate an application of Theorem 3, consider the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
z(t, x) =

∂2

∂x2
z(t, x)+a(t)z(t, x)+Bu(t)+h

(

t, z(t cos t, x),
∂

∂x
z(t, x)

)

,

0 � t � T, 0 � x � π

z(t, 0) = z(t, π) = 0, 0 � t � T

z(0, x)+
p∑

i=1

sin

⎛

⎝

π∫

0

b(x, y)z(ti, y)dy

⎞

⎠= z0(x), 0� x� π,

(11)

where T � π, p∈N, 0 < t1 < t2 < · · · < tp < T , z0(x)∈X := L2([0, π]). Function a(t) : [0, T ] → R
−

is Hölder continuous with parameter 0 < δ < 1, b(·, ·) is a function from C2, and u(·) : [0, T ] → X
is a control function.

Suppose that the family of operators A(t) is defined as follows:

A(t)f = −f ′′ − a(t)f

with domain

D(A) =
{
f(·) ∈ X : f, f ′ are absolutely continuous, f ′′ ∈ X, f(0) = f(π) = 0

}
.

Then it is easy to check that A(t) satisfies assumptions B1–B4 and generates an evolutionary
operator W (t, s) of the form

W (t, s) = T (t− s) exp

⎛

⎝

t∫

s

a(τ)dτ

⎞

⎠ ,

where T (t) is a compact analytic semigroup generated by operator (−A), Af =−f ′′, f ∈D(A). It is
easy to compute that A has a discrete spectrum with n2 eigenvalues, n ∈ N, with the corresponding

normalized eigenvectors zn(x) =
√

2
π sin(nx). Thus, for f ∈ D(A) it holds that

−A(t)f =
∞∑

n=1

(−n2 + a(t))〈f, zn〉zn.

We can see that the general domain coincides with the domain of operator A. Further, we can define
Aα(t0) (t0 ∈ [0, T ]) for the self-conjugate operator A(t0), and with the classical spectral theorem it
is easy to derive that

Aα(t0)f =
∞∑

n=1

(n2 − a(t0))
α〈f, zn〉zn

in the domain of D(Aα) = {f(·) ∈ X,
∑∞

n=1(n
2 − a(t0))

α〈f, zn〉zn ∈ X}. In particular,

A
1
2 (t0)f =

∞∑

n=1

√

n2 − a(t0)〈f, zn〉zn.

Hence for every f ∈ X

W (t, s)f =
∞∑

n=1

e−n2(t−s)+
∫ t

s
a(τ)dτ 〈f, zn〉zn
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and

Aα(t0)W (t, s)f = W (t, s)Aα(t0)f =
∞∑

n=1

(n2 − a(t0))
αe−n2(t−s)+

∫ t

s
a(τ)dτ 〈f, zn〉zn.

We now let U = X and B = I.

We let α = 1
2 and assume that system (11) satisfies the following hypothesis.

H5. Function c : [0, T ] × R× R → R is continuous, and there exists a constant L1 such that

⎛

⎝

π∫

0

∣
∣c (t, z1, z2)

∣
∣2dx

⎞

⎠

1
2

� L1

for every z1, z2 ∈ X 1
2
(t0).

We define functions F : [0, T ]×X 1
2
(t0)→X 1

2
(t0) and g : C([0, T ],X 1

2
)(t0)→D(A) as

F (t, z)(x) = h

(

t, z(t cos t, x),
∂

∂x
z(t, x)

)

,

g(z(t, x)) =
p∑

i=1

sin

⎛

⎝

π∫

0

b(x, y)z(ti, y)dy

⎞

⎠ .

Thus, system (11) can be rewritten in the form (1). Since by assumption the function b(·, ·) belongs
to C2, it is easy to see that g(·) satisfies condition H3 and the uniform boundedness condition, while
H3 ensures that function F (·, ·) is continuous and uniformly bounded.

Finally, to establish approximate controllability of system (11) it remains to check that condi-
tion H0 holds. To do that, we define the operator

ΓT =

T∫

0

W (T, s)BB∗W ∗(T, s)ds =

T∫

0

W (T, s)W ∗(T, s)ds

and show that W ∗(T, 0)y = 0 implies y = 0. Indeed, if W ∗(T, 0)y = 0 then

T∫

0

‖W ∗(T, 0)y‖2ds =
T∫

0

‖W (T, 0)y‖2ds = 0.

Consequently,
∞∑

n=1

T∫

0

e−2n2T−2
∫ T

0
a(τ)dτds〈y, zn〉2 = 0,

which immediately implies that 〈y, zn〉2 = 0 for every n � 0, so y = 0. Theorem 1 implies that
operator λ(λI + ΓT )

−1 → 0 in the strong topology for λ → 0, so H0 holds. Consequently, by
Theorem 3 system (11) is approximately controllable on the interval [0, T ].

5. CONCLUSION

Controllability of non-autonomous evolutionary systems is a hard and important problem in con-
trol theory. In this work, we study the approximate controllability of semilinear non-autonomous
evolutionary systems with nonlocal conditions by methods of functional analysis and theory of

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 3 2016



APPROXIMATE CONTROLLABILITY 435

evolutionary operators, fractional powers, and α-norms. We formulate and prove sufficient approx-
imate controllability conditions (see Theorem 3). Our result is based on the uniform boundedness
of nonlinear terms in the considered system and approximate controllability of the corresponding
linear systems. However, it is not so easy to check these sufficient conditions, since it is hard to
get an exact expression for the evolutionary operator for a non-autonomous linear system. The
example shown in this work relates to a special case.
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APPENDIX

Proof of Lemma 1. For brevity we denote

M1 := ‖A−1(t0)‖ and M2 := ‖Aα−1(t0)‖.
Control function un(t) corresponding to state x(·) of system (10) has the form

un(t) := B∗W ∗(T, t)R(λ, (−ΓT ))

×
⎧
⎨

⎩
xT −W (T, 0)

[

x0 −W

(
1

n
, 0

)

g(x)

]

−
T∫

0

W (T, τ)F (τ, x(r(τ)))dτ

⎫
⎬

⎭
. (A.1)

Suppose that Bk is defined as in H3, then it is a nonempty, bounded, closed, and convex subset
of the space C([0, T ];Xα(t0)). Let Q

λ
n be an operator on Bk:

(Qλ
nx)(t) :=W (t, 0)

[

x0−W

(
1

n
, 0

)

g(x)

]

+

t∫

0

W (t, s)[Bun(s)+F (s, x(r(s)))]ds.

Obviously, the fixed point of operator Qλ
n is a soft solution for Eq. (10) with control un(·) from (A.1).

We will show that Qλ
n has a fixed point in Bk by Schauder fixed point theorem, which will mean

that soft solutions exist for (10). We will show that Qλ
n maps Bk to itself for some k > 0, and Qλ

n

is a fully continuous operator.

We first show that for every 0 < λ < 1 there exists k = k(λ) > 0 such that Qλ
n(Bk) ⊂ Bk. If it

is not true then for every k > 0 there exists xk(·) ∈ Bk such that Qλ
n(xk) /∈ Bk, i.e., there exists

t = t(k) ∈ [0, T ] such that ‖(Qλ
nxk)(t)‖α > k. Then taking into account (d) and H1–H3, without

loss of generality we assume that ‖R(λ, (−ΓT ))‖ < 1
λ for λ ∈ (0, 1),

‖un(t)‖ =

∥
∥
∥
∥
∥
B∗W ∗(T, t)R(λ, (−ΓT ))

×
⎧
⎨

⎩
xT −W (T, 0)

[

x0 −W

(
1

n
, 0

)

g(xk)

]

−
T∫

0

W (T, τ)F (τ, xk(r(τ)))dτ

⎫
⎬

⎭

∥
∥
∥
∥
∥

� 1

λ
MN

⎛

⎝‖xT‖+M‖x0‖+M‖g(xk)‖+M

T∫

0

‖F (τ, xk(r(τ)))‖dτ
⎞

⎠

� 1

λ
MN

[
‖xT‖+M‖x0‖+MM1L2k

γ +ML1T (k
γ + 1)

]
,
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so (4)–(7) imply that

k <
∥
∥(Qλ

nxk)(t)
∥
∥
α
�
∥
∥
∥
∥W (t, 0)

[

x0 −W

(
1

n
, 0

)

g(xk)

]∥
∥
∥
∥
α

+

∥
∥
∥
∥
∥
∥

t∫

0

W (t, s) [Bun(s) + F (s, xk(r(s)))] ds

∥
∥
∥
∥
∥
∥
α

� M
[∥
∥x0
∥
∥
α
+M

∥
∥
∥Aα−1(t0)

∥
∥
∥ ‖g(xk)‖1

]

+

t∫

0

∥
∥Aα(t0)A

−β(t)Aβ(t)W (t, s)
∥
∥
∥
∥Bun(s) + F (s, xk(r(s)))

∥
∥ds

� M

[

‖x0‖α+MM2L2k
γ
]

+

t∫

0

Cα,β
Cβ

(t− s)β
[N‖u(s)‖+ ‖F (s, xk(r(s)))‖] ds

�
[

M2M2L2 +
Cα,βCβ

1− β
T 1−β

(
M2N2

λ
M1L2 +

M2N2

λ
L1T + L1

)]

kγ +K,

where α < β < 1 and

K = M‖x0‖α +
Cα,βCβ

1− β
T 1−β

(
MN2

λ
‖xT‖+ M2N2

λ
‖x0‖+ M2N2

λ
L1T + L1

)

.

This is impossible for k → ∞ since 0 < γ < 1. Thus, there exists k = k(λ) > 0 such that Qλ
n

maps Bk to itself for every 0 < λ < 1.

To prove that operator Qλ
n is fully continuous, let us show that it is continuous on Bk.

Let {xm}m∈N+ be a sequence in Bk such that xm→x (m→+∞); then

∥
∥A(t0) [g (x

m)− g(x)]
∥
∥→ 0 (m → +∞),

∥
∥F (s, xm(r(s)))− F (s, x(r(s)))

∥
∥→ 0 (m → +∞)

and

∥
∥F (s, xm(r(s)))− F (s, x(r(s)))

∥
∥ � 2L1(k

γ + 1).

Lebesgue’s theorem on dominated convergence implies that

∥
∥Qλ

nx
m −Qλ

nx
∥
∥
α
� M2

∥
∥
∥Aα−1(t0)

∥
∥
∥ ‖g (xm)− g(x)‖1

+

t∫

0

Cα,β
Cβ

(t− s)β
‖umn (s)− un(s)‖ ds

+

t∫

0

Cα,β
Cβ

(t− s)β
∥
∥F (s, xm(r(s)))− F (s, x(r(s)))

∥
∥ds → 0 ( for m → +∞),
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where umn (·) is a control function corresponding to xm(·), and, obviously, ‖umn (s)− un(s)‖ → 0 for
m → +∞. Thus, Qλ

n is continuous.

Let us now show that for an arbitrary 0 < λ < 1 operator Qλ
n maps Bk into a relatively com-

pact subset of the set C([0, T ],Xα(t0)). We first show that the set V (t) =
{
(Qλ

nx)(t), x ∈ Bk

}

is relatively compact in Xα(t0) for every t ∈ [0, T ]. Indeed, the case when t = 0 is trivial since(
Qλ

nx(0)
)
= x0 −W

(
1
n , 0
)
g(x), where g(x) is bounded on Bk and W

(
1
n , 0
)
is compact. We now

fix t ∈ (0, T ] and note that for 0 < α < α1 < β < 1

∥
∥(Qλ

nx)(t)
∥
∥
α1

�
∥
∥
∥
∥A

α1(t0)W (t, 0)

[

x0 −W

(
1

n
, 0

)

g(x)

]∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥
Aα1(t0)

t∫

0

W (t, s) [Bun(s) + F (s, x(r(s)))] ds

∥
∥
∥
∥
∥
∥

� M
∥
∥x0
∥
∥
α1

+M2
∥
∥
∥Aα1−1(t0)

∥
∥
∥L2k

γ +
Cα1,βCβ

1− β
T 1−β [N‖un(·)‖ + L1(k

γ + 1)] ,

which implies that V (t) is bounded in Xα1(t0). Therefore, V (t) is relatively compact in Xα(t0),
and as a consequence the operator A−α1(t0) : X →Xα(t0) is compact (because Xα1(t0) ↪→ Xα(t0)
is compact). Consequently, for every t ∈ [0, T ] V (t) is relatively compact in Xα(t0).

It remains to show that the family of functions V =
{
P λ(z)(·) : z ∈ Bk

}
is uniformly continuous

on the interval [0, T ]. This is obvious for t = 0. Let 0 < t1 < t2 � T , then

∥
∥
∥
∥(Q

λ
nx)(t2)− (Qλ

nx)(t1)

∥
∥
∥
∥
α

�
∥
∥
∥
∥[W (t2, 0)−W (t1, 0)]

[

x0 −W

(
1

n
, 0

)

g(x)

]∥
∥
∥
∥
α

+

∥
∥
∥
∥
∥
∥

t1∫

0

[W (t2, s)−W (t1, s)][Bun(s) + F (s, x(r(s)))]ds

∥
∥
∥
∥
∥
∥
α

+

∥
∥
∥
∥
∥
∥

t2∫

t1

W (t2, s)[Bun(s) + F (s, x(r(s)))]ds

∥
∥
∥
∥
∥
∥
α

.

Obviously, the first term in the right-hand side tends to zero for t2 → t1 since W
(
1
n , 0
)
is compact

and g(x) is bounded on Bk. For the third term we get

∥
∥
∥
∥
∥
∥

t2∫

t1

W (t2, s)[Bun(s) + F (s, x(r(s)))]ds

∥
∥
∥
∥
∥
∥
α

�
t2∫

t1

Cα,β
Cβ

(t− s)β
[
N‖un‖+ ‖F (s, x(r(s)))‖]ds

� Cα,βCβ

1− β
[N‖un‖+ L1(k

γ + 1)] (t2 − t1)
1−β → 0 for t2 → t1.
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We next consider the second term. Now (3) implies that

∥
∥
∥
∥
∥
∥

t1∫

0

[W (t2, s)−W (t1, s)][Bun(s) + F (s, x(r(s)))]ds

∥
∥
∥
∥
∥
∥
α

�
t1−ε∫

0

∥
∥
∥
∥A

α(t0)
[
e−(t2−s)A(t2) − e−(t1−s)A(t1)

] ∥∥
∥
∥

[
N
∥
∥un
∥
∥+ L1(k

γ + 1)
]
ds

+

t1−ε∫

0

∥
∥
∥
∥
∥
∥
Aα(t0)

⎡

⎣

t2∫

s

e−(t2−τ)A(τ)Φ(τ, s)dτ −
t1∫

s

e−(t1−τ)A(τ)Φ(τ, s)dτ

⎤

⎦

∥
∥
∥
∥
∥
∥

[
N‖un‖+ L1(k

γ + 1)
]
ds

+

t1∫

t1−ε

∥
∥Aα(t0)[W (t2, s)−W (t1, s)]

∥
∥[N‖un‖+ L1(k

γ + 1)]ds

� Cα,1

t1−ε∫

0

∥
∥
∥
∥A(t0)

[
e−(t2−s)A(t2) − e−(t1−s)A(t1)

] ∥∥
∥
∥[N‖un‖+ L1(k

γ + 1)]ds

+ CCα,1

t1−ε∫

0

∥
∥
∥
∥
∥
∥

t1∫

s

A(t0)
[
e−(t2−τ)A(τ) − e−(t1−τ)A(τ)

]
(τ − s)δ−1dτ

∥
∥
∥
∥
∥
∥

[
N‖un‖+ L1(k

γ + 1)
]
ds

+

t1−ε∫

0

∥
∥
∥
∥
∥
∥

t2∫

t1

Aα(t0)e
−(t2−τ)A(τ)Φ(τ, s)dτ

∥
∥
∥
∥
∥
∥

[
N‖un‖+ L1(k

γ + 1)
]
ds

+

t1∫

t1−ε

‖A−α(t0)[W (t2, s)−W (t1, s)]‖[N‖un‖+ L1(k
γ + 1)] := I1 + I2 + I3 + I4,

where ε > 0 is sufficiently small. The operator function A(t)e−τA(s) is uniformly continuous with
respect to (t, τ, s) for 0 � t � T , z � τ � T and 0 � s � T , where z is any positive number (see
[27, 28]); therefore, (I1 + I2) tends to zero for t2 − t1 → 0. For the two latter terms we get

I3 �
t1−ε∫

0

t2∫

t1

CCα,β
Cβ

(t2 − τ)β
(τ − s)δ−1[N‖un‖+ L1(k

γ + 1)
]
dτds

� CCα,βCβ
2T δ

δ

t2∫

t1

(t2 − τ)−βds
[
N‖un‖+ L1(k

γ + 1)
]

� CCα,βCβ
2T δ

δ(1− β)
(t2 − t1)

1−β[N‖un‖+ L1(k
γ + 1)

]

and

I4 �
Cα,βCβ

1− β

[
(t2 − t1)

1−β + (t2 − t1 + ε)1−β + ε1−β
] [
N‖un‖+ L1(k

γ + 1)
]
.

All of the derivations above imply that V = {(Qλ
nx)(·), x ∈ Bk} is uniformly continuous on [0, T ].

Thus, the infinite-dimensional version of the Arzela–Ascoli theorem tells us that Qλ
nx is a fully

continuous operator on C ([0, T ];Xα(t0)).

This lets us conclude (by Schauder’s theorem) that there exists a fixed point xλn(·) for Qλ
n on Bk,

which represents a soft solution for Eq. (10) on [0, T ]. This completes the proof of Theorem 1.
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Lemma 2 is easy to show in a similar way.

Proof of Theorem 2. First, we have to prove that the set of solutions D is relatively compact
in C([0, T ],Xα). Obviously, it suffices to show that D(0) is relatively compact in Xα(t0) and D is
uniformly continuous in t = 0 by Lemma 2. For xλn ∈ D, n � 1 we let

x̄λn(t) :=

{
xλn(δ), t ∈ [0, τ∗)

xλn(t), t ∈ [τ∗, T ],

where τ∗ = τ∗(k) from H3. Then g
(
xλn

)
(t) = g

(
x̄λn

)
(t) by H3.

Lemma 2 implies that D|[τ∗,T ] is relatively compact in C([τ∗, T ],Xα(t0)), so without loss of

generality we can assume that x̄λn(t) → x̄λ(·) (n → ∞) for some x̄λ(·) ∈ C([τ∗, T ],Xα(t0)). Then

∥
∥
∥xλn(0)−

[
x0 + g

(
x̄λ
)]∥
∥
∥
α
=

∥
∥
∥
∥W

(
1

n
, 0

)

g
(
xλn

)
− g

(
x̄λ
) ∥∥
∥
∥
α

�
∥
∥
∥
∥W

(
1

n
, 0

)

g(xλn)−W

(
1

n
, 0

)

g
(
x̄λ
) ∥∥
∥
∥
α

+

∥
∥
∥
∥W

(
1

n
, 0

)

g
(
x̄λ
)
− g

(
x̄λ
) ∥∥
∥
∥
α

=

∥
∥
∥
∥W

(
1

n
, 0

) [
g
(
x̄λn

)
− g

(
x̄λ
)] ∥∥
∥
∥
α

+

∥
∥
∥
∥

[

W

(
1

n
, 0

)

− I

]

g
(
x̄λ
) ∥∥
∥
∥
α

→ 0 for n → ∞,

i.e., D(0) is relatively compact in Xα(t0).

On the other hand, for t ∈ (0, T ] we have

∥
∥
∥xλn(t)− xλn(0)

∥
∥
∥
α
=

∥
∥
∥
∥W (t, 0)

[

x0 +W

(
1

n
, 0

)

g(xλn)

]

+

t∫

0

W (t, s)[Bun(s) + F (s, xλn(r(s)))]ds −
[

x0 +W

(
1

n
, 0

)

g(xλn)

] ∥
∥
∥
∥
α

� ‖W (t, 0)x0 − x0‖α +

∥
∥
∥
∥[W (t, 0)− I]W

(
1

n
, 0

)

g(xλn)

∥
∥
∥
∥
α

+

∥
∥
∥
∥
∥
∥

t∫

0

W (t, s)[Bun(s) + F (s, xλn(r(s)))]ds

∥
∥
∥
∥
∥
∥
α

→ 0 uniformly with respect to n for t → 0+.

This, together with Lemma 1, means that D is relatively compact in C([0, T ],Xα(t0)). Conse-
quently, there exists xλ∗ ∈ C([0, T ],Xα(t0)) such that xλn → xλ∗ for n → ∞ without loss of generality.

By the definition of a soft solution (10),

xλn(t) = W (t, 0)

[

x0 −W

(
1

n
, 0

)

g(xλn)

]

+

t∫

0

W (t, s)
[
Bun(s) + F (s, xλn(r(s)))

]
ds, 0 � t � T.

Passing to the limit on both sides for n → ∞, we immediately get

xλ∗(t) = W (t, 0)

[

x0 −W

(
1

n
, 0

)

g(xλ∗ )
]

+

t∫

0

W (t, s)
[
Bu∗(s) + F (s, xλ∗ (r(s)))

]
ds, 0 � t � T,
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where

u∗(t) := B∗W ∗(T, t)R(λ, (−ΓT ))

×
⎧
⎨

⎩
xT −W (T, 0)

[
x0 − g(xλ∗ )

]
−

T∫

0

W (T, τ)F (τ, xλ∗ (r(τ)))dτ

⎫
⎬

⎭
.

This shows that Eq. (1) has a soft solution xλ∗(·) on [0, T ] for λ ∈ (0, 1).

Proof of Theorem 3. Let xλ∗(·) be a soft solution of Eq. (1) in [0, T ] with control

uλ∗(t) = B∗W ∗(T, t)R(λ, (−ΓT ))

×
⎡

⎣xT −W (T, 0)(x0 + g(xλ∗ ))−
T∫

0

W (T, τ)F (τ, xλ∗ (r(τ)))dτ

⎤

⎦ .

Then

xλ∗(T ) = W (T, 0)
[
x0 − g

(
xλ∗
)]

+

T∫

0

W (T, s)
[
Buλ∗(s) + F (s, xλ∗ (r(s)))

]
ds

= xT + (ΓTR(λ, (−ΓT ))− I)

⎡

⎣xT −W (T, 0)
(

x0 − g(xλ∗ )
)

−
T∫

0

W (T − s)F (s, xλ∗ (r(s)))ds

⎤

⎦

= xT−λR(λ, (−ΓT ))

⎡

⎣xT−W (T, 0)
(

x0−g(xλ∗ )
)

−
T∫

0

W (T, s)F (s, xλ∗(r(s)))ds

⎤

⎦ . (A.2)

Assumptions of Theorem 3 imply that sequences {g(xλ∗ ) : λ ∈(0, 1)} and {F (s, xλ∗ (r(s))) : λ ∈ (0, 1)}
are uniformly bounded with respect to λ in spaces X1(t0) and X respectively. Consequently,{
g(xλ∗ ) : λ ∈ (0, 1)

}
is also uniformly bounded in the X-norm, and therefore, since W (T, 0) is

compact and by condition (H0), we conclude that there exists a subsequence, which we denote by
g(xλ∗ ), such that

∥
∥
∥λR(λ, (−ΓT ))W (T, 0)g(xλ∗ )

∥
∥
∥→ 0

for λ → 0+. On the other hand, there exists a subsequence, which we denote by F (s, xλ∗ (r(s))),
that weakly converges, for instance, to f(s) in the space X for every s ∈ [0, T ]. Then, since
W (T, s) (0 � s < T ) is compact, we get that

∥
∥
∥W (T, s)

[
F (s, (s, xλ∗ (r(s)))− f(s)

]∥
∥
∥→ 0 for all s ∈ [0, T ),

and, consequently,

∥
∥
∥
∥
∥
∥

T∫

0

W (T, s)
[
F (s, (s, xλ∗ (r(s))))− f(s)

]
ds

∥
∥
∥
∥
∥
∥
→ 0
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for λ → 0+. Using (A.2), we get

∥
∥xλ∗(T )− xT

∥
∥ �

∥
∥
∥
∥λR(λ, (−ΓT ))

[
xT −W (T, 0)x0

]
∥
∥
∥
∥+

∥
∥
∥
∥λR(λ, (−ΓT ))W (T, 0)g(xλ∗ )

∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥
λR(λ, (−ΓT ))

T∫

0

W (T, s)F (s, (s, xλ∗ (r(s))))ds

∥
∥
∥
∥
∥
∥
�
∥
∥
∥
∥λR(λ, (−ΓT ))

[

xT −W (T, 0)x0

]∥
∥
∥
∥

+

∥
∥
∥
∥λR(λ, (−ΓT ))W (T, 0)g(xλ∗ )

∥
∥
∥
∥+

∥
∥
∥
∥
∥
∥
λR(λ, (−ΓT ))

T∫

0

W (T, s)f(s)ds

∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥
λR(λ, (−ΓT ))

T∫

0

W (T, s)
[
F (s, (s, xλ∗ (r(s)))) − f(s)

]
ds

∥
∥
∥
∥
∥
∥
→ 0 for λ → 0+. (A.3)

Hence xλ∗(T ) → xT in X, and consequently, we get approximate controllability of system (1). This
completes the proof of Theorem 3.
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